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Abstract: Multi-component reactions for the construction of heterocycles have been fascinated by
microwave energy as an alternative technique of heating, owing to the advantages over traditional
reflux methods. The heterogeneous catalysts contribute significantly towards recycling, harmless,
easy filtration, catalyst preparation, more life span, abundance, and product yields. With novel
and creative uses in organic and peptide synthesis, polymer chemistry, material sciences, nanotech-
nology, and biological processes, the usage of microwave energy has rapidly increased during the
past 20 years. This article covers multicomponent reactions involving construction of chromenes,
pyridines, pyrroles, triazoles, pyrazoles, tetrazoles, trans and cis julolidines using heterogeneous
catalysts under microwave. It provides an overview of contemporary microwave-assisted hetero-
geneous catalytic reactions. Microwave chemistry is now an established technology with several
advantages regarding reaction rate and production yield, improving energy savings as confirmed
by many applications. Due to the widespread curiosity in medicinal chemistry, the heterogeneously
catalysed construction of heterocycles under microwave irradiation is explored to reduce time and
energy. By considering various aspects of economy, eco-friendly, and user-friendly factors, this review
focuses on recent advances in the multi-component construction of heterocycles using heterogeneous
catalysts under microwave irradiation. This review also discusses the benefits and limitations of
reaction conditions and yields from the literature reports for the past five years.

Keywords: multicomponent reactions; heterogeneous catalysts; microwave-assisted synthetic
procedures; heterocycles

1. Introduction

Based on a critical analysis of the published original research articles, the insightful
reviews on the most recent developments in the specialised fields help the researchers
be aware of the advances. Review articles are academic works that gather, condense,
analyse, and synthesized knowledge on a particular area of research. Reviews can expose
research gaps, give proof of applications, create guidelines for policy and practice, serve as
a foundation for knowledge development, and, if done correctly, inspire new ideas and lay
the groundwork for future research initiatives. Concisely, thorough review papers provide
the crucial foundation for all studies and applying that knowledge.

Multicomponent reactions are progressive reactions in which easily accessible or com-
mercially available starting components are used to produce desired single compound [1].
These reactions have been deliberately used in a variety of synthetic transformations,
whereas traditional approaches typically include numerous steps and laborious proce-
dures [2]. The target compounds can be obtained in one pot with much fewer steps.
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Therefore, multicomponent reactions have received significant interest in research areas
like medicinal chemistry and combinatorial chemistry to obtain heterocyclic scaffolds. In
general, the multicomponent reactions are synthetic hub to produce novel cyclic com-
pounds such as quinazolines, diazepines, naphthyridines, dihydropyridines, quinolines,
pyrimidines, spiro-heterocycles and imidazole’s which are widely recognized in clinical
evaluation [3,4]. The multicomponent reaction techniques offers excellent yields, economy,
shortened reaction time, environmentally safe, and serves as a useful mechanism for the
creation of a library of novel chemical entities [5–10]. Further, to increase the reaction rate
and product yield and decrease reaction time and economy, many researchers have been
focusing on the utilisation of microwave techniques in multicomponent reactions.

Although there is considerable debate regarding how microwave irradiation (MI) can
improve or affect the result of chemical reactions, microwave-assisted chemical reactions
are increasingly widespread in the laboratory. Most of the discussion concentrated on
whether the observed effects can always be explained by purely thermal Arrhenius-based
phenomena (thermal microwave effects), emphasising the significance of the quick heating
and high bulk reaction temperatures made possible by microwave dielectric heating in
sealed reaction vessels.

The sustainable creation of chemical molecules is known as “green chemistry”. Green
chemistry seeks to reduce the harmful impact that the production and manufacturing of
diverse chemical compounds have on the environment. It aims to produce compounds with
minimal harmful components by improving chemical synthesis efficiency and generating
as little trash as possible. Utilising numerous powerful techniques, such as MI, is part of
the future of green chemistry. The study of using MI effectively started in 1950 [11] and
spread to organic synthesis procedures after 30 years. Chemical research and production
have undergone a revolution thanks to the usage of microwave-assisted methods. This
method allows the creation of even smaller chemicals and molecules in a concise amount
of time.

1.1. What Are Microwaves?

A microwave is a type of electromagnetic energy that operates between the range of 300
to 300,000 megahertz. Only molecule rotation, not molecular structure, is impacted by this
area of electromagnetic energy. For industrial, scientific, or medical purposes, 2450 MHz
is chosen over the other three frequencies because it has the necessary penetration depth
to interact with laboratory-scale samples and is close to power sources that can produce
microwaves at this frequency. An electric and a magnetic field contribute to microwave
energy, but only the electric field may be used to heat objects. Chemical synthesis does not
typically include magnetic field interactions. The result of microwave absorption on the
excitation of molecules is solely kinetic.

1.2. How Are the Reactants Heated by Microwaves?

Chemical synthesis is usually accomplished using conductive heating from an outside
heat source. In order to reach the solvent and reactants, heat is first forced into the substance
through the vessel’s walls. Introducing energy into the system is slow and ineffective since it
depends on the thermal conductivity of the numerous materials that must be pierced. Until
enough time has passed to allow the container and contents to reach thermal equilibrium,
the outside temperature of the vessel will be higher than that of the reaction mixture inside.
Hours may pass throughout this process. The chemist’s ability to regulate the reaction is
likewise hampered by conductive heating. To lower the bulk solution temperature, the heat
source must be physically removed, and cooling must be applied.

On the other hand, microwave heating is an entirely different approach. The molecules
in the reaction mixture directly pair with the microwaves, rapidly raising the ambient
temperature. The outcome is a quickly localised superheating of anything that will react
to either dipole rotation or ionic conduction. These are the primary mechanisms for
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transmitting energy from microwaves to heated substances. This is because the process is
independent of the thermal conductivity of the container’s materials.

Additionally, microwave heating allows for simple reaction control. “Instant on-
instant off” is an excellent way to explain it. Latent heat is the only thing left over once
the microwave radiation is switched off. Polar molecules seek to align themselves with
the microwave’s rapidly shifting electric field through an interaction known as dipole
rotation. Energy is transferred due to the molecule’s rotating motion to align itself with
the field. The molecules’ polarity and capacity to line up with the electric field impact this
mechanism’s ability to couple. Any polar species (solvent and substrate) present experience
this method of energy transfer; the exact parameters that influence the dipole rotation
coupling efficiency are numerous.

In organic synthesis, MI has gained popularity as a heating method primarily because
of its quick reaction times, solventless processes, and occasionally greater yields. MI also
reduces energy usage, making it perfect for procedures of optimisation. Furthermore,
there is proof that MI can enhance the crucial characteristics of regio-selectivity and stereo-
selectivity involved in synthesizing bioactive molecules. These fundamental characteristics
of MI enable its use in green chemical processes.

Besides, the MI technique is contactless [12], substantial, and the best operational
condition [13] to obtain products quickly through greenery way [14,15]. Naturally, com-
pounds possessing permanent dipole moments (movable electric charge) are microwave
active. Especially the polar molecules, which contain portable electric charges, are typically
heated during the reaction process by MI, increasing their reaction rate several folds [16] in
minimal time [17,18] and producing greater yields [19] with an easy workup process [4] via
this user-friendly methodology [20]. The reactants accelerate their excitation processes in
the presence of high-frequency electric fields by decreasing their activation energy [21,22]
to yield products. For a fruitful reaction, the stereo- and regio-selectivity of products are
highly desirable. The MI technique fulfils this criterion and is thus called the most efficient
and eco-friendly modern technique [18,23,24]. The microwave setup is being employed
in almost all fields of chemistry [25], with its high energy efficiency and excellent selectiv-
ity [26]. The organic heterocyclic reactions under MI produce better yields by increasing
reaction kinetics [27] with minimal environmental impacts [20].

A few significant research areas in modern physics utilising the MI technique are
nanoscale coatings [28], solid dispersions [29], comparing and scaling up dielectric pro-
cesses [30], synthesis of γ-MnO2 used in supercapacitors [31], n-type benzotriazole semi-
conductor material synthesis [32], tin-oxide synthesis for sensitised solar cells [33], and
magnetic nanoparticle synthesis [34]. The MI method is also crucial in bioscience, phar-
maceutical and medicinal fields like medicine applications [35], diagnostic pathology [36],
extraction process of bioactive compounds [37], medicinal chemistry [20,38], and drug
invention processes [39–41]. The emerging surface engineering technology also utilises MI
as a significant protocol [42], material engineering [43], Ni-Al-Ti coatings [44], and surface
fibrous decoration processes [45].

The MI has tremendous applications in various chemistry research areas such as,
heterogeneous catalytic reactions [46], solid state chemistry [47], different heterocyclic
organic synthesis involving O, N, and S [48], nitrogen containing heterocycles [49], hetero-
cyclic synthetic reactions [50], solvent free heterocyclic synthesis processes [51], colloidal
inorganic nanocrystal synthesis [52], bioactive six membered heterocycles synthesis [53],
five membered nitrogen heterocycles synthesis [54], Knoevenagel condensation [55], in-
doles synthesis [56], triazoloquinazolinones and benzimidazoquinazolinones synthesis [57],
extraction of volatile compounds [58], oxazoles and diastereoselective oxazolines [59], syn-
thesis of quinazolines and quinazolinones [60], polymer synthesis [61], ferrocenyl chalcone
synthesis [62], arylidene acetophenones synthesis [63], photo oxidation of sulfoxides [64],
potential biological compounds [65], organic nanoparticle synthesis [66], synthesis of
amino-quinazoline derivatives [67], coumarin-purine derivatives [68], various ring opening
polymerisation reactions [69], nucleoside protide analogues synthesis [70], organic trans-
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formations and synthesis [71], benzannulation reactions [72], heterocyclic phosphonate
synthesis [73], azha heterocycle synthesis [74], one pot three component pyrazole synthe-
sis [75], heterocyclic hydrazone synthesis [73], degradation reactions [76], heterogeneous
catalysis [77,78], 1,2,3 triazolobenzodiazepinones synthesis [79], silica material synthe-
sis [80], 2-aryl and 2,5-diarylthiophene derivatives preparation [81], decarboxylation of
malonic acid derivatives [82], Pd-carbon catalysed reactions [83], and carbon supported-Co
catalytic reactions [84].

The MI-assisted multi-component heterocyclic synthetic reactions are environmentally
benign and vital to modern organic chemistry [85]. The MI protocol assists the reactants
towards yielding the products in the presence of heterogeneous catalysts.

2. Applications of Microwave-Assisted Heterogeneous Catalysed
Multi-Component Reactions
2.1. Synthesis of Nitrogen and Oxygen Containing Heterocyclic Compounds

Heterocyclic compounds can be prepared through one pot MI technique using hetero-
geneous catalysts and have emerged as a desirable replacement in contemporary organic
chemistry.

2.1.1. Preparation of Chromenes

According to the most recent literature research, between five and particularly the six-
membered heterocyclic compounds, chromene chemistry is very lucrative from a synthetic
and pharmaceutical perspective due to its broad biological effects [86]. The chromenes
possess potential biological characteristics like anticancer, food additives, antidiabetic activ-
ities, antifungal, anti-inflammatory, antimicrobial [87] and anticoagulants [88], applications
in cosmetics, chemicals [89] and agrochemicals [90].

Bicyclic oxygen heterocycles containing a benzene fusion ring at a 5,6-positioned
4H-pyran ring system are called 4H-chromene. It has attracted researchers’ attention as a
valuable structural pattern for finding new drugs. Lambat synthesized 4H-chromene deriva-
tives using scolecite as a heterogeneous catalyst under MI through the multi-component
one pot method [88] with 95% yield at 90 ◦C (Scheme 1). This method offers effective and
quick reaction times, simple reaction profiles, accessible workup, facile catalytic reusabil-
ity, and outstanding yield without loss of catalytic nature (up to 3 cycles) are all mainly
attributable to the current synthetic approach. The readily abundant reactants have been
utilised in the synthesis of chromene derivatives.
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Scheme 1. Microwave-assisted synthesis of 4H-chromene derivatives using scolecite as a heteroge-
neous catalyst.

Through MI, Gaikwad and Kamble [91] reported a new method for preparing 2-
amino-4H-chromenes in the aqueous hydrotropic medium. A renewable and sustainable
energy conservation process is a synthetic methodology exposed to microwave radiation.
Various derivatives of 2-amino-4H-chromenes were produced in good to outstanding
yields by condensing a variety of aromatic aldehydes with malononitrile, α-naphthol, or β-
naphthol in an aqueous hydrotropic media. This demonstrates an environmentally friendly
process with straightforward experimental and workup steps. The main characteristics
of this approach include a quick reaction time, lack of toxicity, reusability, low cost, low
temperature (10–28 ◦C), and high product yield (82–94%) (Scheme 2). The catalyst can be
used for five runs with a small change in product yield.
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Scheme 2. Synthesis of 2-amino-4H-chromenes derivatives.

Baral et al. [86] designed a series of 2H-chromene-containing pyrrole derivatives to
know the vital bioactive properties and to reduce the laboratory effort. An innovative and
effective MI-assisted method for producing the 2H-chromene-fused pyrrole derivatives
was described using a range of substituted 3-nitro-2H-chromene, acetylacetone, aniline,
and FeCl3 as a catalyst and generating excellent yields (83–95%) within 15 min (Scheme 3).
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Scheme 3. Synthesis of 2H-chromene fused pyrrole derivatives.

Molaei et al. [92] have synthesized 4H-chromene derivatives via microwave method
using nano-coconut shell-BF3 as a new heterogeneous catalyst and aryl aldehydes, cyclic
1,3-diketone, and malononitrile as reactants. The authors concluded that the catalyst is used
for three successive times without loss of its significant activity. A good yield is obtained at
90 ◦C for 4 min of reaction time under microwave conditions (Scheme 4). Prashant B. Hire-
math et al. [93] have introduced a new technique for synthesizing substituted chromenes by
using water extract of pomegranate peel ash (WEPPA) under MI. They produced 2-amino-
4H-chromenes by condensation of substituted aryl aldehyde, malononitrile and resorcinol.
The products were obtained in 45 min with an 85% yield (Scheme 5).
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Nope E and co-workers [94] reported a new method for the synthesis of 4H-chromenes
by using aromatic aldehydes, malononitrile, and naphthol derivatives in the presence of
magnetic Fe3O4-based hydrotalcites (50 mg) heterogeneous catalyst. The reaction was
carried out in the presence of microwaves, and the 88–95% product yield is found at 80 ◦C
(Scheme 6). They finally concluded that, the catalyst with 50mg can effectively catalyze the
conversion of the Michael adduct into the 4H-chromene product and can be recycled up to
five times without loss of its catalytic activity.
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Poursattar et al. [95] constructed 2-amino-4-aroyl-4H-benzo[h]chromene-3-carboni-
triles through a multicomponent reaction through MI method in the presence of Mg-Al
hydrotalcite catalyst. The process was carried out under solvent-free conditions offering
70–89% yield within 6 to 12 min (Scheme 7). The advantages of this approach include
quicker reaction durations, milder reaction conditions, simple workup, good to outstanding
yields, an abundance of raw materials, and its usefulness in the synthesis of various
heterocyclic compounds.
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Scheme 7. Synthesis of 2-amino-4-aroyl-4H-benzo[h]chromene-3-carbonitriles.

Dwi Febriantini and group [96] introduced a new method to synthesize 2-amino-4H-
chromenes using 4-hydroxy benzaldehyde, malononitrile/ethyl cyanoacetate and barbituric
acid/thiobarbituric acid as reactants and Fe3O4/camphor as a catalyst under microwave
condition (Scheme 8).
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2.1.2. Preparation of Pyridines

The pyridines have a wide range of applications, frequently being used in fluorescence
sensors, laser dyes and molecular switches [97], confocal microscopy [98], medical applica-
tions [99,100], anti-inflammatory [101], DNA and RNA structural constituents [102–104],
antioxidants [105], antimicrobial [106,107], fungicidal [108] to treat hepatitis B [109] and
C [110], arterial thrombosis [111], Alzheimer’s [112], tumours [113], and kidney dis-
eases [114].

Hany A. Eldeab [115] designed pyridine nucleosides under microwave and solvent-
free conditions using an efficient and environmentally friendly solid silica gel catalyst. The
products were reported as 94% in 3 min (Scheme 9). The method emphasised the recyclable
silica gel catalyst.
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Pooja Kumari and co workers [116] have put effort to synthesize pyrimidine deriva-
tives by utilizing cyclic 1,3-diketones, α, β unsaturated aldehydes and 6-aminouracils in the
presence of 10 mol% FeCl3 catalyst under the microwave conditions (Scheme 10). Their pro-
cedure comprises less reaction time, moderate-to-good yields with cheap starting materials.
The MnO2 catalyst produced desired amounts of products. Ansari et al. [117] synthesized
steroidal pyridines by microwave one-pot multi-component reaction using MgO NPs as a
heterogeneous catalyst. The method was successful at 70 ◦C in 20 min with an 89% yield.
The MgO NPs heterogeneous catalyst was reported as an alternate and sustainable catalyst
for synthesizing substituted steroidal pyridines (Scheme 11). The catalyst was reused for
five subsequent cycles without major loss of its catalytic nature.
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2.1.3. Preparation of Pyrroles

The 5-membered heterocyclic compounds of nitrogen include pyrroles, pyrrolidines,
oxazoles, indoles, and pyrazoles, where pyrrole is discovered to be the most significant
of them. Any organic molecule in the heterocyclic group with a ring structure of four
carbon atoms and one nitrogen atom is called a pyrrole. Pyrroles have widespread usage
in pharmaceutical sectors and are essential targets in chemical synthesis [118]. In bio-
applications, these pyrroles demonstrate fungicidal, antibiotic, antipsychotic, anxiolytic,
beta-adrenergic antagonist, anti-inflammatory [119], anticancer, antiprotozoal, anti-malarial,
anti-tumour agents [120], and antimicrobial activities [121]. It is also used as a corrosion
inhibitor in polymer chemistry and an organic conducting inhibitor in many engineering
applications.

Venkatesan et al. [122] have synthesized pyrrole derivatives catalysed by uranyl nitrate
hexahydrate and obtained 85% yield in 15 min at room temperature (Scheme 12). The
method offers good product yield. The scheme was tried in many solvents, and excellent
results were obtained in the presence of ammonium acetate.
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Sumit kumar and group [123] have introduced a new technique to synthesize tetrasubstituted-
1H-pyrrol derivatives catalyzed by heterogeneous reusable silica gel supported polyphos-
phoric acid (PPA/SiO2) under microwave-irradiation (Scheme 13). Authors concluded that
the methodology was produced excellent yields with inexpensive catalyst in shorter reac-
tion time. The catalyst was studied for 5 successive cycles where more than 80% product
yield was noticed.
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2.1.4. Preparation of Triazoles

Triazoles have a five-membered heterocyclic ring with two carbon and three nitrogen
atoms as their primary structural component. The triazoles are used as antimicrobial, antivi-
ral, anti-tubercular, anticancer, anticonvulsant, analgesic, antioxidant, anti-inflammatory,
and antidepressant activities, antifungal agents [124] and drug candidates for various
microorganism-causing diseases [125], preferred over azole drugs for the remedy of some
fungal infections [126], possess lead structures to design COX-1/COX-2 inhibitors [127],
and forms hydrogen bond in various chemical transformations [128].

Bhuyan et al. [129] developed a new procedure to synthesize 4-aryl-1H-1,2,3-triazoles
using aromatic aldehydes, sodium azide and nitromethane. The reaction was carried out
under MI with an active CuFe2O4 catalyst by a short reaction time, i.e., 5–10 min, with
satisfactory high product yields (60–97%) (Scheme 14). The activity of the reused catalyst
was evaluated by the authors and the results were reported with a slight decrease in the
catalyst activity up to the sixth cycle.
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Saikia and his team [130] created an ionic liquid-based Cu(II) heterogeneous catalyst
for 1,2,3-triazole derivative synthesis. This ionic liquid-based Cu(II) catalyst was created by
combining Cu(OAc)2 with 1-(1-carboxymethyl)-3-methylimidazolium tetrafluoroborate
under MI in a water medium for 20 min. The catalyst was then converted to Cu(I) using a
reducing agent. This catalyst was used for 1,2,3-triazoles derivative from benzyl bromide,
NaN3 and alkynes in methanol for 3 h, with outstanding yields up to 3 cycles (Scheme 15).
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Narsimha et al. [131] designed a one-pot microwave-assisted synthesis of 1,2,3-triazole
derivatives from 1-iodoalkynes with various aryl azides using CuI catalysts with good
yields (Scheme 16). The reactions were completed in <35 min with a simple operating
methodology to give the desired product in good result.
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Scheme 18. Synthesis of 4H-pyrano[2,3-c] pyrazoles. 

2.1.6. Preparation of Tetrazoles 

Scheme 16. Synthesis of fused 1,2,3-triazoles.

2.1.5. Preparation of Pyrazoles

It is a heterocycle with a 5-membered ring of three carbon atoms and two nitrogen
atoms next to each other. The pyrazoles are good antitumor agents [132], analgesic, an-
tipyretics, anti-inflammatory, antioxidant and antiviral agents [133–135], tranquilisers,
chemosensors [136], antimicrobial scaffolds [137], and neuroprotective and oestrogen re-
ceptor [138], the antagonist of the human CCK(1) receptor [139], pyrazole derivatives are
used in agrochemical, pharmaceutical, and chemical industries [134,140].

Parikh et al. [141] have synthesized 6-amino-1,4-dihydropyrano[2,3-c]-pyrazole-5-
carbonitriles by microwave method using zinc triflates as heterogeneous catalyst obtained
92–99% products in 15 min (Scheme 17). The mechanism involves recyclable catalysts over
several cycles without the loss of efficiency.
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Yellappa et al. [142] introduced a new method for synthesizing 4H-pyrano[2,3-c]
pyrazoles under microwave conditions using a potassium tertiary butoxide catalyst. The
products were obtained in 4–5 min. with a 90% yield (Scheme 18). Most of the synthe-
sized compounds exhibited good activity against Gram-positive (MIC range 7.8125 to
62.25 µg/mL) and Gram-negative bacteria (MIC range 7.8125 to 31.125 µg/mL), emphasis-
ing the biological applications of synthesized compounds.
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2.1.6. Preparation of Tetrazoles

Tetrazoles are a subclass of synthetic organic heterocyclic compounds, including five
nitrogen and one carbon atom arranged in a ring. Tetrazole is also the name for the parent
molecule, CH2N4, from which three isomers are possible. The wide applications of tetra-
zoles include antihypertensive, anti-allergic, antibiotic and anticonvulsants [143,144], inves-
tigated as rocket propellant components based on their high energy properties [145–148].

Akbarzadeh et al. [149] described the synthesis of 5-substituted-1H-tetrazoles via multi-
component domino Knoevenagel condensation using microwave eco-friendly method
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using Fe3O4 magnetic nanoparticles as heterogeneous catalyst in short reaction timings
(35 min) with excellent yield (Scheme 19). The approach is practical because of the catalyst’s
low cost and nontoxicity, the removal of volatile and poisonous solvents, the rapid reaction
time, the excellent yield, the straightforward methodology, and the simple workup. The
magnetic facilitated the easy recovery of the catalyst, and the regenerated was used for at
least five consecutive runs with minimal loss of activity.
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Naeimi et al. [150] synthesized 1-substituted-1H-tetrazoles using zinc sulfide nanopar-
ticles as heterogeneous catalysts under solvent-free conditions, obtaining 88% yield in
20 min at 60 ◦C (Scheme 20). According to the experimental findings, various 1-substituted
tetrazoles were produced in good yields under MI by ZnS NPs acting as a powerful and
recyclable heterogeneous catalyst. This procedure has benefits over other published tech-
niques, including a solid recyclable catalyst, solvent-free conditions, and a greener process.
The catalyst was recovered and reused several times. The authors were concluded that, the
catalyst can be reused for seven times with a minimal loss of its activity.
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2.1.7. Synthesis of Trans and Cis Julolidines

Julolidine is a heterocyclic aromatic organic compound with the formula C12H15N.
Julolidines have been employed in producing dye-sensitised solar cells, photoconductive
substances, fluorescent detectors for bio imaging, and for identifying ions and volatile
compounds in environmental and biological materials.

The Walysson Ferreira de Paiva and group [151] have described using a sol-gel ap-
proach to immobilise calixarene as an effective heterogeneous catalyst CX4SO3HSi for
multi-component Povarov reactions (Scheme 21). The catalytic activity of the CX4SO3HSi(n)
for sustainable and greener production of julolidines was investigated. Notably, the Po-
varov solvent-free reaction may be catalysed by the catalyst with just 0.5 mol% of the
catalyst required under microwave assistance. Additionally, this methodology enables the
synthesis of two C-N bonds and four additional C-C bonds in a single step. This material
is the first silica support, calix[4]arene, that serves as a heterogeneous catalyst for the
multi-component synthesis of julolidines. The catalyst was reused and recyclable for five
successive runs without loss in its activity.
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2.1.8. Synthesis of Xanthenes

Xanthenes encompass an important class of heterocyclic synthons because of the in-
herent reactivity of the pyran ring with many industrial, biological, and pharmaceutical ap-
plications [152–154]. These include antimalarials, anti-bacterial, antivirals, anti-depressants,
anti-inflammatories, as well as in laser technologies [155,156].

Pagadala et al. in 2018 reported [157] for the synthesis of 14-aryl-14H-dibenzo [a, j] xan-
thenes using aromatic aldehydes and β-naphthol with BTADCI (Benzyltrimethylammonium
dichloroiodate) as a Lewis acid catalyst in MI under solvent free conditions (Scheme 22).
They established a practice with more advantages like, good yields and at a low cost of
the catalyst. Authors also reported in 2020 that 1,8-dioxo-octahydroxanthenes [158] can be
prepared through one pot synthesis under MW eco-friendly conditions using BTMA-Br3
(Benzyltrimethylammonium tribromide) as a metal-free Lewis acid catalyst and benzalde-
hyde & dimedone as reactants (Scheme 23). The products were obtained in 7-8 min with a
good yield.
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Corroborating the above findings, we predict that the heterogeneous catalyst in
microwave-assisted reactions will boost the reaction rate in a minimal time and produce
products with excellent yields due to the decrease in activation energy of reactants on
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physical contact with the catalyst under MI. First, the heterogeneous catalyst might provide
a large surface area for the adsorption of reactants over it. Then this adsorption encourages
the collision between the reactants by decreasing their activation energy. Besides, MI
quickly stimulates vast collisions between the reactants, increasing the product yield with
greater thermodynamic feasibility.

3. Conclusions

The microwave technique has numerous applications in most of the ongoing research
areas. This method predominates the other instrumental practices because of its easy
workup and more efficient processes. The present research scenario uses greenery and
eco-friendly instrumental setups to generate novel reactions. This microwave instrument’s
availability and arrangement motivate most research scholars to develop new reaction
mechanisms. It also reinforces many of the entrepreneurs in terms of the abundance
of microwave machinery. Generally, instrumental reactions have more advantages over
traditional reflux synthetic methodologies because of their accuracy, lower reaction time,
and excellent yields. The instrumental methods reduce workforce and risk parameters.
The reactions with acceptable results are vital. The catalysts always decrease the reactants’
energy barrier to come across it and form products. The kinetically and thermodynamically
stable products are created when the reactants undergo fruitful collisions facilitated by the
catalyst. The heterogeneous catalysts are easy to recover after the successful completion
of a reaction, and many such materials are recyclable without any efficiency loss. The
combination of microwave and heterogeneous catalysts facilitates reactions with more
excellent selectivity towards product formation in less time.

The vital parameters for the most efficient methods are cost effectiveness, eco- and
user-friendliness with high product selectivity and yield. The techniques involving MI
and heterogeneous catalyst satisfy all these characteristics. Hence, microwave-assisted
heterogeneous catalytic reactions are the backbone of understanding the eco-friendly
principles of a chemical reaction.

Finally, the microwave-assisted multi-component reactions offer simple access to con-
structing biologically active heterocycles ranging from modestly fused rings to complex
structures. This proficient technique perfectly energises the reactant molecules by mi-
crowave heating by decreasing activation energy and improving the selectivity and yield.
These user-friendly, one-pot, and eco-friendly protocols using different heterogeneous
catalysts offer various inventions for designing and enhancing the generation of novel
heterocycles. While microwaves help speed up the process, overcome complex purification
procedures, and minimise the time duration from hours to minutes. There is much scope for
investigation in this area to design efficient catalysts and protocols. As a result, this review
might help the researchers in the direction and inspire them to create new chemical entities
through microwave-assisted heterogeneous catalysis of the multi-component reactions.
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