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Abstract: Water–gas shift (WGS) is an industrial process to tackle CO abatement and H2 upgradation.
The syngas (CO and H2 mixture) obtained from steam or dry reformers often has unreacted (from
dry reforming) or undesired (from steam reforming) CO2, which is subsequently sent to downstream
WGS reactor for H2 upgradation. Thus, industrial processes must deal with CO2 and H2 in the
reformate feed. Achieving high CO2 or H2 selectivities become challenging due to possible CO and
CO2 methanation reactions, which further increases the separation costs to produce pure H2. In this
study, M/Co3O4-ZrO2 (M = Ru, Pd and Pt) catalysts were prepared using sonochemical synthesis.
The synthesized catalysts were tested for WGS activity under three feed conditions, namely, Feed
A (CO and steam), Feed B (CO, H2 and steam) and Feed C (CO, H2, CO2 and steam). All the
catalysts gave zero methane selectivity under Feed A conditions, whereas the methane selectivity
was significant under Feed B and C conditions. Among all catalysts, PtCZ was found to be the best
performing catalyst in terms of CO conversion and CO2 selectivity. However, it still suffered with
low but significant methane selectivity. This best performing catalyst was further modified with
an alkali component, potassium to suppress undesirable methane selectivity. All the catalysts were
well characterized with BET, SEM, TEM to confirm the structural properties and effective doping
of the noble metals. Additionally, the apparent activation energies were obtained to showcase the
best catalyst.

Keywords: WGS; reformate feed; methane suppression; noble metal; Co3O4; ZrO2; activation energy

1. Introduction

The development of efficient and zero emission vehicles is a major challenge for
automobile industries. It is also challenging for process industries to generate high purity
H2 for proton exchange membrane fuel cells (PEMFC) to further address the clean energy
requirements. H2 production route map in the process industries have series of steps such
as reforming, water–gas shift, preferential CO oxidation and pressure swing adsorption
to capture CO2. Among these steps, water–gas shift reaction is a route for hydrogen
upgradation using the reformate feed obtained from reformers [1,2]. Using H2 as feed,
the PEMFCs can generate clean energy. However, PEMFCs demand high purity H2 with
extremely low CO impurities (less than 10 ppm) and other hydrocarbons to avoid the
poisoning of Pt membrane. Thus, all the catalysts in the downstream processes after
reforming must be designed to maximize the H2 purity. Typically, the dry reformate gas
mixture contains H2, CO at high compositions, and the other components such as CO2,
unreacted hydrocarbons at low compositions [1]. The CO composition is minimized with
water–gas shift (WGS) reaction by facilitating a reaction with superheated steam (often
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in excess quantity). The typical WGS reaction for upgrading H2 and minimizing CO is
as follows,

CO + H2O � CO2 + H2·∆H298K = −41 kJ mol−1 (1)

Industries implement two stages for converting CO into CO2 from H2 rich feed by
conducting high temperature and low temperature water–gas shift (HTS and LTS). HTS
operates in a temperature range of 350–500 ◦C to reduce CO composition below 4%,
whereas LTS operates in the range of 150–300 ◦C to bring down the CO compositions below
0.2% [1,3]. These two stages (HTS and LTS) significantly improve the H2 composition. After
that, CO2 will be removed using pressure swing adsorption to obtain pure H2.

The industrial catalysts used for HTS and LTS are Fe-Cr oxides and Cu-ZnO-Al2O3 [1,4–7].
Fe2O3/Cr2O3/CuO is used as commercial catalyst for high temperature water gas shift
reaction in which Cr becomes carcinogenic as it is oxidized to Cr6+ from Cr3+ [8]. To
overcome these problems, various metal oxide catalysts with noble metal impregnation
or substitution were developed. In recent years, a significant use of reducible supports
(such as ceria) in conjunction with noble metals for LTS was observed [9]. With the usage
of reducible oxides, the interplay of lattice oxygen vacancies and active metal sites in the
reaction mechanism is significant. Oxygen vacancies play a crucial role in the adsorption of
water and/or CO molecule, active metal sites can enhance the activation of the molecules
leading to the formation of intermediates such as carboxyl and formates [10]. CeO2 is
one of such metal oxides that can function as oxygen buffer under exhaust conditions by
releasing/acquiring oxygen through redox processes involving the Ce4+/Ce3+ couple [11].
Senanayake et al. [12] also tested ceria alone as a catalyst and showed that reduced Ce3+

and oxygen vacancies contribute to the production of hydrogen through the reaction. Other
than CeO2, low temperature water–gas shift is a well explored reaction on various reducible
and non-reducible catalysts such as TiO2, ZrO2 and Al2O3 [13–15]. The effect of noble
metals and transition metals on reducible oxides such as ceria were widely studied [16–19].
Pt- and Au-based catalysts on other reducible catalysts showed high catalytic activity for
LTS, whereas Ni- and Fe-based catalysts were reported for HTS [6,20–23]. The water–gas
shift activity of a support majorly depends on the reducible nature of the catalysts, strong
metal support interaction (SMSI), oxygen storage capacity (OSC) and surface nature of the
support [24–27]. By acquiring the mentioned properties, the high catalytic activity and
stability can be achieved.

Mierczynski et al. [28] studied the activity of monometallic (Pd, Ru, Ni and Cu) cat-
alysts supported on ZnAl2O4 spinel support. While Ru catalysts showed the highest
conversion at high temperature, the Cu catalysts were shown to be good at low temper-
atures. Pd catalysts showed poor performance due to intermetallic PdZn compounds at
intermediate temperatures due to interaction between the metal and the support. The
lowest activity was observed for Ni catalysts because only a small amount of nickel species
dispersed on the support surface. The terminal OH groups bound to active metal of the
ZnAl2O4 spinel reacted with carbon monoxide and formed formate bridges and obtained
H2 and CO2 as the products. Hu et al. [29] modified the Pd-based catalysts with Zn and
showed that addition of Zn weakened the electron-accepting ability of the catalyst and in-
creased the electron-donating ability and promoted the LTS activity. The reaction pathway
is an associative mechanism through COOH intermediate, which is same as the Pd catalyst.

The effect of the noble metal Pt on ceria support was also shown by Jacobs et al. [30].
In this study, Pt facilitated partial reduction in ceria and promoted formate decomposition
through enhanced C-H bond rupture rate, and ceria helped bridging the OH groups such
that formates could be formed upon CO adsorption. Mandapaka et al. [10] studied the
WGS over Pt supported on ceria. An associative carboxyl mechanism was proposed. The
rate limiting step was considered as the dissociation of surface carboxyl species over Pt
to give surface bound CO2 and H. DFT studies for ceria catalyst suggested the reaction
mechanism steps as reversible adsorption of CO on ionic platinum site and of H2O on
the surface vacancy on ceria. The adsorbed H2O then disintegrates to give OH surface
species, which then react with adsorbed CO species to form surface COOH and H [27].
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The COOH surface species then disintegrate to form CO2 and H. The products then des-
orb and complete the catalytic cycle with 90% conversion at 250 ◦C. It was also shown
that the use of noble metal catalysts supported on zinc and platinum co-doped ceria can
convert the WGS into a single-stage process. Both metal and support were found to be
equally effective in the reaction mechanism in which CO adsorbs on the Pt site while
H2O is adsorbed and activated on the ceria site. Shinde et al. [31] studied Pd-modified
Ni/CeO2 to prevent CO methanation while improving H2O dissociation. Vignatti et al. [32]
showed that Pt/CexZr1−xO2 catalysts with x ≥ 0.5 were more active than Pt/CeO2 or
Pt/ZrO2 as Zr tends to increase the surface area as well as the reducibility of ceria, while
also increasing the concentration of surface OH groups that are formed on Ce3+ reduced
sites. These terminal OH groups participate in the WGS reaction resulting in an associative
mechanism via formate formation. Ding et al. [33] provided comparative results for Pt
single atoms and Pt nanoparticles as Pt is believed to be an exceptionally active catalyst
for the WGS. It was observed that only Pt nanoparticles showed activity for LTS while the
Pt single atoms on HZSM-5 behaved as spectators due to the strong binding of the CO
molecules. This shows the poisonous effect of CO on Pt atoms. Improvement in perfor-
mance and CO conversion was observed with the lattice substitution. Studies conducted
by Petallidou et al. [34] showed the catalytic activity showed better catalytic performance
with lattice substituted Pt than the impregnation. The performance trend was observed as
Pt/Ce0.9Ti0.2O2−x > Pt/CeO2 > Pt/TiO2.

The variety reducible supports with noble and transition metals as catalysts may
satisfy the requirements for PEMFCs in eliminating entire CO in the gas mixture under
the feed conditions of CO and steam. However, under real conditions, the reformate gas
mixture (from the steam or dry reforming unit) contains CO along with other components
such as CO2, H2 as shown in Scheme 1. This often results in CH4 formation as a side
product, that too in prominent compositions. The WGS catalysts under reformate feed
conditions can result side reactions such as CO and CO2 methanation which decreases the
H2 yield and CO conversion. Thus, the study of catalytic-inhibiting effects of CO2 and H2
in the feed is an interesting aspect for practical applications of WGS.

Providing strong metal support interaction (SMSI) and oxygen storage capacity (OSC)
are merely not sufficient to reduce the methanation. Thus, alkali modifications were
investigated to suppress the methanation affinity. The addition of alkalis (electron donors)
create electron cloud surrounding surface and increases the chemisorption of electron
acceptor species such as CO and O2 and suppresses the chemisorption of electron donor
species such as H2 and olefins [35]. Maneerung et al. [35] showed that LaNiO3 perovskite
materials were not equally effective for HTS under reformate feed conditions. These
catalysts were favorable for methane selectivity through CO2 methanation. However,
methanation was successfully prevented by the addition of K on the perovskite surface
with an optimum of 5 wt% K over La2O3. K occupies the interface between La2O3 and Ni
nanoparticles. K, La2O3 and Ni act as adsorbents for water, CO2 and H2, respectively. K
aids in providing hydroxyl groups to combine with the CO and form HCOO intermediates.
The doped catalyst was found to stable for an operating period of 5 h and resulted in 90%
CO conversion at 350 ◦C. Ang et al. [22] attributed the methanation suppression using
5 wt% K doping on ceria supported nickel (Ni/5K/CeO2) to the inhibition of the formation
of nickel sub-carbonyls. These are precursors for methanation reaction and are prevented
due to the interaction between Ni and K. Additionally, as K is hygroscopic, K was found
to enhance a reduction in CeO2 and promote water dissociation on reduced CeO2 to form
hydroxyl (OH) groups, which dissociate further into adsorbed oxygen that reacts with
adsorbed CO on Ni to form adsorbed carbon dioxide CO2. Ni/5K/CeO2 was found to be
stable for 100 h of time-on-stream condition.

Noble metals such as Pt and Pd were proved to be effective catalysts for the WGS.
Watanabe et al. [36] evaluated the activities of Pd/alkali/Fe2O3 catalysts with different
ratios of alkali/Pd (alkali: Li, Na, K or Cs). The optimum K/Pd molar ratio was found to
be 2, and the reaction proceeded through the redox mechanism using the lattice oxygen,
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which was regenerated by H2O, while reducing the Fe2O3 to Fe3O4. Order of reducibility
of these catalysts was K-impregnated > Cs-impregnated > Na-impregnated > Pd/Fe2O3
≈ Li-impregnated alkali metals such as Na (51.2% conversion), K (83.1% conversion) and
Cs (72.2% conversion) drastically enhanced WGS activity, except for Li-loaded (only 11.5%
conversion) catalyst. The role of alkalis such as K and Na was studied on various reducible
supports [22,29,30].
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This study focuses on the development of thermally stable composite supports using
sonochemical synthesis and the effect of noble metals on WGS activity. A mixed metal
composite support containing reducible Co3O4 and non-reducible ZrO2 was prepared and
the role of noble metals (Pt, Pd and Ru) was investigated for WGS. The catalytic activity
of the M/Co3O4-ZrO2 (M = Pt, Pd and Ru) was studied with three different dry feed gas
mixtures, to investigate the role of H2 and CO2 in the feed on WGS activity. The suppression
of methanation ability under realistic reformate gas feed condition using K as promoter
was also investigated. All the catalysts were characterized with XRD, XPS, TEM, BET and
TPR studies.

2. Results and Discussion
2.1. X-ray Diffraction and BET Measurements

XRD patterns of the synthesized catalysts are shown in Figure 1, which confirmed
the presence of both Co3O4 and ZrO2 phases by comparing with JCPDS database files
00–042–1467 and 00–003–0640, respectively. The CZ composite consisted of cubic Co3O4
(a = b = c = 8.084 Å, space group: Fd-3 m) and cubic ZrO2 (a = b = c = 5.103 Å, space
group: Fm-3 m) phases [37,38]. Monoclinic ZrO2 and cubic CoO phases were possible
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in the synthesis of composites, but these phases were not detected in the synthesized
materials. The most possible prominent peaks associated with metals Pt (111), Pd (111)
and Ru (101) at 39.67◦, 40.42◦ and 44.37◦ were not found from the XRD of PtCZ, PdCZ
and RuCZ. As the doping % was limited to 2%, the detection was not possible from XRD.
However, a slight shift in 2θ values was observed because of the different ionic radius of
metals and variation in lattice parameters [37,38]. This further indicates the possibility of
ionic catalysts, where dopant replaces Co or Zr and bonds with lattice oxygen upon the
nucleation and growth. In KPtCZ, the presence of K was not detectable, but a very small
peak at 39.7◦ corresponding to Pt (111)/PtO2 (101) was noticed. In the synthesis of KPtCZ,
the K impregnation was implemented using reducing agents. Due to the reducing agents,
weakly bound Pt ion in the lattice may diffuse to surface and form PtO2 cluster and it was
possible during K impregnation on PtCZ. Upon investigating XPS analysis, no metallic Pt
was found in KPtCZ and these results were explained in Section 2.4.
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The adsorption–desorption isotherms for all the materials indicated Type II isotherms
(as shown in Figure 2) and offered unrestricted monolayer–multilayer adsorption. Type H3
hysteresis was noticeable for the synthesized catalysts, indicating the possibility of meso-
and micro-porous materials. The specific surface areas, pore volumes, mean pore diameters
and crystallite sizes (using Debye–Scherrer relation) of CZ, PtCZ, KPtCZ, PdCZ and RuCZ
are listed in Table 1. In general, the sharper XRD peaks indicate larger crystallite sizes,
whereas the broader peaks correspond to smaller crystallite sizes. The most intense peak of
ZrO2 (111) at 30.1◦ was merged with Co3O4 (220) at 31.2◦. Thus, the most intense sharper
peak corresponds to Co3O4 (311) at 36.8◦ and was considered for crystallite size using the
Debye–Scherrer equation. Interestingly, the crystallite size of KPtCZ was found to be high
compared to all the materials. On the contrary, its surface area and pore volumes were also
found to be higher. This could be due to the additional chemical reduction step associated
with K impregnation. The chemical reduction was able to create more pores and effective K
dispersion, which led to achieve enhanced surface area and pore volumes (from Figure 2e
and Table 1).
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Table 1. Characteristics of CZ, PtCZ, KPtCZ, PdCZ and RuCZ from BET and XRD analysis.

Catalyst Surface Area,
m2/g

Total Pore
Volume, cm3/g

Mean Pore
Diameter, nm

Crystallite Size,
nm

CZ 34 0.133 15.5 18.1

RuCZ 40 0.150 15.1 20.4

PdCZ 31 0.130 16.9 21.5

PtCZ 33 0.116 13.4 19.8

KPtCZ 74 0.248 13.5 24.2

2.2. Scanning Electron Microscopy and Transmission Electron Microscopy Studies

The scanning electron microscope (SEM) images shown in Figure 3 indicates the fine
and homogenous particles formation with less porosity. The pore volume of KPtCZ was
improved, as shown in Table 1. The elemental analysis using energy dispersive X–ray
diffraction (EDX) analysis of the RuCZ, PdCZ, PtCZ and KPtCZ on Figure 4 confirmed the
presence of dopants of Ru, Pd, Pt and K.
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From Figure 5, ZrO2 and Co3O4 phases were confirmed with HRTEM results by
analyzing fringes of the d–spacing of the particles. The large particles indicate the ZrO2
phase whereas smaller particles were confirmed as Co3O4. The presence of Pt (111), Pd
(111) and Ru (110) was found in the lattice fringes of the particles. The (111), (222), (220)
planes of ZrO2 and (311), (422) planes of Co3O4 were confirmed by analyzing diffraction
rings (Figure 5a–f). Figure 5e,h showed very small clusters of Pt, Pd and Ru dispersed
in a solid solution. The cluster embedded in the support were around 2–3 nm, as shown
in Figure 5e,h,k,n. These clusters shared complete boundary with the support material
due to the substitution. This is an advantageous feature to enhance the metal support
interaction and keep the noble metal isolated at elevated temperatures by avoiding thermal
sintering. The resistance towards sintering and effective dispersion lead to high catalytic
activity. The ionic substitution of Pt and Pd was due to the atomically dispersed Pt, Pd
and Ru in the support, which can oxidize by utilizing bulk oxygen or oxygen vacancies
in the support [39,40]. As the active metals were substituted in the support material,
slight deviations in the interplanar spacing values were possible compared to noble metal
reference data. Figure 5e,k,n shows the HRTEM images of PtCZ, KPtCZ, PdCZ and RuCZ
and the d–spacing of lattice fringes for Pt, PD and Ru were observed as 2.25 Å, 1.94 Å and
2.04 Å, respectively. This d–spacing values were closely matched with the reference Pt
(111), Pd (200) and Ru (100) planes.
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2.3. Catalytic Activity Studies

The synthesized catalysts were subjected to catalytic activity studies under different
feed conditions. To understand the behavior of feed on the surface of CZ composite
catalysts, different feed compositions were maintained. The total flow rate of 100 mL/min
(at NTP) dry gas flow mixed with superheated steam at 150 ◦C and introduced to the
reactor. Dry gas concentrations of CO: N2 = 2%: 98% (Feed A), CO: H2: N2 = 2%: 35%:
63% (Feed B) and CO: H2: CO2: N2 = 2%: 35%: 14%: 49% (Feed C) were maintained in the
catalytic activity studies. The equilibrium analysis was performed by minimizing the Gibbs
free energy under different feed conditions. The Peng–Robinson equation of state was
implemented to assess the real behavior of the gases. From this analysis, both conversions
and selectivities were benchmarked at all operating temperatures under different feeds.
Further, two sets of reactions were implemented. In one set, only WGS reaction was
implemented, whereas in another set, both CO and CO2 methanation were considered
along with WGS.

From the results shown in Figure 6a, it is evident that the role of side reactions was
insignificant for Feed A. The equilibrium conversion at 300 ◦C was 99.92% and 99.94% with
and without side reactions. Though the CO conversions were similar, a significant change
in methane selectivity was noticed due to side reactions. At 300 ◦C, the methane selectiv-
ity was found to be 7.3% with side reactions (shown in Figure 6b), whereas no methane
selectivity was possible in absence of side reactions. Thus, 100% methane selectivities
were obtained for Feed A conditions. Under Feed B (H2 rich stream) and Feed C (H2 and
CO2 rich stream), the higher conversions of CO are possible due to side reactions. From
Figure 6c,e, the CO conversions were found to be 98.7% and 89.3% at 300 ◦C for Feed B and
C in absence of side reactions. Due to CO and CO2 methanation, the equilibrium CO con-
versions were increased to 100% and 99.48% for Feed B and C at 300 ◦C. High methanation
trend was clearly evident from Figure 6d,f as well. For Feed B, the CH4 selectivities can go
up to 100% due to side reactions at temperatures below 325 ◦C, whereas the CH4 selectivity
was found to be 49.4% at 300 ◦C and it decreased with temperature under Feed C. The equi-
librium conversions and selectivities were compared with the experimental data in Table 2
for benchmarking.

Figure 7a shows the catalytic activity of CZ composite under different feed conditions.
CZ composites started showing activity from 220 ◦C and the conversions increased with
temperature. At 300 ◦C, CZ composites showed CO conversion of 16%, 11% and 8% under
different feed conditions (Feed A, B and C). The presence of hydrogen in the feed inhibited
the catalytic activity due to its reduction ability. Additionally, the presence of both H2
and CO2 in feed further decreases the catalytic activity due to blockage of active sites
and allow CO to compete for the adsorption sites [41]. In all three feed conditions, no
methanation was observed below 320 ◦C (from Figure 7b). These experiments provided
information about the role of support (CZ composite) for WGS activity within the range of
180–320 ◦C. The effect of reformate feed condition on RuCZ and PdCZ catalysts is shown
in Figure 7c–f. The CO conversions greater than 95% were observed at 320 ◦C in both
Feed A and Feed B conditions for RuCZ, whereas under Feed C condition of CO2 and H2
rich feed, the CO conversions increased to a maximum of 84% at 300 ◦C and continued
to decrease as the temperature rose. Interestingly, the methane selectivity was found to
be very high prominent under both Feed B and C conditions. For instance, at 320 ◦C, the
methane selectivity was found to be 38% and 47%, respectively, under both Feed B and
Feed C conditions. Under Feed C condition, the methane selectivity was continued to
increase up to 77% at 400 ◦C, indicating the methanation ability of the Ru active sites in a
catalyst. This could be due to CO2 methanation resulted from CO2 rich feed. It indicates
that Ru-based catalysts are not potential candidates for suppressing methanation in water–
gas shift reaction under reformate feed and our results are in line with Utaka et al. [42] At
320 ◦C, PdCZ was able to achieve 47%, 73% and 56% of CO conversions for Feed A, B and
C, as seen in Figure 7e. These conversions were significantly lower than RuCZ catalyst.
Especially under Feed B condition, the CO conversions were high compared to other feed
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conditions. This was due to high affinity of Pd in dissociating H2 to atomic hydrogen [37].
However, the atomic hydrogen was more prone to form methane, the methane selectivities
were found to be significantly higher in 220–440 ◦C. The maximum conversions of 96%
at 400 ◦C and 94% at 360 ◦C were observed on PdCZ catalysts under Feed A and Feed B
conditions. The methanation was negligible under Feed A condition but it is significant in
other cases. Methane formation was even observed at low temperatures of 220 ◦C under
both Feed A and B conditions. From these studies, PdCZ was not an active catalyst for
WGS under both reformate and pure feed conditions. Additionally, it was found to have
poor methane suppression ability.
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Figure 7. Conversion of CO, methane and CO2 selectivities with temperature under different feed
conditions with (a,b) CZ, (c,d) RuCZ, (e,f) PdCZ, (g,h) PtCZ and (i,j) KPtCZ catalysts. Dashed
line indicates the equilibrium conversion considering WGS, CO and CO2 methanation reactions.
(Reaction Conditions: 150 mg loading, 1 cm bed length, Dry gas flowrate at NTP: 100 mL min−1,
1 atm, Water flowrate at NTP: 0.05 mL min−1, Steady state operation for 30 min at each temperature,
dry gas composition (in vol%)–CO: N2 = 2:98 (Feed A), CO: H2: N2 = 2:35:63 (Feed B) and CO: H2:
CO2: N2 = 2:35:14:49 (Feed C)).

Figure 7g shows the role of Pt for WGS activity under all feed conditions. With PtCZ
catalysts, the WGS activity was observed even at 180 ◦C, unlike CZ composite catalysts that
showed minimum activity at 220 ◦C. A 99% CO conversion was observed at 280 ◦C under
Feed A condition. However, the CO conversion of 95% and 56% were observed at 300 ◦C
under Feed B and C conditions. These conversions were exceptionally higher than PdCZ
under all feed conditions, even higher than RuCZ catalyst except for Feed C condition. The
presence of H2 and CO2 in feed inhibited the catalytic activity and allowed unfavorable
side reactions such as methanation to occur. A maximum of 26% of methane selectivity was
observed at 300 ◦C, whereas it was limited to 16% under Feed B condition. Like palladium,
Pt is also an excellent catalyst for H2 dissociation into atomic hydrogen [37]. Thus, the
selectivity towards methane was significant, but it was found to be lower compared to
PdCZ as well as RuCZ. For the application of PEMFC, the H2 purity must be high with
permissible concentrations of both CO and CH4 [43]. Thus, minimizing methanation is
essential in the WGS step. The catalysts offering methanation activity were not suitable
for WGS to target PEMFC application. As PtCZ was found to be the best candidate among
RuCZ and PdCZ in achieving high CO conversions and low methane selectivities, a further
surface modification on catalyst was performed on PtCZ using K impregnation.

The impregnation of K on PtCZ catalyst suppressed methanation and allowed high
CO conversions under all feed conditions, as shown in Figure 7i. ~100% CO conversion
and rate of 9.09 µmol g−1 s−1 was observed at 300 ◦C under Feed A condition, whereas 98%
and 93% (8.9 and 8.45 µmol g−1 s−1) were observed under both Feed B and C conditions.
The structural features of high surface area and pore volume also complimented its high
catalytic activity. The catalytic activity in the presence of H2 and CO2 was found to be
higher than the feed condition B in the presence of H2 in feed. Interestingly, methanation
was found to be negligible and methane selectivity of <4% was observed with KPtCZ
catalyst under Feed B and C conditions and, like all other catalysts, no methane selectivity
was observed under Feed A. A similar behavior was even observed in the case of WGS
under H2 rich feed as well as realistic reformate feed conditions, thus promoting the
undesired methanation by utilizing H2 activation. Promoting PtCZ catalyst with K offers
electron density on catalysts surface, such a way that to increase the chemisorption affinity
towards electron acceptor species such as CO and O2 [44]. The alkali promoter further
suppresses the chemisorption affinity of electron donor species such as H2 [45]. The catalyst
performance in comparison with literature and equilibrium data is shown in Table 2. KPtCZ
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alone was close to the equilibrium CO conversion and minimum CH4 selectivity at 300 ◦C,
this indicates KPtCZ as the best candidate for WGS even under reformate feed conditions.
All the experimental methane selectivities were found to be well below the maximum
selectivity obtained from equilibrium studies.

Table 2. Literature comparison for water–gas shift studies.

Catalyst Feed Details Method of
Synthesis

Temperature,
◦C GHSV, h−1

% Conversion of
CO and % CH4,

CO2
Selectivity

Reaction
Rate,

µmol g−1

s−1

Ref.

Mn2.94Pt0.06O4-ö

CO:N2 = 2:98 vol %
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.1 mL/min
100 mg catalyst

Sonochemical 250 48,000
(dry basis)

XCO = 100%
SCH4 = 0

SCO2 = 100%
12.24 [46]

Ti0.84Pt0.01Fe0.15O4-ö

CO:N2 = 2:98 vol %
Flowrate at NTP: 100 mL/min

Water vapor flowrate at
150 ◦C = 55 mL/min

300 mg catalyst

Sonochemical 280 48,000
(dry basis)

XCO = 56%
SCH4 = 0

SCO2 = 100%
2.59 [47]

1% Pt/Ceria CO:H2O:H2:N2 = 1.5:50:40:8.5 vol %
300 mg catalyst

Incipient
wet impreg-

nation
325 -

XCO = 56%
SCH4 = -
SCO2 = -

- [48]

Pd/Ce0.83Zr0.15O2

CO:CO2:H2:N2 = 2:10:40:48 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.1 mL/min
500 mg catalyst

Solution
combustion 250 95,000

(dry basis)

XCO = 94%
SCH4 = -
SCO2 = -

- [49]

Ce0.93Zn0.05Pt0.02O2-ö

CO:N2 = 2:98 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
200 mg catalyst

Sol-gel 300 48,000
(dry basis)

XCO = 94%
SCH4 = -
SCO2 = -

8.33 [27]

RuCZ (Feed A)

CO:N2 = 2:98 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
150 mg catalyst

Sonochemical 320 48,000
(dry basis)

XCO = 92%
SCH4 = 0%

SCO2 = 100%
8.36 Present

Study

RuCZ (Feed B)

CO:H2:N2 = 2:35:63 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
150 mg catalyst

Sonochemical 320 48,000
(dry basis)

XCO = 96%
SCH4 = 37%
SCO2 = 63%

8.72 Present
Study

RuCZ (Feed C)

CO:H2:CO2:N2 = 2:35:14:49 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
150 mg catalyst

Sonochemical 320 48,000
(dry basis)

XCO = 84%
SCH4 = 47%
SCO2 = 53%

7.63 Present
Study

PdCZ (Feed A)

CO:N2 = 2:98 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
150 mg catalyst

Sonochemical 320 48,000
(dry basis)

XCO = 47%
SCH4 = 0%

SCO2 = 100%
4.27 Present

Study

PdCZ (Feed B)

CO:H2:N2 = 2:35:63 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
150 mg catalyst

Sonochemical 320 48,000
(dry basis)

XCO = 73%
SCH4 = 18%
SCO2 = 82%

6.63 Present
Study

PdCZ (Feed C)

CO:H2:CO2:N2 = 2:35:14:49 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
150 mg catalyst

Sonochemical 320 48,000
(dry basis)

XCO = 56%
SCH4 = 13%
SCO2 = 87%

5.09 Present
Study

PtCZ (Feed A)

CO:N2 = 2:98 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
150 mg catalyst

Sonochemical 300 48,000
(dry basis)

XCO = 100%
SCH4 = 0%

SCO2 = 100%
9.09 Present

Study

PtCZ (Feed B)

CO:H2:N2 = 2:35:63 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
150 mg catalyst

Sonochemical 300 48,000
(dry basis)

XCO = 96%
SCH4 = 17%
SCO2 = 83%

8.72 Present
Study

PtCZ (Feed C)

CO:H2:CO2:N2 = 2:35:14:49 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
150 mg catalyst

Sonochemical 300 48,000
(dry basis)

XCO = 57%
SCH4 = 26%
SCO2 = 74%

5.18 Present
Study

KPtCZ (Feed A)

CO:N2 = 2:98 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
150 mg catalyst

Sonochemical 300 48,000
(dry basis)

XCO = 100%
SCH4 = 0%

SCO2 = 100%
9.09 Present

Study

KPtCZ (Feed B)

CO:H2:N2 = 2:35:63 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
150 mg catalyst

Sonochemical 300 48,000
(dry basis)

XCO = 98%
SCH4 = 4%

SCO2 = 96%
8.9 Present

Study

KPtCZ (Feed C)

CO:H2:CO2:N2 = 2:35:14:49 vol%
Flowrate at NTP: 100 mL/min

Water flowrate at NTP = 0.05 mL/min
150 mg catalyst

Sonochemical 300 48,000
(dry basis)

XCO = 93%
SCH4 = 3.3%

SCO2 = 96.7%
8.45 Present

Study
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Table 2. Cont.

Catalyst Feed Details Method of
Synthesis

Temperature,
◦C GHSV, h−1

% Conversion of
CO and % CH4,

CO2
Selectivity

Reaction
Rate,

µmol g−1

s−1

Ref.

Feed A
CO:N2 = 2:98 vol%

Flowrate at NTP: 100 mL/min
Water flowrate at NTP = 0.05 mL/min

No Catalyst 300 -

(with WGS alone)
XCO = 99.94%

SCH4 = 0%
SCO2 = 100%
(with side
reactions)

XCO = 99.92%
SCH4 = 7.3%

SCO2 = 92.7%

- Equilibrium

Feed B
CO:H2:N2 = 2:35:63 vol%

Flowrate at NTP: 100 mL/min
Water flowrate at NTP = 0.05 mL/min

No Catalyst 300 -

(with WGS alone)
XCO = 98.7%

SCH4 = 0%
SCO2 = 100%
(with side
reactions)

XCO = 100%
SCH4 = 100%
SCO2 = 0%

- Equilibrium

Feed C
CO:H2:CO2:N2 = 2:35:14:49 vol%

Flowrate at NTP: 100 mL/min
Water flowrate at NTP = 0.05 mL/min

No Catalyst 300 -

(with WGS alone)
XCO = 89.3%

SCH4 = 0%
SCO2 = 100%
(with side
reactions)

XCO = 99.48%
SCH4 = 49.4%
SCO2 = 50.6%

(with WGS alone)

- Equilibrium

The experimental data in the given conditions follows the Weisz–Prater correlation [50]
for mass transfer limitation, indicating the validity of differential flow reactor assumption.
Thus, the reaction rates were calculated by, rCO = XCO

(W/FCO)
. Figure 8 shows the logarithm

of rate (obtained from the slope of CO fractional conversion versus W/FCO) with reciprocal
of temperature, which follows the Arrhenius relationship, and the activation energies were
calculated from the slopes of the linear fittings. The activation energy of KPtCZ catalyst
under reformate feed condition C was found to be lowest (66 kJ mol−1) compared with
all other catalysts. Even under Feed B condition, the activation energy of KPtCZ was
78 kJ mol−1, which was almost close to the activation energy of PtCZ. Overall, KPtCZ was
found to be the best catalyst for WGS activity under reformate feed conditions. In our
previous studies, the mechanistic studies of CO abatement on CO3O4 catalysts indicated
the carbonates as key intermediates during the reaction and its dissociation to CO2 was crit-
ical [51,52]. Under H2 rich conditions, formate and hydroxyl species were also detected [52].
K impregnation suppresses the chemisorption affinity of electron donor species such as H2
and allows scission of C–H bond in formate species [35,53,54]. Thus, in the present study,
CO and CO2 methanation reactions may be insignificant on the KPtCZ catalyst, leading
to very low methane selectivities, as shown in Figure 7j. The lowest activation energy of
KPtCZ under Feed C condition further indicates its high catalytic ability and successful
resistance towards methanation. The activation energies and maximum CO conversions of
the catalysts are listed in Table 3.
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Table 3. Apparent activation energy comparison with literature.

Catalyst Maximum CO
Conversion

Apparent
Activation Energy,

Ea kJ/mol

Temperature Range
and Flow Rate, ◦C

and mL/min

Catalyst Loading,
mg Ref.

Pt (NO)/CeO2 ~92 ~73.84 250–400, 100 200 [55]
Pt/SrHAP-11 ~95 70 250–450, 100 75 [56]

Cu/Pd-Ag ~95 10 200–300, 190 1500 [57]
Pt-Re (2:3) ~90 20 250, 500 120 [20]
Pd/Ceria - 49 180 100 [58]

Mn2.94Pt0.06O4-ö 100 59 180–450 100 [46]
CZ (Feed A) ~28 70 ± 5 180–300, 100 150 Present Study
CZ (Feed B) ~16 140 ± 7 180–300, 100 150 Present Study
CZ (Feed C) ~12 78 ± 4 180–300, 100 150 Present Study

PtCZ (Feed A) ~100 63 ± 2 180–300, 100 150 Present Study
PtCZ (Feed B) ~98 75 ± 3 180–300, 100 150 Present Study
PtCZ (Feed C) ~50 72 ± 3 180–300, 100 150 Present Study

KPtCZ (Feed A) ~100 75 ± 4 180–300, 100 150 Present Study
KPtCZ (Feed B) ~100 78 ± 5 180–300, 100 150 Present Study
KPtCZ (Feed C) ~90 66 ± 3 180–300, 100 150 Present Study

2.4. X-ray Photoelectron Spectroscopy Studies

Figure 9a shows Co 2p spectra of the catalyst. The presence of Co3O4 phase as
well as the presence of negligible CoO phase was observed. The ratio of Co3+/Co2+ was
found to be 2:1. The binding energies of core level Co 2p3/2, 2p1/2 peaks were observed
at 779.7 eV, 794.8 eV for Co3+ and 781.3 eV, 796.4 eV for Co2+. The difference between
Co 2p3/2 and Co 2p1/2 of Co3+ and Co2+ was 15.1 eV [59,60]. Co 2p3/2 and Co 2p1/2
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shakeup peaks were observed at 783.7 and 797.9 eV, a peak corresponded to 789.4 eV in
Figure 8a, which was because of the CoO satellite [61]. Figure 9b shows the Zr 3d spectra
and deconvoluted according to 3d5/2 and 3d3/2 split orbitals. The peaks at 181.7 eV and
184.1 eV were assigned to 3d5/2 and 3d3/2 [62]. In KPtCZ catalyst, Pt was found in only
+4 ionic states, indicating the ionic substitution (as shown in Figure 9c) and formation PtO2
clusters. No metallic Pt was detected in KPtCZ. Deconvoluted spectra showed 74.3 eV
and 77.6 eV for Pt 4f7/2 and Pt 4f5/2 core level spectra. From Figure 9, K 2p3/2 and K 2p1/2
core level peaks were observed at 292.6 eV and 295.4 eV, respectively, thus confirming the
potassium presence.
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2.5. H2–Temperature Programming Reduction (H2–TPR) Analysis

As shown in Figure 10, the TPR profiles started at ~202 ◦C in the case of CZ, but
the starting temperatures were 102 ◦C, 107 ◦C and 120 ◦C with PtCZ, PdCZ and RuCZ.
However, the reduction peak started at 95 ◦C due to K deposition in the KPtCZ catalyst.
RuCZ and PdCZ had a wide reduction over the temperature range of 100–900 ◦C [63].
This could be due to overlap with Co3O4 reduction peaks, which is usually limited to
temperatures below 450 ◦C. Pd, Pt and Ru incorporation in metal oxide caused structural
changes and enhanced the oxygen mobility for the reduction in supports [64,65]. The
reduction peaks of Co3O4 also shifted to low temperatures compared with the reduction
peaks in the CZ composite. The broad reduction peaks were observed at 352 ◦C and 358 ◦C
for PdCZ and RuCZ. All these supports had wide reduction distribution over a temperature
range up to 900 ◦C. However, in the case of KPtCZ similar behavior was not observed. As
K impregnation itself having a chemical reduction step, the reduction peaks were noticed
at 141 ◦C and 417 ◦C, which were lower temperatures than for PtCZ. This could be another
reason for the good catalytic performance of KPtCZ for WGS than other catalysts, as the
reduction lead to more lattice oxygen vacancies as well. Even for high temperature WGS,
the operating temperatures fell below 500 ◦C. All synthesized catalysts showed reducible
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behavior greater than 600 ◦C, indicating its ability towards WGS. As evident from Figure 7,
KPtCZ is a potential candidate for low temperature WGS.
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3. Materials and Methods
3.1. Materials

Cobaltous nitrate hexahydrate (Co(NO3)2·6H2O, 98%), zirconium(IV) oxynitrate hy-
drate (ZrO(NO3)2·xH2O, 99%), palladium chloride (PdCl2, 99%), hexachloroplatinic acid
(H2PtCl6, ~40%) and ruthenium chloride trihydrate (RuCl3·3H2O, 99%) are procured from
Sigma-Aldrich. Diethylene triamine (DETA), ammonia solution and polyethylene glycol
powder (PEG-600) were procured from SD Fine chemicals, Maharashtra, India.

3.2. Catalyst Synthesis

M/Co3O4–ZrO2 (MCZ, M = Pt, Pd and Ru) composite catalysts were synthesized by
sonochemical synthesis. The synthesis protocols for PtCZ and PdCZ were adopted from
our previous work [37]. A similar protocol was implemented to prepare RuCZ. In a typical
synthesis, 100 mL of 1.2 mM Co(NO3)2·6H2O was added dropwise to 65 mL of 1.2 mM
of ZrO(NO3)2·xH2O under rigorous stirring. 2 g of PEG−600 was added to the solution
and allowed 30 min stirring. 22 mg of RuCl3 dissolved in 10 mL and added dropwise to
the solution. 5 mL of diethylene triamine (DETA) was added to the solution to ensure
effective doping. To this solution 0.1 M NH4OH was added to maintain the pH of 8 under
ultrasonic radiation (25 kHz, 125 W, Electrosonic Industries, Mumbai, India). The effective
sonication continued for 3 h and the precipitate was separated by centrifugation. The
collected precipitate was washed thrice with ethanol and dried at 120 ◦C for 6 h and kept
for calcination at 500 ◦C for 2 h. The effect of K as promoter was studied for WGS activity
on the best performing catalyst (PtCZ). 0.5 g of PtCZ was taken and dispersed in 500 mL of
water. Under rigorous stirring, 50 mL of 5.2 mM of KOH solution was slowly added and
then reduced using 2 mL of hydrazine hydrate. Further, the catalyst was allowed to mix for
12 h, the suspended nanoparticles were separated and dried on a hot plate at 120 ◦C for 12 h.

3.3. WGS Experimental Conditions

The catalysts were made into pellets using hydraulic press and were then crushed and
a 60/80 mesh size was collected using sieves. In a typical experiment, 150 mg catalyst was
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packed with ceramic glass wool plugs, at the center of 4 mm ID quartz reactor. The bed
length of 1 cm was maintained by diluting the catalysts with silica. The catalyst loading
varied from 50 to 200 mg. To study the effect of reformate gas mixture, different feed
conditions with dry gas volume ratios of CO:N2 = 2:98 (Feed A), CO:H2:N2 = 2:35:63 (Feed
B) and CO:H2:CO2:N2 = 2:35:14:49 (Feed C) were used at 1 atm. The dry gas flow rate was
maintained at 100 mL/min. Then, 0.05 mL/min of water was passed using a HPLC pump
through the boiler maintained at 150 ◦C and superheated steam to the reactor along with
the dry feed. Isothermal reaction conditions were maintained at each temperature in the
range of 150–400 ◦C and product gases were analyzed at steady state operation of 30 min.
A condenser was connected at the exit of the reactor to remove the steam and the dry gases
alone were allowed to pass through online gas chromatograph to analyze the outlet gas
composition. The conversion of CO and selectivity of undesirable product methane were
calculated using the following formulae,

% CO Conversion =

(
FCO, in − FCO, out

FCO, in

)
× 100 (2)

% CH4 Selectivity =

(
FCH4, out

FCH4, out + FCO2, out

)
× 100 (3)

% CO2 Selectivity =

(
FCO2, out

FCH4, out + FCO2, out

)
× 100 (4)

Here, FCO, in and FCO, out are the molar flowrates of CO at the inlet and exit of the
reactor, FCH4, out and FCO2, out are the exit molar flowrates of CH4 and CO2.

3.4. Characterization Methods

All the catalysts were characterized using XRD, XPS, TEM and BET. X-ray diffraction
patterns were collected by using Rigaku X-ray diffraction equipment with 0.35◦/min in the
scan range of 20–80◦ with a Cu Kα source. XPS data were collected using AXIS ULTRA
instrument with Al-Kα as radiation source and all samples were calibrated using graphic
carbon at 284.8 eV. A surface area analyzer (Microtrac Bel, BELSORP Mini II, Osaka, Japan)
was used to determine the surface properties of the catalysts at 77 K using liquid N2.
The scanning electron micrographs (SEM) and energy dispersive X-ray diffraction (EDX)
studies for all catalysts were recorded with a high vacuum and 20 kV using an APREOS
field-emission scanning electron microscope (ThermoFisher Scientific, Waltham, MA, USA).
TEM micrographs for the prepared catalysts were recorded by using FEI F30 instrument
(FEI Tecnai F30, Atlanta, GA, USA) operating at 200 kV.

3.5. H2-Temperature Programmed Reduction

Temperature programmed reduction (TPR) with H2 was performed with 10 mg of
catalyst loaded in a quartz reactor. A flow rate of 30 mL/min of 5% H2 in Ar (Chemix gases,
Karnataka, India) was maintained in temperature range of 50 to 900 ◦C with a ramping
rate of 10 ◦C/min using a PID controller. Hydrogen consumption during the reduction
was analyzed with thermal conductivity detector connected (Mayura Analytical Private
Limited, Karnataka, India) to outlet stream.

4. Conclusions

The present study focused on the water–gas shift activity of noble metal-substituted
Co3O4–ZrO2 (CZ) support under reformate feed conditions. To obtain maximum yield of
H2, the side reactions such as CO and CO2 methanation must be avoided in water–gas shift
stage. However, it is a challenging task to suppress the methanation under reformate feed
(H2 and CO2 rich feed) conditions. In this study, we developed CZ, RuCZ, PdCZ, PtCZ by
sonochemical synthesis. The electron donor compound, potassium, was impregnated on
the surface of PtCZ supports to suppress the methanation with high CO conversions at low



Catalysts 2023, 13, 838 20 of 22

temperatures. The best catalyst, PtCZ, showed high CO conversions of 100% and rate of
9.09 µmol g−1 s−1 at 300 ◦C. However, the conversions were observed as 96% and 57% CO
conversions at 300 ◦C with prominent methane selectivity of 17% and 26% under Feed B
and C conditions, whereas the KPtCZ catalyst showed 100% and 98% of CO conversions
and rates of 9.09 and 8.9 µmol g−1 s−1 at 300 ◦C and no significant methane selectivity
(<4%) was observed. The H2 activation on the catalyst surface can be negligible due to K
impregnation and, furthermore, it reduced the methane formation. By tuning the surface
properties, stable conversions were achieved. On overall, PtCZ and KPtCZ were found to
be potential candidates for low temperature water–gas shift reaction; however, KPtCZ was
found to be best, with the lowest activation energy of 66 ± 3 kJ mol−1 under reformate feed
(H2 and CO2 rich feed) conditions.
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