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Abstract: Propylene is an important raw material for the production of many valuable compounds,
especially polypropylene, the consumption of which continues to grow every year. The reaction of
oxidative dehydrogenation of propane, where carbon dioxide is used as a mild oxidant, is a promising
method for producing propylene. At the same time, the problem of utilization of greenhouse gas
CO2 is partially solved. The synthesis and analysis of the physicochemical properties of mesoporous
silicate MCM-41 and supported catalysts CrOx/MCM-41 prepared on its basis were carried out.
These catalysts were prepared using incipient wetness impregnation. The support and catalysts
were characterized by the methods of low-temperature nitrogen adsorption, TG-DTA, XRD, SEM,
TPR-H2, UV/Vis diffuse reflectance spectroscopy, and small-angle X-ray scattering. It is shown that
chromium is present in the samples simultaneously in the form of Cr3+ and Cr6+. The catalytic tests
were performed in the range of 550–700 ◦C. The highest selectivity for propylene was observed for the
5%Cr/MCM-41 catalyst and was 76% at a temperature of 650 ◦C with a propane conversion of 20%.
The deposited catalysts Cr/MCM-41 and Cr/SiO2 (Acros) were compared. The propylene selectivity
for the MCM-41-supported catalyst was ~1.5 times higher than that for the SiO2-supported catalyst.

Keywords: mesoporous silicates MCM-41; chromium catalyst; oxidative dehydrogenation of propane;
propylene; carbon dioxide

1. Introduction

Currently, the oxidative dehydrogenation of light alkanes in the presence of CO2 is
attracting great attention due to technological and environmental advantages [1–3]. The low
yield of alkenes in comparison with conventional cracking does not allow the widespread
use of oxidative dehydrogenation; however, this problem can be solved by developing and
using catalysts with effective characteristics [4–8].

When carbon dioxide is used as an oxidizing agent in the alkane dehydrogenation
reaction, the active sites of the catalyst are constantly regenerated [9,10]. During the catalytic
dehydrogenation reaction in the absence of an oxidizing agent, oxygen in the catalyst lattice
participates in the oxidation of H2 with the formation of water [11–14]. The rate of water
formation decreases with a gradual increase in the yield of molecular H2, which shifts the
thermodynamic equilibrium toward the reagent, contributing to a decrease in the light
alkane conversion, whereas CO2 induces the reverse water gas shift reaction (CO2 + H2 →
CO + H2O), thereby facilitating the removal of thermodynamic restrictions [15–17].

One of the promising reactions of oxidative dehydrogenation of light alkanes is the
reaction of oxidative dehydrogenation of propane (ODP) in the presence of CO2 to produce
propylene. Propylene is an important starting chemical raw material in the production
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of valuable monomers and polymers, such as acetone, cumene, propylene oxide, acry-
lonitrile, acrylic acid, acrolein, and polyacrylonitrile. Propylene is particularly impor-
tant for the production of polypropylene, which is produced on a large scale, more than
50 million tons per year.

ODP in the presence of CO2 was studied on various catalytic systems containing
mainly transition metals V, Cr, Fe, Co, Ni, Zn, and Mo, as well as Ga, In, and Au [18–23].
The most active in ODP are catalysts based on chromium oxide [16,24–29]. To obtain
a more active catalyst based on chromium oxide, a high dispersion of the chromium
oxide particles must be achieved. For this reason, more attention is paid to highly porous
supports, including mesoporous materials such as SBA-1, SBA-15, MCM-41, MSU-x, and
MSS-x [30–35]. One of the promising mesoporous materials is MCM-41—mesoporous
molecular sieves that have uniform and well-ordered mesoporous channels with controlled
pore sizes from 2 to 10 nm [36–38], as well as a large surface area (about 1000 m2/g) [39].
In view of this, they can be used as promising supports for Cr-containing catalysts. When
conducting ODP using CO2 on Cr/MCM-41 catalysts, high selectivity values for propylene
up to 88% were achieved with propane conversions of 15–30%. However, such high
selectivity values are achieved with significant dilution of the reaction mixture with inert
gases such as helium and nitrogen or with significant dilution of the reaction mixture with
an excess of carbon dioxide (a mixture of C3H8:CO2 at a molar ratio from 1:3 to 1:7), while
the catalyst loading is usually 0.4–0.5 g [40,41]. In addition to the conversion of feedstock
and selectivity for target products, it is also possible to calculate the productivity of the
catalyst. The productivity of the catalyst is an important characteristic when using catalysts
in industry, because it allows one to evaluate the efficiency of the unit mass of the catalyst
relative to the unit mass of the feedstock. The aim of this work was to study the stability of
the Cr/MCM-41 catalysts, as well as regeneration, the effect of the chromium content on
the structure, morphology, and catalytic activity of these catalysts, and the effect of reaction
conditions on the productivity of the catalysts. For this purpose, mesoporous molecular
sieves MCM-41 were synthesized, and catalytic systems with contents of 1, 3, 5, 7, and
9 wt.% Cr were obtained on their basis. These catalytic systems were investigated in the
reaction of propane dehydrogenation with the participation of CO2 as a mild oxidant under
conditions closest to industrial ones. For this purpose, larger catalyst weights were taken
and a minimal excess of carbon dioxide relative to propane was used during the reaction.

2. Results
2.1. BJH/BET Measurements

The synthesized mesoporous silicate MCM-41 and the Cr/MCM-41 catalysts were
studied using low-temperature nitrogen adsorption. Adsorption isotherms are shown
in Figure 1a. All of the silica materials exhibited type IV isotherms according to IUPAC
classification. The MCM-41 isotherm showed an H4 type hysteresis loop, indicating
the presence of micropores in the material under study. The absence of a desorption
hysteresis loop during nitrogen adsorption is typical for MCM-41 samples with a pore
size of 2–4 nm [42]. The pore volume distributions by size are shown in Figure 1b. The
introduction of chromium oxide promoted a decrease in the pore volume and, consequently,
a decrease in the surface area of the Cr/MCM-41 catalysts. At the same time, the average
pore diameter decreased from 2.3 to 2.0 nm. This can indicate the deposition of a part
of the chromium oxide particles in the pores of the MCM-41 support. When chromium
oxide particles are applied to the MCM-41 support, the bimodal nature of the pore size
distribution completely disappears. This means that the pores of the MCM-41 support in
the range from 3.3 to 4.1 nm are completely filled with chromium oxide particles.

Table 1 shows the texture characteristics for the MCM-41 sample and the Cr/MCM-41
catalysts calculated from adsorption isotherms.

After supporting Cr onto the MCM-41 support, the specific surface area decreased
slightly. After supporting 1% Cr onto the MCM-41 support, the pore volume and the pore
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diameter decreased. With a further increase in the chromium content to 9%, these values
almost did not change.
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Table 1. Textural characteristics of the MCM-41 support and 9 Cr/MCM-41 catalyst.

Sample SBET, m2/g Vmeso, cm3/g Dpore, Ǻ

MCM-41 1260 0.7 23
1 Cr/MCM-41 1137 0.56 20
3 Cr/MCM-41 1092 0.55 20
5 Cr/MCM-41 992 0.53 20
7 Cr/MCM-41 1018 0.54 20
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2.2. Thermogravimetry and Differential Thermal Analysis (TG-DTA)

The TG-DTA method was used to select the temperature range of heating samples that
ensured effective formation of the catalyst. First of all, the process of removing the template
from synthesized MCM-41 dried at a temperature of 100 ◦C for 24 h was investigated
(Figure 2a).
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The process of removing the template from a freshly prepared sample MCM-41 (ob-
tained after drying at a temperature of 100 ◦C for 24 h) was investigated using the TG-DTA
method (Figure 2a).
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The observed low-temperature weight loss, up to 150–200 ◦C, was due to the removal
of alcohol used for washing and desorption of water. The next stage of the weight change
was associated with the desorption of the template from the pores (a minimum on the DTG
curve at 265 ◦C) and its oxidative degradation in the temperature range of 300–490 ◦C,
accompanied by an exothermic effect with a maximum at 380 ◦C. At temperatures above
550 ◦C, no noticeable change in weight was recorded, which indicates the complete removal
of the template, consistent with the literature data [36]. Thus, for calcination of the carrier
in air, taking into account a certain temperature margin, it is necessary to use a temperature
of 550–600 ◦ C. Furthermore, the process of decomposition of chromium nitrate on the
surface of the MCM-41 support (Figure 2b) was investigated. According to the DTG curve,
the temperature of 180 ◦C corresponds to the removal of most nitrate ions, and complete
removal of chromium nitrate occurs at 300 ◦C.

2.3. Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS)

The structure of the synthesized mesoporous silicate and Cr/MCM-41 catalysts was
studied by scanning electron microscopy (Figure 3). The first image shows a surface of the
support, which could be used to judge the spherical shape of MCM-41 particles. The sizes
of the formed crystallites were in the range from 0.2 to 1 µm and were, on average, about
0.8 µm. Cr/MCM-41 catalyst images show that the MCM-41 support particles retained their
spherical shape and particle sizes. With an increase in the chromium content in the catalysts,
the appearance of larger non-spherical chromium particles located at the boundaries of
MCM-41 particles was observed. This was observed on samples with a chromium content
of 5–9%, especially noticeable on 7/MCM-41 and 9/MCM-41 catalysts.
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Figure 3. Images of the surfaces of the MCM-41 support and the Cr/MCM-41 catalysts.

Additional SEM images and the results of EDS can be found in the Supplementary
Materials, Figures S1 and S2.

From the chromium mapping of the Cr/MCM-41 catalysts (Figure S1, the second
row), one can judge the uniform distribution of chromium over the sample; for comparison,
images of the same particles of these catalysts are shown (Figure S1, upper row).
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Figure S2 shows the typical spectrum for the Cr/MCM-41 sample. When studying
the surfaces of the Cr/MCM-41 catalyst samples using EDS, the ratio of elements on the
samples surfaces was obtained (Table 2).

Table 2. The ratio of elements on the catalyst surfaces.

Total Spectrum Cr Si O Total Cr EDS/Cr Computational, %

1 Cr/MCM-41 0.7 46.4 52.9 100 70
3 Cr/MCM-41 2.4 47.8 49.8 100 80
5 Cr/MCM-41 5.2 45.7 49.1 100 104
7 Cr/MCM-41 6.4 44.1 49.5 100 91
9 Cr/MCM-41 9.2 42.6 48.2 100 102

The weight percentage of Cr in 5–7 Cr/MCM-41 catalysts was in good agreement with
the initial data on the content of chromium in the catalysts. In samples 1 Cr/MCM-41 and
3 Cr/MCM-41, the chromium content on the surface was slightly less than the initial data.
This can be explained by the fact that the smallest chromium particles could be located in
the pores of the MCM-41 support.

2.4. X-ray Diffraction (XRD)

A sample of mesoporous silicate MCM-41 and the catalytic systems Cr/MCM-41
were studied by XRD in the range of angles of 2θ = 10◦–60◦. The MCM-41 support and
Cr/MCM-41 catalysts were also investigated in the range of angles 2θ = 1◦–7◦. Diffraction
patterns are shown in Figure 4.
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(database) [Inorganic Crystal Structure Database (ICSD)] (a) and small-angle X-ray scattering data of
the MCM-41 support and Cr/MCM-41 catalysts (b).

The sample of the MCM-41 support was X-ray amorphous (Figure 4a), there were no
reflections in the range of angles 2θ = 20◦–80◦. When using the method of small-angle X-ray
scattering (2θ < 10◦), reflections characteristic of the hexagonal structure of mesopores
of the material of the MCM-41 type were clearly manifested on the diffractogram of the
MCM-41 sample (Figure 4b) [37].

The diffraction pattern of the 5–9 Cr/MCM-41 catalytic systems (Figure 4a) in the range
of angles 2θ = 20◦–80◦ contained diffraction lines corresponding to the crystalline phase
of α-Cr2O3. The diffraction patterns of catalytic systems with a lower chromium content
lacked diffraction lines corresponding to α-Cr2O3, which can most likely be explained by
the high dispersion of chromium oxide particles on the support surface.

In the case of small-angle X-ray scattering (2θ < 10◦), the maximum disappeared in
the diffractogram of the 9 Cr/MCM-41 catalyst. Such changes in the diffraction pattern
mean that, when the carrier was impregnated with a precursor followed by thermal
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decomposition, the carrier channels were partially destroyed. At the same time, a decrease
in intensity in this case may also have been the result of the presence of chromium oxide
particles that were heavier than the mass of silicate walls, which were randomly distributed
in the pores and violated the periodicity of the lattice. The XRD data were used to calculate
the interplanar distances and cell parameters for the MCM-41 sample (Figure 4b).

2.5. UV/Vis Diffuse-Reflectance Spectroscopy

The valence states of chromium on the surface of mesoporous silicate MCM-41 were
investigated by UV/Vis diffuse-reflectance spectroscopy (Figure 5).
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Figure 5. UV/Vis diffuse reflectance spectra of samples 1–9 Cr/MCM-41.

All catalytic systems exhibited four UV bands. The bands at ~270 and 355 nm cor-
responded to the O2 → Cr6+ charge transfer transition for chromates in tetrahedral co-
ordination. The absorption bands at 450 and 600 nm were attributed to the d–d charge
transfer transition of Cr3+ in the octahedral coordination of Cr(III) in Cr2O3 or CrOx
clusters [33,43–45]. The intensity of the absorption bands increased with an increase in
the concentration of chromium oxide in the samples, indicating the predominance of Cr6+

species in catalysts with a low chromium content.
It should be noted that Cr6+ chromium moieties on the support surface were formed

from Cr3+ species when the catalysts were calcined in an airflow. In this case, the number
of Cr6+ sites depended on the nature of the support and on the concentration of the
active component; if the concentration of the active component exceeded the level of the
monolayer coating, then a crystalline α-Cr2O3 phase was formed on the catalyst surface.

2.6. Temperature-Programmed Reduction (TPR-H2)

For the catalytic system 5 Cr/MCM-41, temperature-programmed reduction with
hydrogen was carried out in the temperature range 25–850 ◦C (Figure 6).

The TPR-H2 profile for the supported catalyst 5 Cr/MCM-41 showed a maximum
in the temperature range 400–500 ◦C, corresponding to the reduction of Cr6+ species that
were directly related to the silica substrate. An additional low-temperature maximum was
observed at 310 ◦C. The position of this maximum coincided well with the maximum of
the low-temperature reduction observed for the calcined α-Cr2O3, which corresponded
to the reduction of Cr6+ to Cr3+ or Cr2+ in α-Cr2O3. Consequently, the presence of a
low-temperature maximum confirmed the existence of α-Cr2O3 [32,37].
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Figure 6. TPR-H2 of the 5 Cr/MCM-41 catalyst.

2.7. Catalytic Activity

The synthesized catalytic systems were investigated in the reaction of catalytic propane
dehydrogenation in the presence of carbon dioxide:

C3H8 + CO2 = C3H6 + CO + H2O. (1)

In addition to the main reaction product, propylene, the formation of byproducts such
as methane, ethane, and ethylene was observed.

Figure 7 shows the dependence of the catalytic activity on the content of chromium
oxide in the samples.
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Figure 7. (a) C3H8 and CO2 conversion and (b) selectivity for propylene for the 1–9 Cr/MCM-41
catalyst at T = 650 ◦C. C3H8:CO2 = 1:2, he total flow rate = 30 cm3·min−1, mcat = 1 g.

For catalytic systems Cr/MCM-41 with a Cr content of 1–9 wt.%, at temperatures
of 550–600 ◦C, a very low conversion of 1–3% was observed, except for 5 Cr/MCM-41,
with the conversion at 600 ◦C being ~6%. At 650 ◦C, the conversion for the 3 Cr/MCM-41
sample increased above 10%, and the conversion in the case of the 5–9 Cr/MCM-41 samples
increased above 20%. The highest propane conversion was observed at a temperature of
700 ◦C, while the maximum propane conversion (40.4%) was achieved on a catalyst with a
chromium oxide content of 7 wt.%, and the lowest conversion was shown by a sample with
a chromium oxide content of 1 wt.% (21%). It should be noted that the highest activity was
revealed by a catalyst with a chromium oxide content of 5 wt.%; the propylene selectivity
was higher than 80% at a temperature of 650 ◦C, while the 1 Cr/MCM-41 sample was
ineffective at this temperature, and a further increase in the chromium concentration did
not lead to a slight increase in the catalytic activity. With an increase in the Cr content in
Cr/MCM-41 catalysts, the CO2 conversion increased and reached a maximum at 5% Cr,
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and then began to decrease. A decrease in the activity of catalysts with an increase in the
chromium content was possible due to the formation of CrOx clusters that were not active
in propane dehydrogenation in the presence of CO2 [16].

Figure 8 shows the selectivities for all reaction products for the sample 1 Cr/MCM-41.
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Figure 8. Selectivity for propylene, ethane, ethylene, and methane for the 1 Cr/MCM-41 catalyst at
T = 650 and 700 ◦C. C3H8:CO2 = 1:2, total flow rate = 30 cm3·min−1, mcat = 1 g.

The catalyst with a content of 1% Cr differed from all other Cr/MCM-41 materials.
There was no formation of propylene, but substantial methane, ethane, and ethylene
were formed in small quantities at a temperature of 650 ◦C. The formation of propylene
began immediately in large quantities, the selectivity for ethane and ethylene decreased
significantly, and the formation of methane occurred in trace amounts at 700 ◦C.

Figure 9 shows the selectivities for all reaction products for the sample 5 Cr/MCM-41.
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Figure 9. Selectivity for propylene, ethane, ethylene, and methane for the 5 Cr/MCM-41 catalyst at
T = 650 and 700 ◦C. C3H8:CO2 = 1:2, total flow rate = 30 cm3·min−1, mcat = 1 g.

The selectivity for propylene was over 80%, whereas the selectivity for ethane, ethylene,
and methane was lower than 10% for the 5 Cr/MCM-41 catalyst at T = 650 ◦C. With an
increase in temperature to 700 ◦C, the selectivity for propylene decreased slightly, and the
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selectivity for ethane, ethylene, and methane somewhat increased. Approximately the
same pattern was observed for the samples of catalysts with a content of 3, 7, and 9 wt.% Cr.
The only difference was that the selectivity for methane decreased slightly for the samples
containing 3, 7, and 9 wt.% Cr at 700 ◦C. Similar patterns were observed for the catalyst
6.8 Cr/MCM-41 in [40], which was also prepared by the incipient wetness method. With
an increase in temperature, the selectivity for propylene decreased, and the selectivity
for ethane and methane increased slightly. The selectivity for ethylene increased more
noticeably [40].

It should be noted that, according to the results of the catalytic activity tests and the
data of physicochemical analysis, in order to achieve a high efficiency of chromium oxide
catalytic systems in the reaction of propane dehydrogenation in the presence of CO2, it is
necessary to achieve a balance of Cr6+ and Cr3+ species.

Previously, we investigated the Cr/SiO2 (Acros) catalyst in the propane dehydrogena-
tion reaction in the presence of CO2. The reaction was also carried out with a minimal
excess of carbon dioxide relative to propane 2:1 and a catalyst weight of 1 g [26]. A compar-
ison of the activities of catalysts with a Cr content of 5% for MCM-41 and the SiO2 (Acros)
support with a specific surface area of 557 m2/g (5 Cr/SiO2) is presented in Figure 10. The
propane conversion for the 5 Cr/MCM-41 catalyst was lower than the conversion for the
5 Cr/SiO2 catalyst, but the propylene selectivity for the MCM-41 supported catalysts was
significantly higher than for the SiO2-supported catalysts.
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Figure 10. Propane conversion and propylene selectivity at 650 ◦C for 5 Cr/MCM-41 and 5 Cr/SiO2

catalysts. C3H8:CO2 = 1:2, total flow rate = 30 cm3·min−1, mcat = 1 g.

The stability of the 5 Cr/SiO2, 5 Cr/MCM-41 and 9 Cr/MCM-41 catalysts in the
reaction of propane dehydrogenation in the presence of CO2 at a temperature of 650 ◦C
was studied (Figure 11).

It should be noted that the 5 Cr/MCM-41 catalyst showed better stability. The decrease
in its selectivity for propylene was 20% with continuous operation of the catalyst for 10 h,
while, for the 9 Cr/MCM-41 catalyst, the decrease in propane conversion was ~45% over
the same time. In the case of propylene selectivity, 5 Cr/MCM-41 also showed slightly
better stability than 9 Cr/MCM-41. In 7 h, the selectivity also decreased ~ 20% and then
did not change. The propane conversion on the 5 Cr/SiO2 catalyst decreased by 60%, while
the propylene selectivity decreased by only ~10% in the first 2–3 h, and then remained at
the level of 50%. The decrease in catalyst activity was largely associated with the formation
of coke on its surface, as well as with the formation of inactive chromium particles and
the destruction of the mesoporous support structure [32]. To determine the cause of
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deactivation, the 5 Cr/MCM-41 catalyst was regenerated after the reaction at 800 ◦C in an
air flow for 4 h.
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Figure 11. Propane conversion (a) and selectivity for propylene (b) for the 5 Cr/MCM-41
and 9 Cr/MCM-41 catalysts over time at a temperature of 650 ◦C. C3H8:CO2 = 1:2, total flow
rate = 30 cm3·min−1, mcat = 0.5 g.

The sample after regeneration had a slightly reduced propane conversion and selec-
tivity for propylene, as well as a slightly reduced stability over the entire time interval
(Figure 12), associated either with the formation of inactive particles or with the destruction
of the mesoporous structure of the catalyst [32].
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Figure 12. Performance after regeneration: propane conversion (a) and selectivity for propylene
(b) for the 5 Cr/MCM-41 catalyst over time at a temperature of 650 ◦C. C3H8:CO2 = 1:2, total flow
rate = 30 cm3·min−1, mcat = 0.5 g.

Table 3 shows a comparison of the most efficient catalytic system 5 Cr/MCM-41 with
literature data.

Table 3. Comparison of the catalytic activity of Cr-containing catalysts in the ODP-CO2 reaction.

Material Experimental
conditions T, ◦C Conversion of

C3H8, %
Selectivity to

C3H6, %
Productivity, g

(C3H6)·kgcat−1·h−1 Source

5 Cr/MCM-41 C3H8:CO2 (1:2) 650 21.9 64 315 This work *
9 Cr/MCM-41 C3H8:CO2 (1:2) 650 24 70 378 This work *
Cr/MCM-41 C3H8:CO2 (1:3.6) 550 16.7 90 286 [46]
5%Cr/SiO2 C3H8:CO2 (1:3.6) 600 17.7 100 202 [47]
5%Cr/SiO2 C3H8:CO2 (1:3.6) 650 27 85 262 [47]
CrOx/SiO2 C3H8:CO2 (1:7) 600 27.7 90.8 282 [48]

* C3H8:CO2 = 1:2, total flow rate = 30 cm3·min−1, mcat = 0.5 g.
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3. Materials and Methods
3.1. Catalyst Preparation

The recipe for the synthesis of the MCM-41 carrier was presented elsewhere [49].
For the preparation of the MCM-41 material, the following reagents were used: 9.7 g of
n-hexadecyltrimethylammonium bromide (C16 TMABr) (Acros Organics, Geel, Belgium),
170 mL of distilled water, 68 mL of a 25% aqueous ammonia solution(Limited Liability Com-
pany “Component-Reartiv” Moscow, Russian Federation), 283 mL of ethanol (Open Joint
Stock Company "Medkhimprom", Moscow, Russian Federation), and 17.3 g of tetraethy-
lorthosilicate (TEOS) (Otto chemie pvt ltd, Mumbai, India). The molar ratio of the reagents
used for the synthesis was 1 TEOS:11 NH3:58 EtOH:0.32 C16 TMABr:144 H2 O. Supported
catalytic systems were prepared by the incipient wetness impregnation method described
earlier [26]. Thus, the series of samples were obtained and marked as XCr/MCM-41, where
X = 1, 3, 5, 7, 9 wt.% of Cr (actually the samples contain the forms of CrOx).

3.2. Catalyst Characterization

The characteristics of the porous structure of the catalysts were determined on the
basis of nitrogen adsorption isotherms measured at −296 ◦C using an ASAP 2020 Plus unit
(Micromeritics Instrument Corporation, Norcross, GA, USA). Prior to measurements, the
samples were evacuated at 350 ◦C for 3 h. The specific surface area was calculated according
to the BET method, and the pore size distribution was found from the desorption branch of
the isotherm via the Barrett–Joyner–Halenda (BJH) analysis. The volume of micropores was
determined as the difference between the total pore volume and the cumulative volume of
mesopores at 2 nm in the BJH method.

The morphology, particle size, and elemental composition of the catalyst surface
were studied by scanning electron microscopy (SEM) using a LEO EVO 50 XVP electron
microscope (Carl Zeiss, Oberkochen, Germany) supplied with an INCA Energy 350 energy-
dispersive spectrometer (Oxford Instruments, Abingdon, Oxfordshire, England). The
device allowed setting the energy of electrons in the range of 0.2–30 kV. The cathode was a
heating element made of lanthanum hexaboride LaB6.

Thermal analysis was carried out with a combination of thermogravimetry, differential
thermogravimetry, and differential thermal analysis (TG-DTG-DTA) using a Derivatograph-
C unit (MOM Szervin Kft, Budapest, Hungary). Each sample was placed into an alundum
crucible and heated from 20 to 600 ◦C in air at the rate of 10 ◦C/min. α-Al2 O3 was used as
a standard; the weight of the samples was 100 mg.

X-ray diffraction (XRD) patterns of the samples were obtained with a DRON-2
diffractometer (CuKα radiation) (Scientific and Production Enterprise “Burevestnik”, Saint-
Petersburg, Russian Federation). The samples were scanned in the 2θ range of 20◦–70◦ at
a rate of 1◦/min. X-ray diffraction analysis at small angles was performed using an ARL
X’TRA4 diffractometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a
Theta-Theta goniometer (CuKα radiation, 40 kV, 40 mA) and an energy-dispersive detector.
X-ray diffraction patterns were recorded by scanning at a speed of 0.75◦/min in the range
of 0.5◦ < 2θ < 6◦. In order for the direction of the scattered beams to differ slightly from the
direction of the incident beam, a special wedge-cutter of the incident beam was used. The
width of the leaf slits was reduced to 0.1 mm.

Temperature-programmed hydrogen reduction (TPR-H2) was performed using a semi-
automatic setup supplied with a thermal conductivity detector calibrated by reduction of
CuO (Aldrich-Chemie GmbH, 99+%, Steinheim, Germany) and a mixture of CuO + MgO
(to be calibrated at low metal contents). The presented TPR profiles were normalized per
1 g of the material. The conditions of TPR-H2 measurements were described in more detail
elsewhere [50].

Diffuse-reflectance UV–Vis spectra were measured using a Shimadzu UV-3600 Plus
spectrophotometer (Shimadzu Corporation, Kyoto, Japan) equipped with an ISR-603 inte-
gration sphere. The spectra were recorded at 200–800 nm at room temperature, and BaSO4
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was used as a standard and diluent. The weight of the catalysts was 0.1 g, and that of
BaSO4 was 0.5 g. The UVProbe software was used to process the spectra.

3.3. Catalytic Activity Tests

The dehydrogenation of propane to propylene in the presence of CO2 was investigated
in the temperature range 550–700 ◦C at an atmospheric pressure in a flow catalytic setup
with a steel reactor with an inner diameter of 4 mm. The gas mixture C3H8 + CO2 was
fed into the reactor in a volumetric ratio of 1:2; the total flow rate of the gas mixture was
30 mL/min. The catalyst loading was 1 g. When studying the stability of the samples, the
mass of the catalyst was 0.5 g. The analysis of the reaction products was carried out using a
Chromatec-Crystal 5000 gas chromatograph equipped with a thermal conductivity detector,
M ss316 3 m × 2 mm columns, Hayesep Q 80/100 mesh, and CaA molecular sieves. The
temperature of the column was ramped according to the program described in [51]. The
quantitative analysis was carried out using the absolute calibration method.

The C3H8 conversion and C3H6, C2H6, C2H4, and CH4 selectivities were calculated
using the following formulas:

Conversion of propane (%) =
introduced propane − residual propane

introduced propane
× 100, (2)

Selectivity of propylene (%) =
produced propylene

introduced propane − residual propane
× 100, (3)

Selectivity of ethane (%) =
2/3 produced ethane

introduced propane − residual propane
× 100, (4)

Selectivity of ethylene (%) =
2/3 produced ethylene

introduced propane − residual propane
× 100, (5)

Selectivity of methane (%) =
1/3 produced methane

introduced propane − residual propane
× 100. (6)

4. Conclusions

After supporting 1% Cr onto the MCM-41 support, the pore volume and the pore
diameter decreased. With a further increase in the chromium content to 9%, these values
almost did not change. The particles of synthesized MCM-41 had a spherical shape with an
average diameter of ~0.8 µm. Chromium oxide particles were evenly distributed over the
surface of the support. When the chromium content in the catalysts was 5% or more, the
appearance of larger non-spherical chromium particles located at the boundaries of MCM-
41 particles was observed. This was especially noticeable on catalysts 7/MCM-41 and
9/MCM-41. The diffraction pattern of the 5–9 Cr/MCM-41 catalysts contained diffraction
lines corresponding to the crystalline phase of α-Cr2O3. It was shown that chromium was
present in the states of Cr3+ and Cr6+ in the samples of supported Cr/MCM-41 catalysts
with a Cr content of 1, 3, 5, 7, and 9 wt.%. The highest selectivity for propylene in the
reaction of oxidative dehydrogenation of propane in the presence of carbon dioxide was
observed for the 5 Cr/MCM-41 sample: 85% at a temperature of 650 ◦C with a conversion
of 21%. At the same time, the propylene selectivity for the 5 Cr/MCM-41 sample was
~1.5 times higher than that for the 5 Cr/SiO2 catalyst. The 5 Cr/MCM-41 showed good
enough stability. The decrease in its selectivity for propylene was 20% with continuous
operation of the catalyst for 10 h.
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