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Abstract: Developing highly efficient Au/TiO2/WO3 heterostructures with applications in heteroge-
neous photocatalysis (photocatalytic degradation) and surface-enhanced Raman spectroscopy (dye
detection) is currently of paramount significance. Au/TiO2/WO3 heterostructures were obtained via
heat or time-assisted synthesis routes developed by slightly modifying the Turkevich–Frens synthesis
methods and were investigated by TEM, SEM, XRD, Raman spectroscopy, XPS, photoluminescence,
and UV–vis DRS techniques. Structural features, such as WO3 crystalline phases, TiO2 surface
defects, as well as the WO3 (220) to TiO2-A (101) ratio, were the key parameters needed to obtain
heterostructures with enhanced photocatalytic activity for removing oxalic acid, phenol, methyl
orange, and aspirin. Photodegradation efficiencies of 95.9 and 96.9% for oxalic acid; above 96%
(except one composite) for phenol; 90.1 and 97.9% for methyl orange; and 81.6 and 82.1% for aspirin
were obtained. By employing the SERS technique, the detection limit of crystal violet dye, depending
on the heterostructure, was found to be between 10−7–10−8 M. The most promising composite was
Au/TiO2/WO3-HW-TA it yielded conversion rates of 82.1, 95.9 and 96.8% for aspirin, oxalic acid, and
phenol, respectively, and its detection limit for crystal violet was 10−8 M. Au/TiO2/WO3-NWH-HA
achieved 90.1, 96.6 and 99.0% degradation efficiency for methyl orange, oxalic acid, and phenol,
respectively, whereas its limit of detection was 10−7 M. The Au/TiO2/WO3 heterojunctions exhib-
ited excellent stability as SERS substrates, yielding strong-intensity Raman signals of the pollutant
molecules even after a long period of time.

Keywords: heterostructures; aspirin; toxic pollutants; photocatalytic activity; Au NPs; crystal violet;
SERS; detection; limit of detection

1. Introduction

In recent decades, Au/TiO2/WO3 ternary heterostructures have been studied due to
their broad applicability in heterogeneous photocatalysis and surface-enhanced Raman
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spectroscopy (SERS); these promising composites are being employed for wastewater reme-
diation [1], photocatalytic degradation [2], H2 evolution [3], CO2 reduction [4], photovoltaic
devices [5], and dye detection via SERS [6].

M. M. Rhaman et al. synthesized Au/TiO2/WO3 heterojunctions by photo-depositing
Au NPs on the surface of TiO2/WO3 heterostructures. They investigated the efficiency of
the photocatalyst under Vis light irradiation and found that bare TiO2 and WO3 were not
photoactive, but that TiO2/WO3 heterostructures removed 52% of phenol (PHE) and 42% of
methylene blue (MB). The Au/TiO2/WO3 composites (0.25% Au) efficiently removed 63%
of PHE and 52% of MB [1]. X. Yang et al. developed novel Au/TiO2/WO3 heterostructures
to study their photocatalytic efficiency under solar light irradiation. The Au NPs were
deposited through chemical reduction (NaBH4), and their average particle size was≈10 nm.
The photoactivity of the composites was assessed by removing MB. TiO2 efficiently removed
51.3% of MB, and the Au/TiO2/WO3 heterostructures achieved 75.6% (0.4% Au), 94.5%
(1% Au), and 88.9% of MB (3% Au) efficiency [2].

M. Tahir et al. embedded Au NPs onto WO3/TiO2 nanocomposites and employed
Au/TiO2/WO3 heterojunctions for enhanced H2 evolution. The heterojunctions’ Au content var-
ied between 0.3% and 0.7%, and the most significant volume of H2 (17,200 ppm·h−1·gcatalyst

−1)
was produced with 0.5% Au and glycerol as the sacrificial reagent. The heterojunction was
almost sixfold more efficient than the pristine TiO2 sample [3].

Z. Zhu et al. prepared bimetallic Pd–Au/TiO2/WO3 nanocomposites with various
Pd and Au percentages and studied their potential to reduce CO2 to CH4 and CO under
Vis light exposure. The noble metal nanoparticles (of ≈10 nm size) were simultaneously
deposited on the TiO2/WO3 composites via impregnation. The best three performing
heterostructures were Pd–Au (0.5–0.3 wt.%)/TiO2/WO3, Pd (0.5 wt.%)/TiO2/WO3, and
Pd–Au (0.5–0.1 wt.%)/TiO2/WO3, which yielded 11.3, 15.1 and 39.1 µmol·g−1·h−1 of CH4,
respectively, and 224.4, 225.5 and µmol·g−1·h−1 of CO [4]. M. K. Akbari et al. prepared
two-dimensional Au/TiO2/WO3 heterojunctions using atomic layer deposition (ALD)
and studied their potential application as photovoltaic devices. The photoresponse was
15 mA·W−1 under UV irradiation and 18 mA·W−1 under Vis light irradiation, while the
external quantum efficiency (EQE) was 6% and 4.5%. By obtaining 2D Au/TiO2/WO3 film
heterojunctions with film thicknesses of 0.7 nm for WO3 and 3.5 nm for TiO2, the EQE of
the heterojunctions was improved by 13.4% [5]. B. Zhang et al. obtained Au/TiO2/WO3
heterojunctions by electrodepositing Au NPs on TiO2/WO3 nanotube/nanoflower compos-
ites. The average particle size of the Au NPs was ≈35 nm. The obtained Au/TiO2/WO3
heterojunctions were employed for the SERS detection of dyes such as rhodamine 6G (R6G),
crystal violet (CV), malachite green (MG), and alizarin (AZ). The heterojunctions’ limit of
detection (LoD) was 10−11 M in the case of MG and CV, respectively, and 10−12 M in the
case of R6G and AZ dyes [6].

V. Iliev et al. prepared Au/TiO2/WO3 composites via photoreduction, using Au
NPs that had an average particle size of 5 nm. The photocatalytic activity was assessed
under UV and Vis irradiation for oxalic acid (OA), achieving degradation efficiencies of
82% and 10% [7]. Karácsonyi et al. synthesized Au/TiO2/WO3 composites using the
photodeposition method, with an Au NP average size of 60–80 nm, and employed them for
the photocatalytic removal of OA under UV radiation exposure, yielding efficiencies of 64.7
and 68.7% [8]. G. Kovács et al. and L. Baia et al. synthesized Au/TiO2/WO3 (metal oxide
and aerogel-based) heterostructures via photoreduction (Au NPs’ average size was ≈50 nm
in both cases), and utilized the composites to remove PHE under UV and Vis exposure. The
photocatalysts with 1% Au, 4% WO3, and 95% TiO2 composition were the most efficient
under UV radiation exposure, yielding a PHE removal efficiency of 80% (metal oxide-based
composites) [9] and a 60% aerogels removal efficiency [10].

J-B. Cai et al. obtained Au/TiO2/WO3 photocatalysts and studied their efficiency in
removing trimesic acid (TMA) and Rhodamine B (RhB) under Vis irradiation. In this study,
the Au NPs’ average particle size was≈20 nm and they were synthesized by the Turkevich–
Frens method. The most widely employed method for reducing gold nanoparticles (Au
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NPs) is the one Turkevich and coworkers developed due to its reliability, reproducibility,
and Au NP uniformity [11–18]. The Au/TiO2/WO3 photocatalysts efficiently removed 95%
of TMA and 94% of RhB, yielding enhanced photoactivity compared to TiO2 (80% for TMA;
62% for RhB) [19].

M.M. Momeni et al. synthesized nanotube Au/TiO2/WO3 heterostructures via pho-
todeposition and anodic oxidation. The obtained composites efficiently removed ≈90% of
MB [20]. X. Wang et al. synthesized Au/TiO2/WO3 heterojunctions by loading single Au
atoms electrochemically onto the oxygen vacancies (OVc) of WO3. The Au/TiO2/WO3
heterojunctions photocatalytic activity was evaluated for toluene (TOL) removal under
UV irradiation. The synthesized heterojunctions efficiently removed 94.5% of TOL and
achieved 85.5% TOL mineralization [21].

A unique application possibility of Au/TiO2/WO3 is that the photocatalytic process
can be monitored via SERS detection in real-time, and the composites can be used as a
self-cleaning SERS substrate due to the in-situ degradation of pollutants. For the simul-
taneous in situ detection and photocatalytic degradation of pollutants, not only might
the Au/TiO2/WO3 composites be suitable, but also other materials such as porous Au–
Ag alloy particles inlaid AgCl membranes, Au NP-decorated Ag(Cl, Br) [Ag(Cl, Br)–Au]
micro-necklaces, and arrayed AgCl micro-rods [22–24].

Even though several articles have been published regarding the synthesis of Au/TiO2/WO3
heterostructures with improved photoactivity and enhanced H2 production, respectively,
as SERS substrates for pollutant detection, up until now, Au/TiO2/WO3 heterojunctions
have not been employed for the photocatalytic removal of multiple pollutants; therefore, as
SERS substrates in the same study, they should be considered as the newest and strongest
point of our manuscript.

Thus, throughout this study, we addressed the issue of optimizing Au/TiO2/WO3
heterojunctions in order to obtain materials that possess enhanced photocatalytic activity
and are suitable as SERS substrates. The Au NPs were deposited on the TiO2/WO3
heterostructures’ surface using a slightly modified Turkevich–Frens synthesis route. The
optimization of the heterojunctions’ structure was carried out by studying the effect of WO3
with three different morphologies (prismatic dipyramid, microrods, and microflowers) and
various crystalline structures (monoclinic, hexagonal partial hydrate, and the mixture of
the two), respectively, by employing two different synthesis routes for the Au NP reduction.
The best performing Au/TiO2/WO3 composites efficiently removed 96.6% of OA, 99.0%
of PHE, 97.9% of methyl orange (MO) under UV exposure, and 82.1% of aspirin (ASP)
under Vis light exposure. The obtained Au/TiO2/WO3 heterostructures can be employed
as SERS-based sensors, as they detect crystal violet (CV) dye in low concentrations, with a
limit of detection of 10−8 M.

2. Results
2.1. TEM Investigations

Based on the TEM micrographs of the Au/TiO2/WO3-HW heterojunctions (Figure S1),
the presence of all three components can be observed. The morphology of the WO3 that was
hydrothermally synthesized by employing H2WO4 as a precursor (WO3-HW component)
was prismatic dipyramid-like, consisting of blade-like structures. The building blocks
of the latter were nanoplates, which were formed layer by layer. The size of WO3–HW
was between 1–2 µm [25]. Commercial TiO2 (Evonik Aeroxide P25) presented its typical
morphology with a mixture of smaller (corresponding to anatase) and larger (corresponding
to rutile) nanoparticles [26]. The morphology of the Au NPs was mainly spherical with
a size distribution between 10–36 nm for Au/TiO2/WO3-HW−HA and 10–45 nm for
Au/TiO2/WO3-HW−TA. SEM micrographs of the prismatic dipyramid WO3-HW can be
found in the Supplementary Materials (Figures S4 and S5).

All components of the ternary composites were present for the Au/TiO2/WO3-NWH
samples, too (Figure S2). The morphology of the WO3 that was hydrothermally synthesized
by employing Na2WO4·2H2O as a precursor (WO3-NWH) was rod-like, and each rod was
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thin (≈20 nm). The individual nanorods were stacked together to form bundles with a
diameter between 100–150 nm and a length between 0.5–1.0 µm [27]. The morphology
observed for the commercial titania was the same as described above (Figure S1). In
this case, the morphology of the Au NPs was mostly spherical, and their size distribu-
tion was between 10–45 nm (for Au/TiO2/WO3-NWH−HA) and between 10–36 nm (for
Au/TiO2/WO3-NWH−TA). SEM micrographs of the rod-like WO3-NWH can be found in
the Supplementary Materials (Figures S6 and S7).

Concerning Au/TiO2/WO3-AMT–HA and Au/TiO2/WO3-AMT–TA, each compo-
nent in the ternary composite could be identified based on the TEM micrographs (Figure S3),
but the morphology of the WO3 that was hydrothermally synthesized by employing
(NH4)6H2W12O40·xH2O as a precursor (WO3-AMT) was challenging to determine. A
flower-like morphology was observed based on the SEM micrographs of WO3-AMT, with
sizes between 3–4 µm. The micro-flowers comprised plates with a diameter between
250–500 nm. The plates were built of layered sheets with a diameter between 100–250 nm
and a length of 1–2 µm. The morphology and particle size of the commercial TiO2 were the
same as in the previous two cases. The morphology of the Au NPs was generally spherical,
with a size distribution between 10–55 nm for Au/TiO2/WO3-AMT−HA and between
12–36 nm for Au/TiO2/WO3-AMT−TA. SEM micrographs of the flower-like WO3-AMT
can be found in the Supplementary Materials (Figures S8 and S9). The particle size of
Evonik Aeroxide P25 was below 100 nm.

The average diameters of the Au NPs presented the same trend for each WO3 mor-
phology (Table 1). That is, heat-assisted (HA) synthesis tended to result in relatively
larger particle sizes (21.4–24.1 nm), whereas time-assisted (TA) synthesis tended to result
in relatively smaller particle sizes (19.4–21 nm). The observed slight differences could
appear because not all the HAuCl4 solution was successfully reduced during the HA
synthesis route (proven by the presence of Na and Cl in the EDX spectra of the samples).
The EDX spectra of the heterostructures are available in the Supplementary Materials
(Figures S10–S15). Since the synthesis time is considerably shorter in the HA route (4 h)
than in the TA one (24 h), the suspension temperature also decreased in a relatively short
period, thus favoring a larger particle size formation. In the TA synthesis route, the smaller
average particle size could be due to the constant 25 ◦C room temperature and the pro-
longed synthesis duration (24 h). Both parameters can facilitate the reduction of uniform
Au NPs and result in a greater amount of deposited Au NPs from the HAuCl4 solution.
These assumptions were proven using SEM–EDX measurements (Table 2). The elemental
composition of the ternary composites also indicates that in the HA synthesis route, fewer
Au NPs were deposited than in the TA synthesis route.

Table 1. The average diameter of gold nanospheres (determined based on TEM micrographs).

Sample Diameter (nm) Standard Deviation (SD)

Au/TiO2/WO3-HW−HA 21.4 ±5.2 nm
Au/TiO2/WO3-HW−TA 19.4 ±5.4 nm

Au/TiO2/WO3-NWH−HA 21.3 ±5.2 nm
Au/TiO2/WO3-NWH−TA 20.4 ±4.2 nm
Au/TiO2/WO3-AMT−HA 24.1 ±6.7 nm
Au/TiO2/WO3-AMT−TA 21.0 ±4.4 nm

2.2. X-ray Diffraction Analysis

The XRD patterns of the samples (Figures 1 and 2) proved the presence of TiO2
and WO3 in each composite. Concerning the commercial TiO2, two crystal phases were
identified: anatase (diffractions at 2θ: 25.4◦, 37.1◦, 48.0◦, 53.9◦, and 55.1◦) and rutile
(diffractions at 2θ: 27.5◦, 41.4◦, and 44.4◦). Its crystal phase composition was 89% anatase
(JCPDS card no. 21-1272) and 11% rutile (JCPDS card no. 21-1276), as expected [28,29].
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Table 2. The average elemental composition of the ternary composites (SEM–EDX).

Sample
Elemental Composition (%)

Au O Na Al Cl Ti W

Au/TiO2/WO3-HW−HA 0.38 54.81 1.90 1.05 0.48 28.98 12.40
Au/TiO2/WO3-HW−TA 0.72 45.60 3.00 1.12 1.38 33.29 14.89

Au/TiO2/WO3-NWH−HA 0.34 48.26 1.00 2.68 0.27 37.54 9.91
Au/TiO2/WO3-NWH−TA 0.53 52.66 3.34 1.01 0.83 32.92 8.70
Au/TiO2/WO3-AMT−HA 0.65 48.02 1.25 0.68 0.68 38.76 9.96
Au/TiO2/WO3-AMT−TA 0.79 47.02 2.68 0.87 1.18 39.80 7.67
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Figure 1. XRD patterns of the Au/TiO2/WO3 heterostructures obtained via the heat-assisted method.

Au/TiO2/WO3-HW–HA and Au/TiO2/WO3-HW–TA samples presented mixed crys-
tal phases of WO3, that is, WO3·0.33H2O partial hydrate (JCPDS card no. 35-1001) [30]
and monoclinic WO3 (γ-WO3; JCPDS card no. 43-1035). The crystal phase composition
was 90.6% WO3·0.33H2O partial hydrate and 9.3% monoclinic [31]. The corresponding
diffractions for the first one were identified at 2θ: 28.2◦, 33.58◦, 36.6◦, and 37.75◦, while for
the latter, at 2θ: 23.02◦, and 49.98◦ [32]. In Au/TiO2/WO3-NWH–HA and Au/TiO2/WO3-
NWH–TA, only the WO3·0.33H2O partial hydrate (JCPDS card no. 35-1001) could be
identified in both samples at 2θ: 22.86◦, 24.34◦, 26.88◦, 28.2◦, 33.58◦, 36.5◦, 37.7◦, 46.1◦, and
49.76◦. In Au/TiO2/WO3-AMT–HA and Au/TiO2/WO3-AMT–TA, only the monoclinic
WO3 crystal phase (JCPDS card no. 43-1035) could be identified at 2θ: 23.4◦, 23.64◦, 24.42◦,
26.64◦, 28.2◦, 33.3◦, 33.7◦, 34.18◦, 36.72◦, 44.48◦, and 49.96◦. Depending on the synthesis of
Au deposition, changes in the crystal structure may occur, as the deposition is influenced
by the metal oxides’ morphology [33–35]. The modifications to the crystal structures were
confirmed by the changes in the ratio between the diffraction peak intensities for anatase at
2θ: 25.4◦ (101) and for WO3 (220) at 2θ: 28.2◦. It is worth highlighting that these changes
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(I(220) WO3/I(101) TiO2) were correlated to the photocatalytic activity, observed during the
photodegradation of MO and ASP. This correlation, as well as others, will be discussed in
greater detail in Section 3.
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Figure 2. XRD patterns of the Au/TiO2/WO3 heterostructures obtained via the time-assisted method.

The deposition and formation mechanisms of Au NPs depend on the morphology,
crystal structure, and crystal phase composition of the semiconductor [36–39]. Due to the
non-covalent interaction between TiO2 and Au NPs, the deposition of Au NPs is favored
on the anatase crystal phase [40,41]. Commercial TiO2′s anatase diffractions are located at
25.2◦ and 37.8◦, whereas in the case of the Au/TiO2/WO3 heterostructures, these peaks are
situated at 25.4◦ and 37.1◦; thus, the slight shifts in the anatase peaks could be linked to
the presence of Au NPs on anatase TiO2. The probability that Au NPs are deposited on
anatase TiO2 is extremely high since the crystal phase composition of commercial TiO2 is
89% anatase, and 11% rutile. This process can also be hindered or improved by introducing
differently shaped and structured metal oxides, such as WO3, into the composite system.
This can result in TiO2/WO3 heterojunctions with improved photocatalytic activity under
Vis light irradiation (compared with bare TiO2).

In the case of the HA series, the XRD patterns of all crystal phases of the metal oxides
can be identified without difficulties (Figure 1). However, in the case of the TA series
(Figure 2), the identification of the crystalline phases proved to be difficult, due to modi-
fications in the crystal structure of the composites. These modifications can be linked to
the significantly longer synthesis duration of the Au reduction, and the presence of the
trisodium citrate dihydrate in the suspension. The pH value of trisodium citrate dihy-
drate is between 7.5–9.0, whereas WO3 and TiO2 are highly stable in acidic environments.
Above pH = 8, the WO3 stability decreases due to the formation of sodium tungstate on
the semiconductors’ surface; thus, a local solubilization/desolubilization process occurs.
Throughout the solubilization/desolubilization process, the W–O–H surface species pro-
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gressively transform into W–O–Na species because the weakly acidic H+ from the W–O–H
species is substituted by Na atoms, thus modifying the structure of the heterostructures.
SEM–EDX spectra (Table 2) also confirmed a higher percentage of Na.

In the case of the hexagonal crystal phase (WO3-NWH), the Au NP reduction method
did not influence the WO3 metal oxide lattice parameters (see Table 3); only a slight
modification was observed for the c-axis (0.006 difference). In the cases in which WO3
metal oxides had mixed crystal phases (WO3-HW), according to the lattice parameters of
the hexagonal and monoclinic crystalline phase, it can be argued that the unit cells are
more dilated due to the presence of a higher percentage of water (and residual citrate).
Regarding the Au NP HA reduction route, the a and b parameters of the hexagonal phase
were slightly more dilated, whereas the c parameter was more dilated in the case of the TA
route; concerning the monoclinic phase, the a and c lattice parameters were more dilated
when the TA synthesis route was applied, and in the case of the HA synthesis route, the
b parameters were dilated in a more significant manner. When solely monoclinic WO3
metal oxides (WO3-AMT) were added to the composite, the same behavior was observed
as in the case of the WO3-HW semiconductors: the a and c lattice parameters were more
dilated when the TA synthesis route was applied. Regarding the HA synthesis route, the b
parameter of the monoclinic phase was dilated more significantly. With the modification of
the a, b, and c (hexagonal partial hydrate phase), respectively, the a, b, c and β (monoclinic
phase) lattice parameters most probably were caused by their corresponding unit cell
expansion, or by in certain cases, shrinking.

Table 3. Lattice parameters of the Au/TiO2/WO3 heterostructures.

Sample

Lattice Parameters

Hexagonal Partial Hydrate Monoclinic

a b b a b c β

Au/TiO2/WO3-HW-HA 4.431 4.432 7.304 7.311 7.532 7.633 104.110
Au/TiO2/WO3-HW-TA 4.429 4.431 7.873 7.426 7.527 7.724 103.680

Au/TiO2/WO3-NWH-HA 4.416 4.416 7.738 - - - -
Au/TiO2/WO3-NWH-TA 4.416 4.416 7.744 - - - -
Au/TiO2/WO3-AMT-HA - - - 7.297 7.527 7.610 105.060
Au/TiO2/WO3-AMT-TA - - - 7.522 7.540 7.905 103.873

2.3. Optical Properties

The band gap values of the metal oxide components and their composites were also
determined by employing the Tauc plot on the reflectance spectra of the samples and are
presented in Table 4. The band gap values of the WO3-HW, WO3-NWH and WO3-AMT are
situated in the visible domain of the spectrum at 450 nm, 460 nm, and 550 nm, respectively.
By adding 24 wt. % WO3 to the commercial TiO2, the band gap value of TiO2 was only
slightly modified: from 3.11 eV to 3.00 eV for TiO2/WO3-HW; from 3.11 eV to 2.97 eV for
TiO2/WO3-NWH; and no modification was observed for TiO2/WO3-AMT, with a band
gap of 3.10 eV. The TiO2/WO3 composites can be employed as photocatalysts under UV
irradiation since their band gaps reside in the close UV range of the spectrum (417–398 nm).

Table 4. Band gap values of TiO2 and WO3 metal oxides, and their corresponding TiO2/WO3

composites [31].

Sample TiO2 WO3-HW WO3-NWH WO3-AMT TiO2/WO3-HW TiO2/WO3-NWH TiO2/WO3-AMT

Band gap
value (eV) 3.11 2.75 2.69 2.25 3.00 2.97 3.10

The presence of Au NPs is evidenced by the reflectance spectra of the HA and TA
samples (Figure 3). The plasmonic band of the Au NPs was identified in the 540–565 nm
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region [42]. The Tauc plot (Supplementary Figure S16) was used to determine the band gap
values of the ternary composites (Table 5).
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Figure 3. Diffuse reflectance spectra (a,b) and Tauc plots (c,d) of the Au/TiO2/WO3 heterostructures
(Au NPs plasmonic band is highlighted in (a,b)).

Table 5. Band gap values of the ternary composites, determined from their corresponding Tauc plots.

Sample Au/TiO2/WO3-
HW−HA

Au/TiO2/WO3-
HW−TA

Au/TiO2/WO3-
NWH−HA

Au/TiO2/WO3-
NWH−TA

Au/TiO2/WO3-
AMT−HA

Au/TiO2/WO3-
AMT−TA

Band gap value (eV) 2.25 2.23 2.60 2.24 2.32 2.22
Au wt. % 0.38 0.72 0.34 0.53 0.65 0.79

As we already mentioned, the TA synthesis route resulted in higher percentages of
Au NPs in the Au/TiO2/WO3 heterostructures, leading to band gap values of ≈2.23 eV
(≈555 nm) for each composite in the TA series. On the other hand, the HA synthesis
route resulted in lower percentages of Au NPs (0.34, 0.38, and 0.65%). Only in the case
of Au/TiO2/WO3-NWH−HA was a significant difference observed: 0.34% Au in the
heterostructure led to a band gap value of 2.60 eV (≈477 nm), whereas in the case of a
higher Au content, the band gap values were 2.25 eV (≈550 nm) and 2.32 eV (≈534). The
discrepancy in the Au/TiO2/WO3-NWH−HA band gap value is most probably due to
the lower percentage of Au NPs in the heterostructure, as this was confirmed by XPS
investigations also.
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2.4. Raman Spectroscopy

Raman spectroscopy was employed to obtain a detailed insight into the TiO2 and
WO3 metal oxide structures of the Au/TiO2/WO3 heterojunctions. By analyzing the
Raman spectra of the samples (Figure 4), the TiO2 and WO3 characteristic vibrational
modes were identified. Thus, the Raman bands corresponding to anatase TiO2 vibrations
were observed at 144 cm–1 and 199 cm–1, (symmetric stretching), at 396 cm–1 (symmetric
bending), and at 515 cm–1 and 634 cm–1 (anti-symmetric bending) [43,44]. Bands related
to WO3 vibrations were observed at 810 and 926 cm–1, corresponding to the stretching
vibrations of δ(W6+O) and the antisymmetric stretching vibrations of WO2, respectively.
The weak shoulder at ≈950 cm–1 was attributed to the symmetric stretching vibration of
W=O terminal bonds [45].
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Figure 4. Raman spectra of the Au/TiO2/WO3 heterojunctions.

Changes in the ratio of the Raman bands specific to TiO2 and hydrated WO3 (Table 6)
proved the structural and surface modifications (defects) that occurred in the heterostruc-
tures. These surface defects in the crystal lattice can act as traps for photogenerated charge
carriers and influence the photocatalytic activity and selectivity of the samples [46]. These
surface defects were most probably caused by the deposition of Au NPs. It was found that
the TA Au reduction synthesis route led to an increased number of surface defects in WO3
heterostructures containing either solely hydrated or mixed (monoclinic and hydrated)
crystalline phases, whereas in the case of the solely monoclinic crystalline phase, the HA
Au reduction led to slightly more surface defects.

Regarding the TiO2 anatase ratio in the heterostructures, in the cases in which WO3 solely
hydrated or mixed crystalline phases were present (Au/TiO2/WO3-HW; Au/TiO2/WO3-
AMT), the same trend was observed: TA Au reduction led to an increased number of surface
defects, and the solely monoclinic crystalline phase led to slightly more surface defects
when Au was reduced via the HA. This suggests that the composition of the crystalline
phase not only plays an essential role in the mechanism of Au deposition, but also in the
surface structure of the metal oxide.
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Table 6. Intensity ratios of specific anatase TiO2 and hydrated WO3 Raman bands.

Sample I515/I396
(TiO2 Bands Ratio)

I810/I926
(WO3 Bands Ratio) WO3 Crystal Phases

Au/TiO2/WO3-HW−HA 0.919 0.952 Mixed
Au/TiO2/WO3-HW−TA 0.879 0.921 Mixed

Au/TiO2/WO3-NWH−HA 0.995 0.986 Hexagonal partial hydrate
Au/TiO2/WO3-NWH−TA 0.928 0.986 Hexagonal partial hydrate
Au/TiO2/WO3-AMT−HA 0.958 0.993 Monoclinic
Au/TiO2/WO3-AMT−TA 0.962 0.997 Monoclinic

When the crystalline phase of WO3 was 100% hydrated (Au/TiO2/WO3-NWH), no
difference was observed between the HA and TA Au reduction methods. Nevertheless,
when the crystalline phase was mixed, the same trend was observed as that for TiO2: the
TA Au reduction synthesis route led to an increased number of surface defects. When the
crystalline phase of WO3 was 100% monoclinic (Au/TiO2/WO3-AMT), the same trend was
observed as that for TiO2: HA Au reduction led to an increased number of surface defects.
However, it should be noted that for monoclinic WO3, the ratio of I810/I926 was very close
to an integer, which suggests that the number of surface defects formed was relatively low.

2.5. X-ray Photoelectron Spectroscopy (XPS)

XPS measurements were carried out to investigate the chemical composition of the
heterojunctions. The XPS survey spectra of the Au/TiO2/WO3 heterojunctions proved the
presence of each component in the composites. The TA synthesis route resulted in more Au
NPs on the surface of the metal oxides than the HA synthesis route (Table 7), regardless
of the WO3 morphology or crystalline phase. The percentage of Au NPs was the highest
for Au/TiO2/WO3-HW–TA and Au/TiO2/WO3-AMT–TA: 0.16% and 0.17%, respectively.
These samples proved to be the most successful substrates for detecting crystal violet dye,
as we will further show in one of the next paragraphs. The XPS survey spectra of the
composites are presented in Figure 5.

Table 7. Chemical composition of the Au/TiO2/WO3 heterojunctions determined from the
XPS spectra.

Sample
Atomic Composition (%)

O C Ti W Au

Au/TiO2/WO3-HW-HA 38.17 51.79 8.36 1.55 0.13
Au/TiO2/WO3-HW-TA 41.65 46.23 8.99 2.97 0.16

Au/TiO2/WO3-NWH-HA 35.07 54.07 9.84 0.95 0.07
Au/TiO2/WO3-NWH-TA 42.92 43.88 10.89 2.19 0.11
Au/TiO2/WO3-AMT-HA 33.59 57.77 7.34 1.23 0.07
Au/TiO2/WO3-AMT-TA 39.76 48.39 10.42 1.26 0.17

In the wide-scan spectra of the Au/TiO2/WO3 heterojunctions, W, Au, C, Ti, and O
elements were identified as expected. The presence of WO3 microcrystals was evidenced by
the W 4f (Figure 6). W5+ (35.0 and 33.6 eV–4.5 at.%) and W6+ (34.8 and 37.0 eV–95.5 at.%)
oxidation states were identified for WO3 as being the representative species, while Ti 3p
was considered as well during deconvolution [47–49]. The W 4d signal can reinforce the
observations mentioned above [50,51]. The Ti 2p signal was attributed to the Ti 2p3/2
and Ti 2p1/2 Ti atom orbitals, respectively, to the Ti4+ oxidation state [52,53], while the
presence of Ti3+ was not evidenced. The presence of the metallic Au NPs on the surface of
TiO2/WO3 was evidenced by the Au 4f signal, and it was attributed to the presence of Au0

species [54,55]. Due to the low Au percentage (≤0.2 atomic %), the intensities of the Au 4f
signals were weak. Neither the presence of Au+ nor Au3+ was identified in the samples.
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Figure 5. Individual XPS survey spectra of the Au/TiO2/WO3 heterostructures: (a) Au/TiO2/WO3-
HW–HA; (b) Au/TiO2/WO3-HW–TA; (c) Au/TiO2/WO3-NWH–HA; (d) Au/TiO2/WO3-NWH–TA,
(e) Au/TiO2/WO3-AMT–HA; and (f) Au/TiO2/WO3-AMT–TA.
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Figure 6. XPS spectra of the Au/TiO2/WO3-AMT–TA sample (W4f—(a) and Au4f—(b)).

XPS–VB spectroscopy was employed to determine the CB and VB edge values, and the
results can be observed in Table 8. Based on the results, each Au/TiO2/WO3 heterojunction
could enable the singlet electron reduction of the absorbed O2 molecules to O2

•− reactive
oxygen species (ROS).

Table 8. Conduction and valence band alignments of the Au/TiO2/WO3 heterostructures.

Sample
eV

Eg CB VB

Au/TiO2/WO3-HW-HA 2.25 −0.56 1.69
Au/TiO2/WO3-HW-TA 2.23 −0.56 1.67

Au/TiO2/WO3-NWH-HA 2.60 −0.90 1.70
Au/TiO2/WO3-NWH-TA 2.24 −0.77 1.47
Au/TiO2/WO3-AMT-HA 2.32 −0.83 1.49
Au/TiO2/WO3-AMT-TA 2.22 −0.35 1.87

2.6. Photocatalytic Activity Assessment

Photocatalytic degradation tests were performed under UV light irradiation (2 h) for OA,
PHE, and MO, while for ASP, Vis light irradiation (4 h) was used. OA (5 mM), PHE (0.5 mM)
and MO (125 µM) removal were carried out under UV light irradiation because their con-
centration and stability were significantly greater that those of the ASP (50 µM) aqueous
solution. The choice of the initial concentrations and the light source was based upon previ-
ous experience with photocatalytic tests for OA, PHE and MO [31,56–60]. For ASP, a lower
concentration was chosen due to the limitations of the UV–Vis spectrophotometer, and a
Vis light source was chosen because of the stability issues of ASP in general, and against
UV light [61,62]. For commercial TiO2, adsorption tests were carried out using each model
pollutant, which was followed by the evaluation of photocatalytic activity (Figure S17). In
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addition, for all model pollutants, photolysis experiments were carried out to assess their
stability and eliminate the possibility of photodegradation in the photocatalysts absence.

After 2 h of UV light irradiation, photolysis yielded degradation rates of 6.0%, 1.0%,
and 2.0% for OA, PHE, and MO, respectively. After 4 h of Vis light irradiation, photolysis
resulted in a 2.9% degradation rate for ASP. After 2 h of adsorption on the surface of
commercial TiO2, 0.0%, 0.9%, and 6.0% values were measured for OA, PHE, and MO,
respectively. For ASP, this value was 1.9% after 4 h of adsorption. The ≈1% photolysis
yield in the case of the PHE model pollutant was due to the compound’s high stability. The
fairly low photolysis values for MO (2.0%) and ASP (2.9%) were attributed to their large
molecular weight. The 6% photolysis for OA was attributed to its small molecular weight,
contributing to its destabilization. Regarding photocatalytic conversions, values of 48.6%,
83.5%, 82.8%, and 73.1% were measured for OA, PHE, MO, and ASP, respectively.

Concerning the OA conversions, the most efficient heterostructures (Figure 7a and
Table S1) were Au/TiO2/WO3-HW−TA and Au/TiO2/WO3-NWH−HA, whereas the least
efficient composite was Au/TiO2/WO3-AMT−HA. Except for Au/TiO2/WO3-AMT−HA,
each sample had a higher photocatalytic activity than that of TiO2. For blade/plate-like and
flower/sheet-like morphologies, the HA samples exhibited lower photocatalytic efficiencies
(67.1% and 41.9%), whereas the TA samples showed higher photocatalytic activities (95.9%
and 61.9%). The opposite behavior was observed for the rod/wire-like morphology (HA:
96.6% vs. TA: 62.6%).

Catalysts 2023, 13, 1015 14 of 34 
 

 

 
Figure 7. Photocatalytic activity of the Au/TiO2/WO3 heterostructures under UV light irradiation: 
(a) oxalic acid; (b) phenol; (c) methyl orange; and Vis light irradiation: (d) aspirin. 

2.6.1. Photoluminescence (PL) of the Au/TiO2/WO3 Heterostructures 
For the PL measurements, we selected the two Au/TiO2/WO3 heterojunctions that 

yielded the highest photocatalytic activity for most of the investigated pollutants 
(Au/TiO2/WO3-HW–TA and Au/TiO2/WO3-NWH–HA). 

The PL spectra of commercial TiO2 and the corresponding TiO2/WO3 heterostructures 
were also recorded for comparison purposes. The PL measurements were carried out at 
365 nm excitation in the UV region and 450 nm in the Vis region. In the former case, the 
recombination rate of the photogenerated charge carriers (TiO2) is inhibited if a metal ox-
ide such as WO3 is added to TiO2. The recombination can be further inhibited by deposit-
ing Au NPs on the surface of TiO2/WO3 heterostructures. The increasing photocatalytic 
activity of the Au/TiO2/WO3 heterojunctions proves that the photogenerated charge carri-
ers’ recombination was successfully inhibited. Under UV–A light exposure (Figure 8a), 
the recombination of the Au/TiO2/WO3-HW–TA and Au/TiO2/WO3-NWH–HA hetero-
junction is nearly identical; the samples yielded similar photocatalytic removal efficiencies 
under UV light: 96.8 and 99.0% for PHE, respectively, and 95.9 and 96.6% for OA, respec-
tively. The photocatalytic performance of TiO2 was 83.5% for PHE and 48.6% for OA. 

The PL spectra recorded in the visible region prove that the recombination of the 
TiO2′s photogenerated charge carriers can be inhibited by coupling TiO2 with another 
metal oxide (WO3 in this case) and depositing Au NPs on its surface. Under Vis light ex-
posure (Figure 8b), the inhibition of the recombination is low but observable, while for 
Au/TiO2/WO3-HW–TA, it was inhibited to a greater extent. In contrast, the inhibition was 

Figure 7. Photocatalytic activity of the Au/TiO2/WO3 heterostructures under UV light irradiation:
(a) oxalic acid; (b) phenol; (c) methyl orange; and Vis light irradiation: (d) aspirin.



Catalysts 2023, 13, 1015 14 of 33

Regarding PHE photodegradation tests (Figure 7b and Table S1), every Au/TiO2/WO3
composite resulted in higher conversions than commercial TiO2. Au/TiO2/WO3-AMT−TA
and Au/TiO2/WO3-NWH−HA proved to be the most effective for PHE removal. The
lowest photoactivity was observed for Au/TiO2/WO3-HW−HA, but even this composite
proved more effective than commercial TiO2 (88.3% vs. 83.5%). A similar result was
obtained for PHE degradation as for OA degradation: the HA samples exhibited lower
photoactivity for the blade/plate-like and flower/sheet-like morphologies (88.3% and
96.3%, respectively). At the same time, the TA samples exhibited higher photoactivity
(96.8% and 98.2%, respectively), whereas for the rod/wire-like morphology, the opposite
behavior was observed (HA: 99.0% vs. TA: 97.9%).

Concerning the MO photodegradation tests (Figure 7c and Table S1), it was observed
that each composite could remove the dye with varying efficiencies. The most efficient
heterostructures were Au/TiO2/WO3-NWH−HA and Au/TiO2/WO3-NWH−TA. Only
these two composites yielded higher conversions than commercial TiO2. Regarding the MO
photodegradation tests, HA samples exhibited lower photocatalytic activity for rod/wire-
like and flower/sheet-like morphology (90.1% and 48.8%, respectively), while TA samples
exhibited increased photocatalytic activity (97.9% and 61.0%, respectively). The opposite
behavior was observed for blade/plate-like morphology (HA: 74.9% vs. TA: 56.9%).

Concerning the photocatalytic degradation of ASP (Figure 7d and Table S1), the
Au/TiO2/WO3-AMT−TA and Au/TiO2/WO3-HW−TA heterostructures proved the most
efficient. Under Vis light irradiation, the following trend was observed: for all heterostruc-
tures, the HA samples had lower photoactivity (72.7%, 44.0%, 69.1%), whereas the TA
samples had higher photoactivity (82.1%, 64.5%, 81.6%).

2.6.1. Photoluminescence (PL) of the Au/TiO2/WO3 Heterostructures

For the PL measurements, we selected the two Au/TiO2/WO3 heterojunctions that yielded
the highest photocatalytic activity for most of the investigated pollutants (Au/TiO2/WO3-HW–
TA and Au/TiO2/WO3-NWH–HA).

The PL spectra of commercial TiO2 and the corresponding TiO2/WO3 heterostructures
were also recorded for comparison purposes. The PL measurements were carried out at
365 nm excitation in the UV region and 450 nm in the Vis region. In the former case, the
recombination rate of the photogenerated charge carriers (TiO2) is inhibited if a metal oxide
such as WO3 is added to TiO2. The recombination can be further inhibited by depositing
Au NPs on the surface of TiO2/WO3 heterostructures. The increasing photocatalytic activ-
ity of the Au/TiO2/WO3 heterojunctions proves that the photogenerated charge carriers’
recombination was successfully inhibited. Under UV–A light exposure (Figure 8a), the re-
combination of the Au/TiO2/WO3-HW–TA and Au/TiO2/WO3-NWH–HA heterojunction
is nearly identical; the samples yielded similar photocatalytic removal efficiencies under
UV light: 96.8 and 99.0% for PHE, respectively, and 95.9 and 96.6% for OA, respectively.
The photocatalytic performance of TiO2 was 83.5% for PHE and 48.6% for OA.

The PL spectra recorded in the visible region prove that the recombination of the
TiO2’s photogenerated charge carriers can be inhibited by coupling TiO2 with another
metal oxide (WO3 in this case) and depositing Au NPs on its surface. Under Vis light
exposure (Figure 8b), the inhibition of the recombination is low but observable, while for
Au/TiO2/WO3-HW–TA, it was inhibited to a greater extent. In contrast, the inhibition was
not as successful for Au/TiO2/WO3-NWH–HA; this was also observed in the photocatalytic
removal efficiencies under Vis light: 82.1% and 44.0% for ASP, respectively. In comparison,
TiO2 degraded 73.1% of ASP.

2.6.2. Photocatalytic Recyclability and Stability of the Au/TiO2/WO3 Heterostructures

The stability and recyclability of the Au/TiO2/WO3 heterojunctions were studied for up
to three photodegradation cycles for each model pollutant (Figure 9). The best-performing
composites were chosen for recyclability assessment. Their stability was also assessed by
recording the FT–IR spectra of the composites before and after photodegradation.
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Figure 8. Photoluminescence spectra of commercial TiO2, TiO2/WO3 heterostructures, and
Au/TiO2/WO3 heterojunctions in the UV region (a) and Vis region (b).

Catalysts 2023, 13, 1015 15 of 34 
 

 

not as successful for Au/TiO2/WO3-NWH–HA; this was also observed in the photocata-
lytic removal efficiencies under Vis light: 82.1% and 44.0% for ASP, respectively. In com-
parison, TiO2 degraded 73.1% of ASP. 

 
Figure 8. Photoluminescence spectra of commercial TiO2, TiO2/WO3 heterostructures, and 
Au/TiO2/WO3 heterojunctions in the UV region (a) and Vis region (b). 

2.6.2. Photocatalytic Recyclability and Stability of the Au/TiO2/WO3 Heterostructures 
The stability and recyclability of the Au/TiO2/WO3 heterojunctions were studied for 

up to three photodegradation cycles for each model pollutant (Figure 9). The best-per-
forming composites were chosen for recyclability assessment. Their stability was also as-
sessed by recording the FT–IR spectra of the composites before and after photodegrada-
tion. 

 
Figure 9. Recyclability of the Au/TiO2/WO3 heterojunctions in up to three photodegradation cycles: 
(a) OA photodegradation cycles, (b) PHE photodegradation cycles, (c) MO photodegradation cycles, 
and (d) ASP photodegradation cycles. 

0 80 160 240 320 400 480 560 640 720
0.0

10.0

20.0

30.0

40.0

50.0  1st cycle
 2nd cycle
 3rd cycle

C
 as

pi
ri

n (
μM

)

Irradiation time (min)
0 30 60 90 120 150 180 210 240 270 300 330 360

0.0

25.0

50.0

75.0

100.0

125.0  1st cycle
 2nd cycle
 3rd cycle

C
 m

et
hy

l o
ra

ng
e (

μM
)

Irradiation time (min)

0 30 60 90 120 150 180 210 240 270 300 330 360
0.00

0.10

0.20

0.30

0.40

0.50  1st cycle
 2nd cycle
 3rd cycle

C
 ph

en
ol

 (m
M

)

Irradiation time (min)
0 30 60 90 120 150 180 210 240 270 300 330 360

0.0

1.0

2.0

3.0

4.0

5.0  1st cycle
 2nd cycle
 3rd cycle

C
 ox

al
ic

 a
ci

d (
m

M
)

Irradiation time (min)

(a) (b)

(c) (d)

Figure 9. Recyclability of the Au/TiO2/WO3 heterojunctions in up to three photodegradation cycles:
(a) OA photodegradation cycles, (b) PHE photodegradation cycles, (c) MO photodegradation cycles,
and (d) ASP photodegradation cycles.

Au/TiO2/WO3-NWH−HA heterostructures were chosen to assess the recyclability
and stability of the OA and PHE model pollutants. In the case of OA removal, the pho-
tocatalytic performance of the Au/TiO2/WO3-NWH−HA heterojunctions was almost
identical in each cycle, yielding ≈99.0% removal efficiency. In the case of PH removal, the
photocatalytic performance decreased slightly after each cycle: from 99.0% to 98.1% and
97.6%. The difference between the conversion values after three cycles in the case of PHE
removal was 1.4%. Au/TiO2/WO3-NWH−TA and Au/TiO2/WO3-HW−TA heterostruc-
tures were selected to determine the recyclability and stability of MO and ASP removal.
The photocatalytic performance of the Au/TiO2/WO3-NWH−TA heterojunctions for MO
removal decreased gradually but not drastically after each cycle: from 99.2% to 97.9%,
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and 92.5% (6.7% difference). Concerning the photocatalytic activity of Au/TiO2/WO3-
HW−TA for ASP removal, a decreasing trend was observed after each cycle, too, from
82.1% to 78.8% and 74.8% (7.3% difference). The Au/TiO2/WO3 heterostructures can
successfully remove multiple pollutants, both under UV and Vis radiation exposure, for
several utilization cycles.

The stability of the Au/TiO2/WO3 composites was assessed by recording the FT–IR
(Figure S18) spectra prior to the photocatalytic degradation experiments and after each
reusability cycle.

Thus, in the FT–IR spectra of the Au/TiO2/WO3-NWH–TA photocatalysts, prior to
the OA and PHE photocatalytic removal (Figure S18a,b), the following absorption bands
were identified: O–H stretching vibrations at ≈3420 cm−1 [59] (due to the presence of TiO2
and WO3 in the composite), H–O–H bending vibrations between 1640 and1600 cm−1 [63],
O–H bending vibrations at 1400 cm−1 [64], O–W–O stretching vibrations at 825 cm−1; and
Ti–O–Ti and O–Ti–O stretching vibrations at 650 and 515 cm−1 [56]. According to the FT–IR
spectra of the photocatalysts after three rounds of reutilization, no significant changes were
observed: only in the case of the absorption bands related to adsorbed water molecules
were minor modifications observed. The stability and recyclability of the photocatalysts in
the case of OA and OHE photodegradation were proven by their high removal efficiency
(OA: ≈99.0%; PHE: 97.6%) even after three cycles.

In the FT–IR spectra of the Au/TiO2/WO3-NWH-TA after the photocatalytic removal
of MO (Figure S18c), the following absorption bands were observed: at ≈3400 cm–1, as-
signed to the O–H stretching vibration [59] (due to the presence of TiO2 and WO3); at
1636 cm–1, attributed to the H–O–H bending vibration of the water adsorbed on the photo-
catalyst surface; at 1402 cm–1, due to the O–H in-plane bending on the TiO2 surface [64];
at 1129 cm–1, assigned to the Ti–OH stretching vibration [65]; at 827 cm–1, due to the
O–W–O stretching vibration; and at 650 and 515 cm–1, assigned to the Ti–O–Ti and O–Ti–O
stretching vibrations, respectively [56]. After each reusability cycle, the FT–IR spectra of the
photocatalyst did not change significantly. The changes observed for the bands at 1636 and
1402 cm–1 correspond to the adsorbed water on the surface of the photocatalysts, indicating
that only marginal alterations occurred during the photoactivity experiments.

Regarding the stability of the Au/TiO2/WO3-HW-TA photocatalysts after the photo-
catalytic removal of ASP pharmaceuticals (Figure S18a), the following absorption bands
were identified in the FT–IR spectra of the Au/TiO2/WO3-HW-TA heterojunctions: at
≈3460 cm−1, O–H stretching [66]; at 1636 cm−1, H–O–H bending; at 1402 cm−1, O–H
in-plane bending on the TiO2 surface [64] and W–OH bending [56]; at 958 cm−1, W=O
stretching [67]; at 815 cm−1, O–W–O stretching [68]; and Ti–O–Ti and O–Ti–O stretching
vibrations at 649 and 514 cm−1 [69,70].

In the case of ASP removal, the same trend was observed as in the case of the other
pollutants (OA, PHE, and MO) from the FT–IR spectra: the reutilization of the photocat-
alysts did not induce structural modifications in the photocatalysts; only the intensities
of the adsorbed water molecules increased slightly. The obtained Au/TiO2/WO3 hetero-
junctions for this study possess high stability, even after several reutilization cycles; their
photocatalytic performance diminished by 7.3% (in the case of ASP removal) after three
cycles, by 6.8% for MO removal, by 1.4% for PHE removal, and in the case of OA removal,
the photocatalytic performance was almost identical.

The leakage of the metal ions from the Au/TiO2/WO3 heterostructures did not occur
since Au NPs, TiO2, and WO3 are stable noble metals and metal oxides. Au NPs have great
stability between pH = 5–9 and can be dissolved only with aqua regia. TiO2 and WO3
metal oxides are also stable in a wide pH range; WO3 begins to decompose above pH = 10,
and only HF and hot concentrated H2SO4 can dissolve TiO2. The pH of the suspensions
containing both the heterostructures and the model pollutant was ≈pH = 5–6; thus, the
leakage of the metal ions is highly unlikely. The recyclability tests also confirmed this since
the photocatalytic performance of the Au/TiO2/WO3 heterostructures did not decrease
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drastically after three recycling steps; only a 7.3% decrease was observed in the case of MO
removal (for OA, PHE, and ASP, this decrease was even less).

The VB positions of the heterojunctions were recorded by XPS measurements in order
to understand the photocatalytic mechanism better. For this purpose, the heterojunctions
with the highest photocatalytic activity under UV (Au/TiO2/WO3-NWH–HA) and Vis
light (Au/TiO2/WO3-HW–TA) were chosen (Figures 10 and 11).
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Upon the irradiation of the Au/TiO2/WO3 heterostructures with UV–A light (Figure 10),
the photons are absorbed by the TiO2 photocatalysts, followed by the charge separation of
electrons and holes (e−, h+). The electrons migrate to the Au NPs located on the surface
of the photocatalysts since Au acts as an electron acceptor. The redox potential of the
O2
•− is −0.33 V, and the CB position of the Au/TiO2/WO3 heterojunction is at −0.90 eV;

hence, the formation of the superoxide radical anion is possible at the CB potential of the
photocatalyst. The formation of other ROS, such as hydroperoxyl radical (HOO•), hydroxyl
radical (HO•), or hydrogen peroxide (H2O2), is also possible due to the band alignment
of the CB potential of the photocatalysts. The photogenerated electrons of TiO2 can also
migrate to the CB potential of WO3, as WO3 is also known to act as an electron acceptor.
The electrons in the CB of WO3 can further migrate to Au NPs, which leads to the formation
of the aforementioned ROS. On the VB of the Au/TiO2/WO3 photocatalysts, WO3 acts as
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a donor of photogenerated holes since they migrate from WO3 to TiO2. The VB potential
of the sample is at 1.70 eV; thus, photogenerated holes can be utilized for water splitting,
leading to the formation of OH• + H+. The generated O2

•− can react with H+ (formed
during water splitting), producing H2O2 ROS.

TiO2 + hν→ TiO2 (e−CB + h+
VB) (1)

e−CB + Au→ Au(e−) (2)

Au(e−) + O2 → O2
•− (3)

O2
•− + H2O→ HOO• + HO• + H2O2 (4)

TiO2 (e−CB)→WO3 (e−CB)→ Au→ Au(e−) (5)

Au(e−) + O2 → O2
•− (6)

O2
•− + H2O→ HOO• + HO• + H2O2 (7)

WO3 (h+
VB)→ TiO2 (h+

VB) (8)

TiO2 (h+
VB) + H2O→ H+ + HO• (9)

O2
•− + 2H+ → H2O2 (10)

When the Au/TiO2/WO3 composites are excited with Vis light (Figure 11), the photons
are absorbed by the Au NPs and WO3. The photogenerated charge carriers from the Au CB
migrate to the CB of TiO2. In this case, the CB potential alignment of the photocatalysts is
at –0.56 eV; thus, the formation of O2

•− is possible. Upon irradiation with Vis light, the
Au NPs can act as electron donors and TiO2 as electron acceptors, thus facilitating the
single-electron reduction of the absorbed O2 to O2

•−. Besides the formation of O2
•− ROS,

the formation of other species such as HOO•, HO•, or H2O2 is also possible on the CB
potential of TiO2. Another pathway is also possible under Vis light irradiation: the photons
are absorbed on the surface of WO3, followed by the photogeneration of electrons and
holes. The electrons migrate to the CB of WO3; in this case, WO3 acts as the electron donor,
whereas the Au NPs act as electron acceptors. The electrons from the CB potential of Au
also assist in the formation of ROS such as O2

•−; HOO•; HO• and H2O2. Due to the VB
potential alignment of the sample (1.67 eV), the photogenerated holes from the VB of WO3
can be utilized for water splitting, leading to the formation of OH• + H+.

Au + hν→ Au (e−CB + h+
VB) (11)

e−CB + TiO2 → TiO2 (e−CB) (12)

TiO2 (e−) + O2 → O2
•− (13)

O2
•− + H2O→ HOO• + HO• + H2O2 (14)

WO3 + hν→WO3 (e−CB + h+
VB) (15)

e−CB + Au→ Au(e−CB) (16)

Au(e−) + O2 → O2
•− (17)
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O2
•− + H2O→ HOO• + HO• + H2O2 (18)

WO3 (h+
VB) + H2O→ H+ + HO• (19)

O2
•− + 2H+ → H2O2 (20)

Regarding the photocatalytic mechanism of Au/TiO2/WO3 heterostructures, it can
be argued that after the UV–A photoexcitation of the composites, the photogenerated
charge carriers, more precisely the electrons (e−) from the TiO2 CB, migrated to the Au
NPs (migration caused by the formed Schottky barrier between TiO2/WO3 and Au NPs).
Au NPs can act as reduction sites, while the adsorbed O2 molecules on the surface of the
composite can act as electron-trapping sites, thus enabling the formation of ROS such
as O2

•−; HOO•; HO• and H2O2. Au NPs can accept photogenerated electrons from
TiO2/WO3, thus inhibiting the charge carriers’ recombination, prolonging their lifetime
and enhancing the photocatalytic performance. The photogenerated holes (h+) from the
WO3 VB can migrate to the VB of TiO2, and they can participate in redox processes that will
result in water splitting (•OH + H+). The generated •OH species and the oxidative holes
(h+) can efficiently remove model pollutants via photocatalytic degradation. According to
the formed intermediates, the photocatalytic experiments for PHE degradation prove that
•OH species are generated in a higher volume than other ROS.

Concerning the ROS responsible for the photocatalytic degradation of the pollutants,
in the case of OA removal, the photocatalytic photodegradation most likely occurred due
to direct hole (h+) oxidation, since the photogenerated electrons reduced the W6+ species
to W5+ of the WO3 metal oxides, and this reduction led to the blue colorization of the
suspension (Figure S19).

Regarding the ROS involved in the photocatalytic removal of PHE, it was concluded
that •OH species were responsible. To prove this assumption, a chromatogram of the
phenol degradation was added (Figure S20). According to the formed intermediates, the
photocatalytic experiments for PHE degradation prove that •OH species are generated in a
higher volume than any other ROS since the formed intermediates are hydroxylated forms
of PHE (catechol, hydroxyquinol, resorcinol; and hydroquinone).

Concerning MO removal, the photocatalytic degradation of the azo dye can occur
either by •OH or H2O2 species or by photogenerated holes. The photocatalytic mecha-
nism depends on the MO concentration, due to the photocatalysts’ ability to adsorb the
dye [71,72]. In our case, MO was presumably decomposed in two main steps: the photo-
generated holes broke the –N=N– azo bonds, and the •OH and H2O2 species decomposed
the formed intermediates.

Regarding the ASP removal, since the photocatalytic degradation occurred under Vis
light exposure, the photogenerated active species most likely were •OH and H2O2 species;
thus, the photocatalytic degradation mechanism of aspirin likely yielded intermediates
such as salicylic acid, PHE, gentisic acid, and hydroquinone. The likely intermediates hint
that •OH was the ROS responsible for ASP removal [57].

2.7. Crystal Violet Dye Detection on Au/TiO2/WO3 Heterostructures Using SERS

The performance of Au/TiO2/WO3 heterostructures as SERS substrates was also
evaluated. Crystal violet (CV) dye, a hazardous water pollutant, was chosen as the tar-
get molecule (CCV = 10–6–10−8 M). CV has a strong SERS activity, and its Raman cross-
section is more well defined than that of other molecules [73,74]. CV was successfully
detected on the Au/TiO2/WO3 substrates at concentrations as low as 10–6 M, 10–7 M,
and 10–8 M. (Figures 12 and 13). The bands observed in the SERS spectra were attributed
to the following vibrations: CH3 torsion at 207 cm–1, CNC bending at 439 cm–1, C–N
stretching at 725 cm–1, CCcenterC symmetric stretching and C–N stretching at 760 cm–1 [75],
C–H bending at 801 cm–1 [76], CCcenter C bending at 916 cm–1, CCcenter C asymmetric
stretching at 1173 cm–1, CCcenterC asymmetric stretching and (CCC)ring/C–H bending at
1296 cm–1 [75], C–N (N–phenyl) stretching at 1368 cm–1 [77], C–H bending, CH3 sym-
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metric bending, and (CCC)ring bending at 1387 cm–1 [78], and C–Cring stretching at 1445,
1475, and 1618 cm–1 [79–81]. The characteristic bands of CV dye could be observed in the
SERS spectra recorded for each substrate. SERS bands with relatively strong intensities
indicate the most probable interaction sites, which are the following: CH3 (207 cm–1),
C–C ring (1618 cm–1), C–N and CCCring (1368 and 1387 cm–1, respectively), central carbon
atom (1173 cm–1), C–H (801 cm–1), nitrogen atoms (439 cm–1), and Π electrons in phenyl
structures (1445, 1475, and 1618 cm–1).
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At lower CV concentrations (10−7 M), specifically in the case of the HA substrates in
the 1650–1800 cm−1 region, other SERS bands were also observed. These bands (1654, 1699,
and 1761 cm–1) may imply the presence of amide bonds [82–84]. Amide bonds form via the
condensation of carboxylic acids and amine functional groups, given that the carboxylic
acid is activated at a high temperature or by a catalyst [85,86]. For the Au/TiO2/WO3
substrates from the HA series, the percentage of Au NPs was lower than that for the TA
series, which resulted most probably in unreacted trisodium citrate dihydrate molecules.
The formation of amide bonds could be possible (–CONH–) due to the interaction between
trisodium citrate dihydrate (R1–(CO) –O−Na+) and the quaternary amine functional (R2–
N+vC2H6) groups of CV.

By analyzing the SERS spectra, it can be observed that some samples enhanced the
Raman signal better than others. This difference can be linked to the morphology and
size of Au NPs [87]. Regardless of the WO3 morphology, the TA synthesis route resulted
in more reduced Au NPs than the HA synthesis route. Higher Au NP percentages (TA
series) provided greater SERS enhancement for each corresponding WO3 morphology. It
was found that larger amounts of Au NPs did not always result in higher SERS enhance-
ment, indicating that WO3 morphology could indirectly affect the SERS enhancement of
the heterostructures.

At a CV concentration of 10−6 M (Figure 12), the best-performing heterostructure was
Au/TiO2/WO3-HW–HA, whereas the SERS spectra obtained for the Au/TiO2/WO3-NWH–
HA substrate had the lowest Raman band intensities. The relatively low enhancement
performances of the Au/TiO2/WO3-NWH–HA substrate can be explained most likely
by the low Au percentage of the sample (≈0.34 wt.%—SEM–EDX; 0.09%—XPS). Interest-
ingly, the greatest Raman signal enhancements were not obtained for the Au/TiO2/WO3
heterostructures with the highest Au NPs contents.

At a lower CV concentration (10−7 M (Figure 13), the heterostructures’ ability to detect
the pollutant was reduced as expected, but the Au/TiO2/WO3-HW–TA, Au/TiO2/WO3-
AMT–TA, Au/TiO2/WO3-NWH–TA, and Au/TiO2/WO3-HW–HA composites efficiently
detected CV. In contrast, the Au/TiO2/WO3-AMT–HA and Au/TiO2/WO3-NWH–HA
heterostructures most probably reached their detection limit for CV.

At a pollutant concentration of 10−8 M (Figure 13), it can be observed that only the
Au/TiO2/WO3-HW–TA and Au/TiO2/WO3-AMT–TA substrates could detect CV. By com-
paring all the SERS spectra of CV on Au/TiO2/WO3 substrates, it can be concluded that
the most promising heterostructures were Au/TiO2/WO3-HW–TA and Au/TiO2/WO3-
AMT–TA, with a detection limit of 10–8 M (Table 9). By employing Au/TiO2/WO3 het-
erostructures with three differently shaped WO3 metal oxides, meaningful insights can be
obtained about the way morphology and structure indirectly influence the SERS-based
sensorial capabilities of the Au/TiO2/WO3 heterostructures.

Table 9. Limit of detection (LoD) of the Au/TiO2/WO3 substrates for CV dye.

Sample Limit of Detection (M) Au wt.% WO3 Crystal Phases

Au/TiO2/WO3-HW−HA 10−7 0.38 Mixed
Au/TiO2/WO3-HW−TA 10−8 0.72 Mixed

Au/TiO2/WO3-NWH−HA 10−7 0.34 Hexagonal partial hydrate
Au/TiO2/WO3-NWH−TA 10−7 0.53 Hexagonal partial hydrate
Au/TiO2/WO3-AMT−HA 10−7 0.65 Monoclinic
Au/TiO2/WO3-AMT−TA 10−8 0.79 Monoclinic

To assess the stability of the Au/TiO2/WO3 composites as SERS substrates, the best-
performing ones were selected (Au/TiO2/WO3-HW–TA and Au/TiO2/WO3-AMT–TA),
since according to the EDX and XPS investigations, these composites have the highest Au
NP percentage, and both of them reached a detection limit of 10−8 M for CV dye.
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Thus, the SERS spectra of the CV adsorbed on the Au/TiO2/WO3-HW–TA and
Au/TiO2/WO3-AMT–TA in different concentrations (10−6–10−8 M) were recorded again
after a considerablly long period of time (4 years).

Even after such a long period, the Au/TiO2/WO3-HW–TA and Au/TiO2/WO3-AMT–
TA heterojunctions were able to enhance the Raman signal of the CV dye, up to the
nanomolar concentration (Figures 14 and 15). The new SERS spectra recorded by using
the Au/TiO2/WO3-HW–TA substrates were more intense and well defined than those
obtained when using the Au/TiO2/WO3-AMT–TA substrates; this was presumably caused
by the higher adsorption affinity towards the CV molecules of the Au/TiO2/WO3-HW–TA.
Thus, the strong intensity of the SERS spectra, together with the photocatalytic recycling
tests, prove the extraordinary stability of the Au/TiO2/WO3 heterojunctions.
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Figure 14. Newly recorded SERS spectra (after approx. 4 years) of crystal violet dye adsorbed on
Au/TiO2/WO3-HW–TA substrates at different concentrations, as indicated.
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3. Correlations between the Morpho-Structural Properties and Photocatalytic Activity
of the Heterostructures

As discussed in Section 2.1., the size of the reduced Au NPs depends on the synthesis
route and the morphology of the semiconductor. The TA synthesis route (Figure 16) resulted
in slightly smaller Au NPs (19–21 nm). In contrast, the HA synthesis route led to somewhat
larger Au NPs (21–24 nm), independent of WO3 morphology. Concerning Au wt.% in the
composites, we observed that the HA synthesis yielded a lower percentage (0.34, 0.38, and
0.65%), while the TA one yielded a higher percentage of Au (0.53, 0.72, and 0.79%). The
amount of Au in the heterostructures depends on the tungsten oxide morphology and its
crystal phase composition. The hexagonal partial hydrate crystal phase in both series led to
a smaller Au NP size. In contrast, the monoclinic crystal phase led to a higher amount of
deposited Au NPs.

The structural and optical properties of the Au/TiO2/WO3 heterostructures also
depend on the method used to reduce Au (Figure 17). In the HA series, at a high
WO3(220)/TiO2-A(101) ratio (0.92), when the relative surface defects of TiO2 were barely
noticeable (0.99), a blue shift was observed in the band gap (2.60 eV for Au/TiO2/WO3-
NWH−HA); this blue shift was caused by the relatively small percentage of Au in the
composite. In contrast, when the ratio of WO3(220)/TiO2-A(101) was lower (0.73 and 0.67)
and the relative surface defects of TiO2 were more accentuated (0.96 and 0.92), a red shift
was observed in the band gap values (2.32 eV for Au/TiO2/WO3-AMT−HA and 2.25 eV
for Au/TiO2/WO3-HW−HA). Regarding the TA series, the wt.% of the deposited Au
(0.53, 0.72, and 0.79%) did not influence their band gap values; even at higher percentages,
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the band gaps were nearly identical (≈2.2 eV). The plasmonic band maxima of the het-
erostructures obtained via the TA synthesis route were between 553–556 nm, indicating the
presence of Au NPs [88,89].
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Figure 16. Correlations between the morpho-structural properties, Au reduction synthesis route, Au
particle size, and Au wt.% of tungsten oxides in Au/TiO2/WO3 heterostructures: (a) Au NPs average
size in function of Au deposition method and WO3 morphology; (b) Au wt.%. of the composites in
function of Au deposition method and WO3 morphology; (c) Au NPs average size in function of Au
deposition method and HPH content in WO3; and (d) Au wt.%. of the composites in function of Au
deposition method and MC content in WO3.

The structural features of photocatalytic materials, such as the crystal phase composi-
tion, are paramount to defining their photocatalytic efficiency (Figure 17). It was observed
that in the HA series, a high (90.6%) or solely (100%) hexagonal partial hydrate phase led
to enhanced photocatalytic activity in MO (96.6%) and OA (90.1%) removal. However,
when the crystal phase composition was purely (100%) monoclinic, the removal of MO
(48.8%) and OA (41.9%) was significantly lower. Presumably, the hexagonal partial hydrate
crystal phase and the rod-like morphology facilitate the generation of charge carriers (e−,
h+) [90–92], inhibit their recombination, and prolong their lifetime; this was proven also
by the PL measurements. This can result in enhanced photocatalytic efficiency for specific
pollutants under UV light irradiation. TiO2 surface defects also play a pivotal role in the
photodegradation of ASP and PHE. The closer the I515/I396 ratio of the TiO2 Raman bands
is to one, the lower the number of surface defects. In the HA series, more surface defects
(0.92) proved beneficial for ASP removal (72.7%) under Vis light exposure. At the same
time, for the removal of PHE (99.0%), a lower number of surface defects (0.99) proved
to be more advantageous under UV light irradiation. Surface defects can influence the
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degradation mechanism of a particular pollutant [56], since surface defects are related to
the semiconductors’ structure and morphology. In addition, the degradation mechanism
depends on the irradiation source (UV or Vis) [93].
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Figure 17. Correlations between Au reduction synthesis route, structural features, and the optical
properties of Au/TiO2/WO3 heterostructures: (a) influence of WO3(220)/TiO2-A(101) ratio on the
band gap energy values of heterostructures from the HA series; (b) Au wt.% influence on the band
gap energy values of heterostructures from the TA series; (c) TiO2 surface defects effect on the band
gap energy values of heterostructures from the HA series, and (d) band gap energy values of the
heterostructures form the TA series in function of the Au NPs plasmonic bands absorbance maxima.

As previously observed (Figure 17), the ratio of WO3 and anatase TiO2 facets can
influence the band gap of Au/TiO2/WO3 heterostructures, and this could also affect
their photocatalytic performance (Figure 18). Regarding the TA series, we found that
lower WO3(220)/TiO2-A(101) ratios (0.52 and 0.84) led to enhanced photoactivity for ASP
removal (82.1 and 81.6%) under Vis light. However, the photoactivity was reduced (64.5%)
at a higher facet ratio (0.98). Interestingly, lower WO3(220)/TiO2-A(101) ratios (0.52 and
0.84) led to lower photocatalytic efficiencies (56.9 and 61.0%) for MO removal, while a
higher facet ratio (0.98) enhanced the photoactivity (97.9%). The surface defects in TiO2
also influenced the photocatalytic performance of the heterostructures obtained via the
TA synthesis route. Concerning PHE removal, the same trend was observed for the TA
series as for the HA series: fewer surface defects (0.96, 0.93, and 0.88) led to increased
photocatalytic efficiency (98.2, 97.9, and 96.8%). Interestingly, when the removal of OA was
studied, it was observed that a higher number of surface defects (0.88, 0.93, and 0.96) were
more beneficial, resulting in higher conversions (95.9, 62.6, and 61.9%). Surface defects
had the opposite effect on the photocatalytic efficiency of composites obtained via the TA
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synthesis route for PHE and OA under UV irradiation. Most likely, more surface defects
facilitate the formation of more h+ rather than that of •OH. It is well known that h+ species
favor the degradation of aliphatic compounds (such as OA or formic acid) in photocatalytic
processes. The high number of surface defects in the TA series did not limit the formation of
•OH significantly; thus, the photocatalytic activity of the composites was scarcely affected.
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4. Materials and Methods
4.1. Chemicals

For the synthesis of WO3 and WO3·0.33H2O, hydrogen peroxide (H2O2, 30%, Sigma
Aldrich, Schnelldorf, Bavaria, Germany), tungstic acid (H2WO4, 99%, Sigma Aldrich,
Schnelldorf, Bavaria, Germany), hydrochloric acid (HCl, 35–38%, 12 M, CHEM, Chemical
Company, Ias, i, Romania), sodium tungstate dihydrate (Na2WO4·2H2O, ≥99%, Sigma
Aldrich, Schnelldorf, Bavaria, Germany), sodium chloride (NaCl, 99.5% CHEM, Chemical
Company, Ias, i, Romania) and ammonium metatungstate hydrate ((NH4)6H2W12O40·xH2O,
99.99%, Sigma Aldrich, Schnelldorf, Bavaria, Germany) were used as received, without
any further modifications. Deionized water (H2O) was used as a solvent. The tungsten
oxides obtained from tungstic acid will hereinafter be referred to as WO3-HW; those from
sodium tungstate dihydrate will be referred to as WO3-NWH; and those from ammonium
metatungstate hydrate will be referred to as WO3-AMT.



Catalysts 2023, 13, 1015 27 of 33

To obtain the Au/TiO2/WO3 ternary composites, Aeroxide TiO2 P25 (≥99.5%, Evonik In-
dustries, Essen, North Rhine-Westphalia, Germany), gold (III) chloride trihydrate (HAuCl4·3H2O,
≥99.9% trace metal basis, Sigma Aldrich, Schnelldorf, Bavaria, Germany), trisodium citrate
dihydrate (C6H9Na3O9, 99.0%, Chempur, Karlsruhe, Baden-Württemberg, Germany), and
deionized water (H2O) were used.

The photocatalytic activity of the composites was assessed via the photocatalytic
degradation of 0.5 mM PHE (C6H5OH, Spektrum 3D, Debrecen, Hungary; analytical grade),
5 mM OA (C2H2O4, ≥99%, Sigma Aldrich, Schnelldorf, Bavaria, Germany), and 125 µM
MO (C14H14N3NaO3S, 85%, Sigma Aldrich, Schnelldorf, Bavaria, Germany) aqueous
solutions under UV light irradiation. In the same way, the photocatalytic efficiency of the
composites was investigated under Vis light irradiation via the photocatalytic removal of
50 µM ASP aqueous solution (tablets, C9H8O4, 100 mg, 74%, Bayer, Leverkusen, North
Rhine-Westphalia, Germany).

For recording the SERS spectra of CV dye (10−6–10−8 M) (ACS, C25N3H30Cl, 90+%,
Alfa Aesar, Tewksbury, MA, USA), water solutions were employed.

4.2. Synthesis Routes of the Au/TiO2/WO3 Ternary Composites

The Au/TiO2/WO3 ternary composites were prepared via the Turkevich–Frens chem-
ical reduction pathway (HA: carried out at 90 ◦C for 4 h; and TA: carried out at 25 ◦C room
temperature for 24 h), whereas the WO3 and WO3·0.33H2O semiconductors were obtained
via hydrothermal crystallization, according to these studies [31,58].

For the HA preparation of the Au/TiO2/WO3 composites, in each case, 750 mg of
commercial TiO2 was added to 48.78 mL of distilled water. Then, the suspension was
stirred for 30 min, and 240 mg of WO3 (or WO3·0.33H2O) was added, followed by another
30 min of stirring. The chemical reduction of Au NPs was ensured by the dropwise addition
of 2 mL of 25.39 mM HAuCl4 solution; then, the suspension was heated to 90 ◦C. After
reaching the desired temperature, 5.08 mL of 38.8 mM C6H9Na3O9 was added to the
suspension, followed by 60 min of stirring. In the final steps, the obtained suspensions were
washed with distilled water and centrifuged, followed by drying (under air atmosphere) at
80 ◦C for 12 h. Three composites were obtained: Au/TiO2/WO3-HW−HA, Au/TiO2/WO3-
NWH−HA, and Au/TiO2/WO3-AMT−HA.

Another series of Au/TiO2/WO3 composites were prepared via the TA synthesis
route. In this case, 750 mg of commercial TiO2 and 240 mg of WO3 (or WO3·0.33H2O)
were added to 48.78 mL of distilled water, then stirred for 30 min. In the next step, 2 mL
of 25.39 mM HAuCl4 solution was added dropwise to the suspension, followed by the
immediate addition of 5.08 mL of 38.8 mM C6H9Na3O9 and 24 h of stirring. The as-obtained
suspensions were washed and centrifuged with distilled water, then dried (under air
atmosphere) at 80 ◦C for 12 h. Three composites were obtained: Au/TiO2/WO3-HW−TA,
Au/TiO2/WO3-NWH−TA and Au/TiO2/WO3-AMT−TA.

4.3. Methods and Instrumentation and Assessment of Photocatalytic Activity

To probe the nano-scale assembly of the ternary composites, transmission electron
microscopy (TEM) investigations were carried out using a FEI Tecnai F20 field emission
high-resolution transmission electron microscope, operating at an accelerating voltage
of 200 kV and equipped with an Eagle 4k CCD camera. The samples were dispersed
in water and drop-casted on carbon-coated Formwar–Cu grids. The size distribution
of the Au nanospheres was determined from the TEM images, where, in each case, at
least 100 nanoparticles were considered. To prove the presence of the Au nanospheres,
energy-dispersive X-ray (EDX) measurements were also carried out.

To investigate the morphology, scanning electron microscopy (SEM) measurements
were performed using a Hitachi S-4700 Type II microscope (Japan, Tokyo) equipped with
a cold field emission gun, at a 10 kV acceleration voltage. Micrographs were obtained
by collecting secondary electrons using an Everhart–Thorney detector. EDX analysis was
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performed with the same microscope using a Röntec XFlash Detector 3001 detector (Bruker,
Karlsruhe, Germany).

X-ray diffraction (XRD) measurements were carried out on a Shimadzu XRD
600 diffractometer using a CuKα radiation source (1.54 Å) with a Ni filter. All diffrac-
tograms were recorded in the range of 20–50◦ (2θ◦), with a scanning speed of 2θ◦·min–1. The
crystal phases of TiO2, WO3, and WO3·0.33H2O were identified using the JCPDS database.

Raman spectra were recorded using a confocal multi-laser Renishaw inVia Reflex
spectrometer equipped with a Rencam CCD detector. During the measurements, the
λ = 532 nm (green) laser line was employed as an excitation source with a power of 100 mW.
A microscope objective with a NA of 0.9 at 100× magnification was used to record the
spectra in the 100–1100 cm–1 domain. The integration time was 30 s for all Raman spectra,
which were accumulated two times each. The ratios of the anatase TiO2 and hydrated WO3
Raman bands were calculated (I515/I396 and I810/I926) to investigate the effect of surface
modifications and the crystallinity of semiconductors in the composites.

The SERS spectra of the CV dye were obtained using the λ = 633 nm (red) laser line as
an excitation source and a microscope objective with a NA of 0.35 at 20×magnification in
the range of 100–1800 cm–1. The integration time was 90 s for all spectra, without further
accumulation cycles, using a laser power of 17 mW. The spectral resolution of the Raman
and SERS spectra was 4 cm–1. To prove the SERS stability of the substrates, the CV spectra
at different concentrations (10−6 M–10−8 M) were recorded after a long period of time
(≈4 years) in similar conditions.

The diffuse reflectance spectra (DRS) of the samples were measured using a Jasco V650
spectrophotometer (Jasco, Vienna, Austria) equipped with an ILV-724 integration sphere.
The spectra were recorded in the 250–800 nm domain. The band gap values of the ternary
composites were determined from the Tauc plot of the DR spectra.

The photoluminescence (PL) spectra of the Au/TiO2/WO3 heterostructures were
acquired on a fluorescence spectrophotometer (Jasco LP-6500 spectrofluorometer, Jasco,
Vienna, Austria) with a 1 nm spectral resolution equipped with a Xe lamp as the excitation
source and coupled to an epifluorescence accessory (EFA 383 module). The measurements
were recorded in the wavelength range of 350–800 nm with fixed excitation wavelengths at
365 and 450 nm.

X-ray photoelectron spectroscopy (XPS) measurements were carried out with a SPECS
Phoibos 150 MCD system (SPECS, Berlin, Germany) equipped with a monochromatic
Al-Kα source (1486.6 eV) at 14 kV and 20 mA, a hemispherical analyzer, and a charge
neutralization device. The photocatalysts were fixed on a double-sided carbon tape that
was completely covered by the sample. The binding energy scale was charged, according
to the C1s, at 284.6 eV. High-resolution elemental spectra were obtained (W4f and Au4f
shown in detail) using an analyzer in order to pass energy of 20 eV in steps of 0.05 eV
for the analyzed samples. The data analysis was carried out using CasaXPS software
(2.3.25 version). For the photocatalytic experiments that were carried out under UV light
irradiation, fluorescent lamps (UV-A, λmax = 365 nm) were used. For each photocatalytic
test, the following parameters were applied: 2 h irradiation time, 6 × 6 W fluorescent
lamps, 1 g·L–1 catalyst load, constant stirring (500 rpm), airflow, and temperature (25 ◦C).
The initial concentrations of the model pollutants were 125 µM, 5 mM, and 0.5 mM for
MO, OA, and PHE, respectively. The photocatalytic efficiency of the ternary composites
concerning OA and PHE removal was assessed using an Agilent 1100 high-performance
liquid chromatograph (Agilent Technologies, Santa Clara, California, USA). For OA, the
following conditions were used: 0.06% aqueous solution of sulfuric acid as the eluent,
where the flow rate was 0.8 mL·min−1, a Grom Resin ZH column (Tankki Ltd., Ähtäri,
Finland) as the stationary phase, and 206 nm as the detection wavelength. For phenol, the
conditions were as follows: a mixture of methanol and water at a 1:1.857 ratio as the eluent,
a BST Nucleosyl C-18 (4 mm × 250 mm) column as the stationary phase, and 210 nm as
the detection wavelength. A Jasco V650 spectrophotometer (Jasco, Vienna, Austria) was
applied to investigate the removal of MO at a detection wavelength of 513 nm.
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For the photocatalytic experiments that were carried out under Vis light irradiation,
6 × 6 W fluorescent lamps (λmin ≥ 400 nm), 4 h irradiation, a 1 g·L–1 catalyst load, constant
airflow, a constant temperature (25 ◦C), and stirring (500 rpm) were used. The chosen
model pollutant was ASP, and the initial concentration was 50 µM. Employing a Jasco
V650 spectrophotometer (Jasco, Vienna, Austria), we recorded the UV–Vis spectra of
ASP between 190–400 nm to follow the removal efficiency. The ASP concentration was
determined by integrating the area of the spectra after each measurement.

5. Conclusions

Multiple Au/TiO2/WO3 heterojunctions with enhanced photocatalytic efficiency
towards multiple pollutants and SERS-based sensory/detection abilities (CV dye detection)
have been successfully synthesized via two synthesis routes and by employing three
different WO3 morphologies. Au NPs were successfully deposited on the surface of
TiO2/WO3 heterostructures regardless of the reduction method. The best-performing
Au/TiO2/WO3 heterojunctions efficiently removed 96.6% of OA, 99.0% of PHE, and 97.9%
of MO under UV light exposure, and 82.1% of ASP under Vis light irradiation. The stability
and recyclability of the heterojunctions were confirmed after several reusability cycles as
photocatalysts.

The Au/TiO2/WO3 heterostructures with the highest Au content (Au/TiO2/WO3-
HW–TA; Au/TiO2/WO3-AMT–TA) were the best-performing SERS substrates, reaching a
10–8 M LoD for the CV dye. Au/TiO2/WO3 substrates proved to be highly stable, producing
strong-intensity SERS signals even after a long period of time. The morphology, structure,
and surface defects of WO3 (and TiO2) metal oxides are essential in the synthesis route of Au
reduction on TiO2/WO3 heterostructures. By selecting the appropriate WO3 morphology,
crystal phase, and composition, Au/TiO2/WO3 heterojunctions with outstanding stability
can be engineered to remove specific pollutants and to detect pollutants at concentrations
close to the nanomolar range via SERS.
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HW−HA (a) and Au/TiO2/WO3-HW−TA (b) samples, and their corresponding size distribution
histograms for gold nanoparticles; Figure S2: TEM micrographs of Au/TiO2/WO3-NWH−HA (c)
and Au/TiO2/WO3-NWH−TA (d), and their corresponding size distribution histograms for gold
nanoparticles; Figure S3: TEM micrographs of Au/TiO2/WO3-AMT−HA (f) and Au/TiO2/WO3-
AMT−TA (g), and their corresponding size distribution histograms for gold nanoparticles; Figure S4:
SEM micrographs of the prismatic dipyramid WO3-HW semiconductors (3–1 µm); Figure S5: SEM
micrographs of the prismatic dipyramid WO3-HW semiconductors (500–400 nm); Figure S6: SEM
micrographs of the rod-like/wire-like WO3-NWH semiconductors (3–2 µm); Figure S7: SEM mi-
crographs of the rod-like/wire-like WO3-NWH semiconductors (1–0.5 µm); Figure S8: SEM mi-
crographs of the flower-like WO3-AMT semiconductors (3–2 µm); Figure S9: SEM micrographs
of the flower-like WO3-AMT semiconductors (1–0.5 µm); Figure S10: SEM–EDX spectra of the
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heterostructures: (a) Au/TiO2/WO3-HW-HA; (b) Au/TiO2/WO3-HW-TA; (c) Au/TiO2/WO3-NWH-
HA; (d) Au/TiO2/WO3-NWH-TA, (e) Au/TiO2/WO3-AMT-HA; and (f) Au/TiO2/WO3-AMT-TA;
Figure S17: Photolysis, adsorption, and photocatalytic activity measurements of commercial TiO2 for
each model pollutant: (a) oxalic acid; (b) phenol; (c) methyl orange; (d) aspirin; Figure S18: Stability
of the Au/TiO2/WO3 heterostructures after several cycles of recyclability after OA removal (a);
after PHE removal (b); after MO removal (c); and after ASP removal (d); Figure S19: Blue coloriza-
tion of the OA suspension; Figure S20: Chromatograms of phenol at initial concentration and after
60 and 120 min of UV light exposure; Table S1: Summary of the Au/TiO2/WO3 heterostructures’
photocatalytic activity under UV and Vis light irradiation.
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