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SM1. Calculating effective diffusivities in porous catalysts 

In this work, effective diffusivities were calculated using two different approaches to evaluate their impact on 

the analytical effectiveness factor. The first approach is based on the Rios, et al., [1] model and takes into 

consideration mixture non-idealities using activity coefficients, whereas the second assumes mixtures are ideal 

and is based on Bird, et al., [2] equations. The equations associated with each model are briefly summarized in 

this section.  

SM1.1. Non-ideal effective diffusivities model equations (Rios, et al., [1]) 

Given a mixture with 𝑛 components, the effective diffusivities in solution, 𝐷 , , of the first 𝑛 1 species are 

given by:  
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where 𝐽  is the molar diffusion flux vector of component 𝑗 and 𝐷  represents the 𝑖𝑗 entry of the inverse of 

matrix 𝐷 , defined as the product of two matrices:  
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where 𝐵  and 𝐵  are the diagonal and off-diagonal elements of 𝐵 , respectively, Γ  is the 𝑖𝑗 element of Γ , 𝛾  

is the activity coefficient of 𝑖, 𝑥  is the liquid phase mole fraction of 𝑖, and Ð  is a Maxwell–Stefan diffusion 

coefficient.  

The effective diffusivity of the 𝑛  component is calculated with:  
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SM1.2. Ideal effective diffusivities model equations 

For ideal solutions, Bird, et al., [2] proposed the following equations for the effective diffusivities of a species 

𝑖 in a mixture of 𝑛 components: 
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where 𝑁  is the molar flux of 𝑖 and 𝑁  is the total molar flux. This expression can be derived from the equations 

presented in SM1.1. by setting Γ 𝐼  (identity matrix) and manipulating resulting expressions. 

 

SM1.3. Case studies specifics  

Given the relationship between 𝑁  and 𝐽 , i.e., 𝑁 𝐽 𝑥 𝑁 , the required ratios 𝐽 /𝐽  to calculate effective 

diffusivities can be computed from the reaction stoichiometry. 

 Case 1—esterification of ethanol with acetic acid (A B ⇌ C D): since the sum of stoichiometric 

coefficients is zero, 𝑁 0, which yields 𝑁 𝐽 . Then, the ratios 𝐽 /𝐽  are independent of the mixture 

composition and are given by:  
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 Case 2—acetal synthesis (2 A B ⇌ C D): using the reaction stoichiometry, it is possible to express 

the molar flux of each component in terms of the molar flux of a reference species 𝐴. Knowing that 

𝑁 0.5 𝑁 , 𝑁 0.5 𝑁  and 𝑁 0.5 𝑁  yields 𝑁 0.5 𝑁 , thus:  

𝐽 𝑁 1 0.5𝑥  (SM6a) 
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 Then, the following matrix of molar diffusion fluxes can be written:  
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For binary mixtures at infinite dilution, the Maxwell–Stefan diffusion coefficient is equal to the binary diffusion 

coefficient, Ð 𝐷 . By estimating 𝐷  for each 𝑖𝑗 pair, the Ð  for the desired composition is obtained with 

the following mixing rule:  

Ð Ð
/

Ð
/

 (SM7) 

In this work, the Wilke–Chang equation [3] was employed to calculate 𝐷 .  

 

SM2. Calculating equilibrium concentrations 

The thermodynamic equilibrium constant, 𝐾, is given by: 

𝐾 𝑎 𝑥 𝛾 ≡ 𝐾  𝐾  (SM8) 

where 𝜈  is the stoichiometric and 𝑎  the activity of component 𝑗, which for a liquid phase reaction is defined 

as 𝑎 𝛾 𝑥 , in which 𝑥  and 𝛾   represent the mole fraction and the activity coefficient of component 𝑗, 

respectively, and subscript “eq” denotes equilibrium.  

The value of 𝐾 at the working temperature is obtained from thermodynamic data using the Van’t Hoff equation: 
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  (SM9) 

with ln 𝐾 ∆𝐺° / 𝑅 𝑇  at 𝑇  = 298.15, where 𝑅  is the universal gas constant, 𝐶𝑝  is the constant 

pressure heat capacity of component 𝑗, and ∆𝐻°  and ∆𝐺°  are the standard enthalpy and the Gibbs free energy 

of reaction, respectively. From equation (SM8), the value of 𝐾 depends only on temperature, but  𝐾  is 

composition-dependent, so the calculation of 𝐾  requires an iterative procedure, described below: 

1. In the first iteration, provide an estimate of 𝐾 , such as 𝐾 1; 

2. Calculate 𝐾 𝐾/𝐾 ; 

3. Calculate the equilibrium conversion, 𝑋 , by solving 𝐾 ∏ 𝑥 , with: 

𝑥 𝑥 𝜈 𝑥 𝑋  (SM10) 

in which 𝑥  is the initial mole fraction of component 𝐴 (at 𝑡 0).  

For the type I reaction (𝐴 𝐵 ⇌ 𝐶 𝐷) with an equimolar feed of reactants, this step is simplified to:  
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1 𝐾
 

                                                                    (SM11) 

4. Calculate the equilibrium mole fractions using equation (SM10);  

5. Compute the activity coefficients of each component, 𝛾 , at the calculated composition, and then 

calculate 𝐾 ∏ 𝛾  using an appropriate activity coefficient model (e.g., the UNIFAC model [4]); 

6. Using the previously calculated 𝐾 , repeat steps 2—5 until the algorithm converges, i.e., the variation 

in 𝑋  between two consecutive iterations is smaller than a specified tolerance:  

Δ𝑋 tolerance (SM12) 

7. Once the method has converged, 𝑋  is used to calculate 𝐶  directly with:  

𝐶 𝐶 1 𝑋  (SM13) 

which also enables the determination of 𝐾  using the equilibrium mole fractions. 

SM3. Wet Amberlyst-15 resin porosity calculation 

In the first case study regarding the esterification of ethanol with acetic acid, the Amberlyst-15 catalyst particles 

were not dried before being used for the reaction. Consequently, the porosity of the wet resin might differ from 

that of the dry resin, which is typically the value reported in the literature. To account for this, the porosity of 

wet Amberlyst-15 was estimated with its water-swollen properties given by Badia et al. [5], who obtained them 

using the Inverse Steric Exclusion Chromatography (ISEC) technique. This technique is a variation on the size 

exclusion chromatography capable of providing information on the microporous structure of a swollen polymer 

[6]. The porosity is then given by:  
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where 𝑉 0.765 cm³/g is the specific volume of the swollen polymer, 𝑉 0.616 cm³/g is the volume of 

the meso-macropores in water-swollen state, 𝜌 1.416 g/cm³ is the skeletal density of the dry resin. 

Replacing these values (provided by Badia et al. [5]) in equation SM14 yields 𝜀 0.489.  
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Nomenclature 

𝑎  activity of component j 

𝐶  concentration of component j, mol/dm³ 

𝐶𝑝   constant pressure specific heat capacity of component j, J/(mol K) 

𝐷  diffusion coefficient, dm²/min 

Ð  Maxwell-Stefan diffusion coefficient, dm²/min 

𝐺  Gibbs free energy, J/mol 

𝐻  enthalpy, J/mol 

𝐽  molar diffusion flux, mol/(dm² min) 

𝐾 thermodynamic equilibrium constant 

𝐾  defined in equation (SM8) 

𝐾  defined in equation (SM8) 

𝑁  molar flux, mol/(dm² min) 
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𝑅   universal gas constant, J/(mol K) 

𝑇  temperature, K 

𝑡 time, min 

𝑉   volume of swollen polymer, cm³/g 

𝑉   volume of pores, cm³/g 

𝑋  equilibrium conversion 

𝑥  liquid phase mole fraction of component 𝑗 

Greek letters 

𝛾 activity coefficient 

Δ variation of a thermodynamic property 

𝜈  stoichiometric coefficient of component 𝑗 

𝜌   skeletal density, g/cm³ 

Subscripts 

ef effective 

eq equilibrium 

in initial 

𝑅  reaction 

Ref  reference 

Superscripts 

inv inverse 

mix mixture 

∞ infinite dilution 

°  standard conditions (1 bar, 298.15 K) 

 

 


