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Abstract: Noble metal catalysts such as Pt/C and RuO2 are the most efficient oxygen reduction reac-
tion (ORR) and oxygen evolution reaction (OER) catalysts and show excellent activity. However, their
high costs, scarcity, single function, and weak durability impede their large-scale practical application.
Therefore, it is paramount to design bifunctional electrocatalysts with high activity, long durability,
and low cost. In this work, we used the functionalized modification and hierarchical porous structure
of MOFs and adjusted the ratio of Co/Mo atoms to prepare uniformly dispersed nanospheres. The
uniform porous nitrogen-doped carbon nanotubes coated with Co/Mo2N composites were obtained
by trapping the volatile CNx during high-temperature pyrolysis via a vapor deposition strategy. The
physical and chemical properties of the materials were analyzed by various characterization methods
such as XRD, XPS, TEM, SEM, Raman, and BET. Notably, CoMoN@NCNTs-700 exhibited excellent
ORR/OER bifunctional electrocatalytic activity in alkaline conditions due to the synergistic effect
of porous nitrogen-doped carbon nanotubes and the unique heterostructure of Co/Mo2N. In 0.1 M
KOH, its ORR half-wave potential was E1/2 = 0.78 V, with a limiting current density even reached to
5.3 mA cm−2 and its operating potential was 1.60 V at a current density of 10 mA cm−2. At the same
time, CoMoN@NCNTs-700 also showed better stability and methanol resistance than the commercial
catalysts. This work provides a valuable reference for the design and construction of inexpensive
non-noble metal bifunctional electrocatalysts.

Keywords: metal-organic framework; N-doped carbon nanotubes; Co/Mo2N unique heterostructure;
bifunctional electrocatalyst

1. Introduction

Renewable fuel cells and rechargeable zinc-air batteries are considered the most
promising energy conversion and storage devices [1,2]. However, the high activation energy
barrier and slow reaction kinetics of the oxygen reduction reaction (ORR) and oxygen
evolution reaction (OER) restrict their practical application [3–5]. Therefore, designing
efficient electrocatalysts is necessary to promote the reaction kinetics of ORRs and OERs [6].
Commercial noble metal catalytic materials Pt/C and RuO2 are efficient ORR and OER
electrocatalysts, but their shortcomings such as high cost, scarcity, and poor durability
hinder further widespread application [7–9]. In addition, a single noble metal electrocatalyst
cannot simultaneously perform ORR and OER electrocatalytic reactions in the same alkaline
medium. Therefore, it is necessary to develop a multi-powered electrocatalyst with high
efficiency, low cost, and excellent stability in a single electrolyte [10–12].
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Transition metal nitrogen-doped carbon catalytic materials have the characteristics of
low cost, abundant reserves, and high stability, and are thus considered potential substitutes
for noble metal catalytic materials [13,14]. Metal Co has been widely used to synthesize
electrocatalytic materials with good ORR activity [15,16] and Mo-based materials are
abundant in reserves and have unique physical and chemical properties, such as catalytic
activity similar to Pt and d-band electron characteristics, which have broad application
prospects in the field of electrocatalytic material development and research. Thus, MoxN
can be designed and studied as a catalytic material with excellent OER activity. However,
single-metal component electrocatalysts are not able to achieve multi-functional catalytic
performance [17]. Combined with the characteristics of single-metal components and
the intermetallic interaction, the introduction of molybdenum nitride components can
generate more active sites and contribute to the improvement of ORR/OER catalytic
performance. The inherent properties of the carbon framework play an important role in
enhancing the catalytic activity of materials and the functional modification of catalytic
materials [18] while the carbon matrix is often used as the carrier for the design and
synthesis of electrocatalytic materials loaded with non-noble metal nanoparticles [19].
Among them, non-noble metal nitrogen-doped carbon materials have been introduced as
electrocatalysts with better activity [20,21]. Notably, nitrogen-doped carbon nanotubes,
which have the advantages of thermal stability and a high specific surface area, can expose
more active sites and prevent the corrosion of the electrolyte, which leads to the loss of
active components, thereby further enhancing the catalytic activity of the material [22].

Metal-organic frameworks (MOFs) have the advantages of high porosity, an orderly
structure, unique physicochemical properties, and easier functionalization modification,
which are regarded as the ideal precursors for the pyrolysis construction of non-noble
metal nitrogen-doped carbon nanomaterials [23,24]. During the pyrolysis process, the
MOF precursor gradually forms a layered porous structure, and the enlarged pores further
increase the porosity, which allows a greater mass transfer [25]. At the same time, the
nitrogen atoms and metal centers are evenly distributed, which is beneficial to the formed
carbon material for generating more active sites and showing better catalytic activity.

Before this work, Duan et al. [26] proposed a scalable surface engineering strategy
using MOF to prepare a high density Co-Nx catalyst with excellent catalytic activity, with
a half-wave potential of 0.82 V in 0.1 M KOH. Similarly, Li et al. [27] used solvent effects
to prepare Co-N-C derived from MOFs. DFT results showed that the synergic effect of
pyridine nitrogen and CoNx accelerated ORR progression. Meanwhile, the Tafel slope of
the catalyst was not compared with that of commercial Pt/C in report. Liang et al. [28]
immobilized Pt NPs uniformly in a porous nitrogen-doped carbon matrix derived from
ZnCo-ZIF, which is rich in cobalt monatoms (Co SAs-ZIF-NC) as multiple active sites.
The half-wave potential (0.917 V) is better than that of commercial catalyst. Jia et al. [29]
introduced Mo and Ir ions into the CTAB-encapsulated ZIF-67 by substitution reaction,
and then used it to catalyzed oxygen evolution reaction, which showing better activity
than commercial catalysts. However, as precious metal catalysts, Pt and Ir are difficult to
avoid the problem of high cost. A simple strategy for preparing oxygen evolution catalysts
by co-doping MoS2 nanocrystals with Fe and Co atoms is reported by Sathiyan. [30] The
electron regulation caused by doping reduces the energy barrier of OER reaction, but the
mechanism of the interaction of the three metals is difficult to understand.

In this paper, MOF-derived nitrogen-doped carbon nanotubes coated with a multi-
active component CoMoN@NCNT composite were synthesized by introducing volatile
CNx species through a simple assisted pyrolysis strategy. Due to the synergistic effect of
abundant active sites and nitrogen-doped carbon nanotubes, the CoMoN@NCNT com-
posites exhibited excellent ORR/OER bifunctional catalytic performance and long-term
stability in the same concentration of 0.1 M KOH electrolyte. Therefore, this work provides
more ideas for realizing efficient and stable multi-functional electrocatalytic reactions under
the same electrolyte and improving the energy conversion efficiency of devices.
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2. Results and Discussions
2.1. Characterization

As shown in Figure 1, using a simple and easy synthesis method, phosphomolybdic
acid hydrate and cobalt nitrate were uniformly dissolved in a methanol solution and then
reacted with organic ligand 2-MI successively to form a ZIF-67-Mo precursor. Then, the
ZIF-67-Mo nanospheres were uniformly dispersed with dicyandiamide and thermally
annealed in an argon atmosphere using a vapor deposition strategy to capture the volatile
CNx substance produced by the pyrolysis of dicyandiamide. The solid carbon formed
at high temperature was nitrified, finally forming an electrocatalytic material with a rich
defect porous carbon nanotube structure.
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Figure 1. Schematic illustration of the fabrication process of CoMoN@NCNTs nanomaterials.

X-ray powder diffraction (XRD) spectroscopy is used to analyze the crystal structure
and chemical composition of electrocatalytic materials. Figure 2a shows the crystal proper-
ties of CoMoN@NCNTs-600, CoMoN@NCNTs-700, and CoMoN@NCNTs-800 nanocom-
posites calcined at different temperatures. CoMoN@NCNTs series nanomaterials have
three characteristic peaks at 44.2◦, 51.5◦, and 74.9◦, corresponding to the typical (111), (200),
and (220) plane of metallic cobalt, respectively [31]. The characteristic diffraction peaks
of Mo2N with 2θ values of 36.60◦, 42.71◦, 61.84◦, and 74.22◦ were observed in the XRD
patterns, corresponding to the (111), (200), (220), and (311) crystal planes of Mo2N (PDF#25-
1366), respectively [32]. The results showed that the nitrogen-doped carbon materials with
multiple active components were formed by high-temperature calcination and the nitration
of volatile CNx species. A characteristic diffraction peak was also observed in the XRD
patterns of CoMoN@NCNTs at a 2θ value of 26.43◦, corresponding to the (002) crystal plane
of graphite carbon [33]. In addition, compared with CoMoN@NCNTs-600, the characteristic
peaks of CoMoN@NCNTs-700 and CoMoN@NCNTs-800 were sharper, indicating better
crystallinity.
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Raman spectroscopy is used to study the state, defect, and graphitization degree
of the carbon phase in carbon materials. The Raman spectra of the CoMoN@NCNTs
series composites (Figure 2b) showed that there are obvious Raman characteristic peaks
near 1344.9 cm−1 and 1579.6 cm−1, which are matched with the D peak and G peak,
respectively. The D band is caused by the disorder and defect of the carbon structure, and
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the G band is the graphite carbon [34,35]. The strength of ID/IG is used to judge the degree
of disorder and graphitization of carbon matrix materials. As shown in Figure 2b, the
ID/IG values of CoMoN@NCNTs-600, CoMoN@NCNTs-700, and CoMoN@NCNTs-800
nanocomposites are 1.11, 0.98, and 0.92, respectively. With the increase in calcination
temperature, the corresponding ID/IG strength decreases gradually, so the ID/IG strength
of CoMoN@NCNTs-700 is moderate compared with that of CoMoN@NCNTs-600 and
CoMoN@NCNTs-800, indicating that N atoms doped into the material structure and
the good graphitization degree and electrical conductivity, which is conducive to the
generation and uniform distribution of active sites, accelerating electron transmission in
the reaction process.

The morphology and microstructure of CoMoN@NCNTs nanocomposites were in-
vestigated by SEM. Figure 3 shows the morphology changes of the CoMoN@NCNTs
nanocomposites formed by ZIF-67-Mo precursors with different Co/Mo ratios at different
pyrolysis temperatures. Compared with ZIF-67-Mo-1 and ZIF-67-Mo-2, Figure 3e shows
the ZIF-67-Mo precursor exhibiting a clear and uniform nanosphere structure. As shown
in Figure 3f, after thermal annealing, the morphology and structure of CoMoN@NCNTs-
600 did not change drastically and collapsed, showing a nanosphere structure with a
smaller size and slightly rough surface. However, the Raman results show that at lower
carbonization temperatures, less carbon matrix is converted into graphite carbon, resulting
in a lower degree of graphite and lower electrical conductivity. Figure 3g shows that the
CoMoN@NCNTs-700 nanocomposites exhibited a uniform tubular structure with a large
number of cracks on the surface, indicating that the shape of the ZIF-67-Mo precursor
collapsed and shrunk under the continuous carbonization at 700 ◦C. The graphite carbon
layer was thinned and heated to curl and shrink to form the nanotube structure with the
synergistic effect of volatile CNx, the active component with catalytic growth of nanotubes.
CoMoN@NCNTs-700 has an abundant porous structure, which is beneficial for more active
sites and provides electron/ion transport channels. The result shows that the calcination
temperature is not only related to the degree of graphitization and electrical conductivity
of the catalytic material but also has a great influence on the change of the porous structure
and the degree of defects of electrocatalytic material.
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The morphology and microstructure of the CoMoN@NCNTs nanocomposites were
investigated by SEM. Figure 3 shows the morphology changes of the CoMoN@NCNT
nanocomposites formed by ZIF-67-Mo precursors with different Co/Mo ratios at different
pyrolysis temperatures. Compared with ZIF-67-Mo-1 and ZIF-67-Mo-2, Figure 3e shows
that the ZIF-67-Mo precursor exhibits a clear and uniform nanosphere structure. As shown
in Figure 3f, after thermal annealing, the morphology and structure of CoMoN@NCNTs-
600 did not change drastically and collapsed, becoming a nanosphere structure with a
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smaller size and slightly rough surface. However, the Raman results show that at lower
carbonization temperatures, less carbon matrix is converted into graphite carbon, resulting
in a lower degree of graphite and lower electrical conductivity. Figure 3g shows that the
CoMoN@NCNTs-700 nanocomposites exhibited a uniform tubular structure with a large
number of cracks on the surface, indicating that the shape of the ZIF-67-Mo precursor
collapsed and shrunk under the continuous carbonization at 700 ◦C. The graphite carbon
layer was thinned and heated to curl and shrink to form a nanotube structure with the
synergistic effect of volatile CNx, an active component of the catalytic growth of nanotubes.
CoMoN@NCNTs-700 has an abundant porous structure, which is beneficial for providing
more active sites and electron/ion transport channels. The result shows that the calcination
temperature is not only related to the degree of graphitization and electrical conductivity
of the catalytic material but also has a great influence on the change of the porous structure
and the degree of defects of electrocatalytic material.

The internal microstructure of CoMoN@NCNTs-700 nanocomposites was further
observed by TEM. Figure 4a shows the structure of hollow nanotubes which were consistent
with SEM analysis. The lattice stripes of each component of the material can be clearly
observed in the high-resolution transmission electron microscope image (Figure 4b). The
lattice fringes of the carbon layer are 0.317 nm, corresponding to the graphite carbon (002)
crystal plane, while the lattice stripe with the interlayer spacing of 0.208 nm is consistent
with the Co (111) crystal plane. The lattice fringes with a spacing of 0.197 nm match the (004)
crystal plane of Mo2N. The TEM results showed that the uniform coating of multiple active
components in carbon nanotubes not only effectively prevented the corrosion of metal active
sites by alkaline electrolyte during an electrocatalytic reaction, but also facilitated electron
transfer and the diffusion of reactant molecules, which can promote ORRs and OERs.

Catalysts 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 

nanocomposites formed by ZIF-67−Mo precursors with different Co/Mo ratios at different 
pyrolysis temperatures. Compared with ZIF-67−Mo−1 and ZIF-67−Mo−2, Figure 3e shows 
that the ZIF-67−Mo precursor exhibits a clear and uniform nanosphere structure. As 
shown in Figure 3f, after thermal annealing, the morphology and structure of 
CoMoN@NCNTs−600 did not change drastically and collapsed, becoming a nanosphere 
structure with a smaller size and slightly rough surface. However, the Raman results show 
that at lower carbonization temperatures, less carbon matrix is converted into graphite 
carbon, resulting in a lower degree of graphite and lower electrical conductivity. Figure 
3g shows that the CoMoN@NCNTs−700 nanocomposites exhibited a uniform tubular 
structure with a large number of cracks on the surface, indicating that the shape of the 
ZIF-67−Mo precursor collapsed and shrunk under the continuous carbonization at 700 °C. 
The graphite carbon layer was thinned and heated to curl and shrink to form a nanotube 
structure with the synergistic effect of volatile CNx, an active component of the catalytic 
growth of nanotubes. CoMoN@NCNTs−700 has an abundant porous structure, which is 
beneficial for providing more active sites and electron/ion transport channels. The result 
shows that the calcination temperature is not only related to the degree of graphitization 
and electrical conductivity of the catalytic material but also has a great influence on the 
change of the porous structure and the degree of defects of electrocatalytic material. 

The internal microstructure of CoMoN@NCNTs−700 nanocomposites was further ob-
served by TEM. Figure 4a shows the structure of hollow nanotubes which were consistent 
with SEM analysis. The lattice stripes of each component of the material can be clearly 
observed in the high-resolution transmission electron microscope image (Figure 4b). The 
lattice fringes of the carbon layer are 0.317 nm, corresponding to the graphite carbon (002) 
crystal plane, while the lattice stripe with the interlayer spacing of 0.208 nm is consistent 
with the Co (111) crystal plane. The lattice fringes with a spacing of 0.197 nm match the 
(004) crystal plane of Mo2N. The TEM results showed that the uniform coating of multiple 
active components in carbon nanotubes not only effectively prevented the corrosion of 
metal active sites by alkaline electrolyte during an electrocatalytic reaction, but also facil-
itated electron transfer and the diffusion of reactant molecules, which can promote ORRs 
and OERs. 

 
Figure 4. (a) TEM images; (b) HR-TEM images of CoMoN@NCNTs−700. 

Figure 5 shows the XPS total and elemental spectra of CoMoN@NCNTs−700 nano-
composites. The characteristic peaks of Co, Mo, C, N, and O can be observed in the total 
spectrum of Figure 5a, indicating that the CoMoN@NCNTs−700 nanocomposite is com-
posed of Co, Mo, C, N, and O elements. The detected oxygen element is due to the ad-
sorption of water molecules and oxygen molecules from the air on the surface of the ma-
terial during the storage process. The high-resolution Co 2p spectrum (Figure 5b) shows 
two sets of main peaks: the binding energies at 778.67 eV and 781.27 eV are a set of Co 
2p3/2 characteristic peaks, and the binding energies at 793.76 eV and 796.81 eV are Co 2p1/2 
characteristic peaks; two characteristic peaks at 784.45 eV and 801.55 eV match the satellite 
peaks [36]. The high-resolution Mo 3d spectrum (Figure 5c) can be fitted with three char-
acteristic peaks with binding energies of 228.43 eV, 231.72 eV, and 235.58 eV, which belong 
to Mo2+, Mo4+, and Mo6+, respectively, corresponding to the main species of Mo2N [32]. The 
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Figure 5 shows the XPS total and elemental spectra of CoMoN@NCNTs-700 nanocom-
posites. The characteristic peaks of Co, Mo, C, N, and O can be observed in the total
spectrum of Figure 5a, indicating that the CoMoN@NCNTs-700 nanocomposite is com-
posed of Co, Mo, C, N, and O elements. The detected oxygen element is due to the
adsorption of water molecules and oxygen molecules from the air on the surface of the
material during the storage process. The high-resolution Co 2p spectrum (Figure 5b) shows
two sets of main peaks: the binding energies at 778.67 eV and 781.27 eV are a set of Co
2p3/2 characteristic peaks, and the binding energies at 793.76 eV and 796.81 eV are Co
2p1/2 characteristic peaks; two characteristic peaks at 784.45 eV and 801.55 eV match the
satellite peaks [36]. The high-resolution Mo 3d spectrum (Figure 5c) can be fitted with
three characteristic peaks with binding energies of 228.43 eV, 231.72 eV, and 235.58 eV,
which belong to Mo2+, Mo4+, and Mo6+, respectively, corresponding to the main species of
Mo2N [32]. The detected Mo4+ and Mo6+ characteristic peak signals also indicate that there
may be a slight oxidation phenomenon on the surface of the sample.
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As shown in the C 1s spectrum (Figure 5e), characteristic peaks at 284.84 eV, 286.48 eV,
and 288.52 eV can be observed, corresponding to C-C, C-N, and C=O bonding states,
respectively. The C-N bonding state with binding energy at 286.48 eV indicates that
nitrogen atoms are doped into the carbon structure of the material. The fitting N 1s spectra
(Figure 5d) shows four characteristic peaks with binding energies at 399.17 eV, 401.28 eV,
402.38 eV, and 402.88 eV, which matched with pyridine nitrogen, Co-N, Mo-N, and graphite
nitrogen, respectively. The characteristic peaks of nitrogen species further confirmed the
existence of structurally stable nitrogen elements in CoMoN@NCNTs-700 nanocomposites,
and that metal nitrogen, pyridine nitrogen, and graphitic nitrogen active species play
important roles in the ORR and OER processes. Metal and pyridine nitrogen as active
sites can weaken the adsorption energy barrier of gas molecules on the carbon matrix
and can also effectively promote the electron transfer process, while graphitic nitrogen
helps to improve the electrical conductivity of nanomaterials. The coexistence of pyridine,
metal, and graphite nitrogen contributes to the high activity of ORR and OER bifunctional
CoMoN@NCNTs-700 nanocomposites.

Nitrogen adsorption and desorption curves were used to characterize the specific
surface area and pore size distribution of CoMoN@NCNTs-700 nanocomposites. Figure 6
shows the nitrogen adsorption-desorption isotherm and pore size distribution of electrocat-
alytic materials. The specific surface area of CoMoN@NCNTs-700 is 69.19 m2 g−1, and the
type IV nitrogen adsorption-desorption curve can be observed in Figure 6a, which revealed
the mesoporous structure of the CoMoN@NCNTs-700 catalytic material. The correspond-
ing pore size distribution diagram (Figure 6b) shows the layered pore size distribution
above 2 nm, which further confirms the pore structure characteristics of mesopores. The
CoMoN@NCNTs-700 nanocomposite has a rich porous structure that exposes more active
sites, provides abundant channels for mass transfer in the reaction process, and contributes
to the improvement in ORR and OER bifunctional catalytic performance.
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2.2. Catalytic Properties

The characteristic structure of the CoMoN@NCNTs nanocomposite shows that the
morphology and structure are beneficial for improving the catalytic activity of the mate-
rial and promoting ORR and OER. The ORR and OER bifunctional electrocatalytic per-
formance of samples was tested by using a three-electrode system in 0.1 M KOH elec-
trolyte and compared with widely used commercial Pt/C and RuO2, respectively. In
the main text, we mainly compare the catalytic performance of the sample prepared by
the best Co/Mo proportional precursor and performance comparisons with other sam-
ples are included in Supplementary Materials. In all measurements, the scan rate of CV
was 50 mV s−1, and the scan rate of LSV was 5 mV s−1. Firstly, the ORR properties of
porous and ultrathin carbon nanotube series electrocatalytic materials CoMoN@NCNTs
with rich defects were evaluated. Figure 7a shows the CV curves of electrocatalytic
samples which were prepared at different calcination temperatures. Each sample has
a cathodic peak, indicating that the samples prepared at different carbonization tem-
peratures may all show oxygen reduction properties. It is worth noting that compared
with CoMoN@NCNTs-600 and CoMoN@NCNTs-800, CoMoN@NCNTs-700 had a higher
current density where the peak appeared, indicating that it may have better catalytic
activity. Compared with CoMoN@NCNTs-600 and CoMoN@NCNTs-800 nanocompos-
ites, CoMoN@NCNTs-700 had the highest peak current density of ORR active reduction,
indicating that CoMoN@NCNTs-700 is expected to promote the ORR process efficiently.
As seen in Figure 7b, CoMoN@NCNTs-700 shows good ORR activity with a half-wave
potential of E1/2 = 0.78 V, which is better than CoMoN@NCNTs-600 (E1/2 = 0.75 V) and
CoMoN@NCNTs-800 (E1/2 = 0.73 V). It is also better than the performance of samples
prepared at 700 ◦C with different CoMo ratios (Figure S1). It can be seen that the LSV
polarizing curve of CoMoN@NCNTs-700 is closer to the commercial Pt/C. Compared with
CoMoN@NCNTs-600 and CoMoN@NCNTs-800, CoMoN@NCNTs-700 had the highest
limiting current density, reaching 5.3 Ma cm−2, and was even higher than commercial
Pt/C. These results indicate that CoMoN@NCNTs-700 has better ORR catalytic activity
compared with other samples and is consistent with the highest reduction peak value of
CoMoN@NCNTs-700 in the CV curve. The Tafel curve obtained from the LSV polarization
curve of the electrocatalytic sample at 1600 rpm is an important indicator of the kinetics of
the ORR. Figure 7c shows that the Tafel slopes of CoMoN@NCNTs-600, CoMoN@NCNTs-
700, CoMoN@NCNTs-800, and Pt/C are 63.24 Mv dec−1, 54 Mv dec−1, 56.45 Mv dec−1,
and 89.07 Mv dec−1, respectively. The Tafel slopes of the CoMoN@NCNTs samples at
different temperatures are all smaller than those of Pt/C; amongst all the Tafel slopes,
CoMoN@NCNTs-700 is the smallest, indicating excellent ORR kinetics.
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of 1600 rpm; (c) Tafel diagram; (d) LSV diagram of CoMoN@NCNTs-700 at different rotation rates;
and (e) I K–L curve under different potentials of CoMoN@NCNTs-700.

In order to explore the electron transfer process and reaction pathway of the CoMoN
@NCNTs composite in the ORR, the LSV polarization curves at different rotational speeds
from 400 to 2025 rpm were tested. Figure 7d shows that the limiting current density of
CoMoN@NCNTs-700 increases gradually with the increase in rotational speed, which is
due to decreases in diffusion length. From the LSV polarization curves of the CoMoN
@NCNTs-700 nanocomposite at different rotational speeds and K–L equations, a nearly
parallel K–L curve with a good linear relationship was constructed (Figure 7e). It shows that
the electron transfer numbers are 3.98, 3.96, 4.04, and 3.80 from 0.1 V to 0.4 V, values that are
all close to 4.0 and indicate that the ORR electrocatalytic process of CoMoN@NCNTs-700 is a
four-electron reaction pathway, which is beneficial for providing a faster oxygen reduction
rate and promoting the ORR.

The electron transfer number and selectivity of CoMoN@NCNTs-700 during the ORR
can be further verified by the ring-rotating disk electrode test. The ring current IR and disk
current ID were obtained from LSV polarization curves tested by RRDE at 1600 rpm, which
can estimate the hydrogen peroxide yield and electron transfer number more accurately.
As seen in Figure 8b, the average number of electron transfers in CoMoN@NCNTs-700 is
close to 4.0 and the yield of hydrogen peroxide is between 10 and 20%, indicating that the
catalytic reaction process of CoMoN@NCNTs-700 is dominated by the four-electron (4e−)
reduction path and that the main product is water, which is consistent with the results
calculated by the K-L equation.

The long-term stability and methanol resistance of electrocatalytic materials during
the catalytic reaction are also important indicators for evaluating ORR performance. The
stability and durability of CoMoN@NCNTs-700 and Pt/C were measured by chronoam-
perometry at a potential of 0.665 V relative to the reversible hydrogen potential. Figure 8c
shows that after a continuous reaction of 18,000 s, the relative current retention rate of
CoMoN@NCNTs-700 was about 91.03%, which is much higher than that of Pt/C (54.13%).
This is due to the protective effect of the carbon nanotube structure on the active compo-
nent, which also increases the possibility of material reuse. The methanol resistance of
electrocatalytic materials was also tested by the i-t test method, as shown in Figure 8d;
after methanol injection, the current density of commercial Pt/C decreased sharply due to
methanol poisoning, while the current density of CoMoN@NCNTs-700 did not change signif-
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icantly before and after adding methanol, indicating that CoMoN@NCNTs-700 has excellent
methanol resistance compared with Pt/C, which is beneficial for practical applications.
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The OER properties of the CoMoN@NCNT series electrocatalytic materials and com-
mercial RuO2 were tested under the same test conditions. LSV polarization curves in the
potential range of 1.0 V–2.0 V (relative to reversible hydrogen potential) were tested at
1600 rpm and a scanning rate of 5 mV s−1. As shown in Figure 9a, the operating electrical
potential of CoMoN@NCNTs-700 was 1.60 V at a current density of 10 mA cm−2 and
was lower than that of CoMoN@NCNTs-600 (1.78 V) and CoMoN@NCNTs-800 (1.71 V)
nanocomposites, and it also has the best oxygen evolution activity compared with the
samples prepared at 700 °C with different CoMo ratios (Figure S3). Noteworthily, it was
even better than that of commercial RuO2, which operates at 1.62 V. The Tafel slope of
different samples was calculated by LSV curves according to the Tafel equation to further
study the OER kinetics of electrocatalytic materials. The Tafel diagram (Figure 9b) shows
that the Tafel slopes of CoMoN@NCNTs-600, CoMoN@NCNTs-700, CoMoN@NCNTs-
800, and commercial RuO2 were 140.21 mV dec−1, 82.83 mV dec−1, 102.64 mV dec−1,
and 98.41 mV dec−1, respectively. The Tafel slope of CoMoN@NCNTs-700 is the smallest,
which indicates faster OER kinetics.

The double-layer capacitance (Cdl) is also a key parameter for evaluating the OER
activity of electrocatalytic materials. As shown in Figure 9c, a series of CV curves were
obtained by cyclic voltammetry at different scanning rates of 2, 4, 6, 8, and 10 mV s−1

within the potential range of 1.165 V–1.215 V in the non-Faraday region, and then the
Cdl values of different samples were calculated. As shown in Figure 9d, the highest
Cdl value of CoMoN@NCNTs-700 was 19.5 mF cm−2, which was higher than that of
CoMoN@NCNTs-600 (3.9 mF cm−2) and CoMoN@NCNTs-800 (15.6 mF cm−2). The higher
double-layer capacitance indicates that CoMoN@NCNTs-700 has a larger electrochemical
active surface area and can expose more OER active sites, which is conducive to the oxygen
evolution reaction. Figure 9e shows the LSV curve comparison of CoMoN@NCNTs-700
nanocomposite before and after 1000 cycles of a cyclic voltammetry test. The results show
that CoMoN@NCNTs-700 manifests long-term stability with scarce degradation at a lower
operating voltage after 1000 cycles. The charge transfer resistance (Rct) of CoMoN@NCNTs
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electrocatalysts can be estimated from EIS. According to Figure 9f, Nyquist plots show that
the resistance of CoMoN@NCNTs-600, CoMoN@NCNTs-700, and CoMoN@NCNTs-800
are 80.87 Ω, 19.52 Ω, and 26.91 Ω, respectively. Among them, the semicircular radius of the
CoMoN@NCNTs-700 nanocomposite is smaller than that of other series samples, indicating
that CoMoN@NCNTs-700 has small resistance and good electrical conductivity, which can
accelerate charge transfer in an ORR/OER.
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curves of CoMoN@NCNTs before and after 1000 cycles; and (f) EIS Nyquist plots at a potential
of 1.643 V.

Figure 10 shows the linear sweep voltammograms of a series of electrocatalytic samples
recorded in a 0.1 M KOH alkaline solution which indicate the excellent bidirectional activity
of CoMoN@NCNTs-700 electrocatalytic material for ORRs and OERs. This can be evaluated
by the potential difference (∆E) between the OER potential corresponding to the current
density at 10 mA cm−2 and the ORR half-wave potential. Figure 10 shows that the ∆E
value of CoMoN@NCNTs-700 is 0.82 V (relative to RHE), a smaller ∆E indicates a lower
efficiency loss and better oxygen electrocatalytic activity. The results confirm that the
CoMoN@NCNTs-700 nanocomposite has excellent ORR/OER dual-function electrocatalytic
activity in a low-concentration alkaline medium and has the potential to be a candidate
material for the commercial application of a zinc-air battery.
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3. Materials and Methods
3.1. Materials

Cobaltous nitrate (Co(NO3)2), dicyandiamide (C2H4N4), 2-methylimidazole (2-MI),
and phosphomolybdic acid (H7(P(Mo2O7)6·×H2O were obtained from Aladdin. All reagents
are analytical grade and used without further purification.

3.2. Preparation of ZIF-67-Mo Precursor

The ZIF-67-Mo precursor (Co/Mo = 1:1) materials were prepared by the co-precipitation
method at room temperature. Phosphomolybdic acid hydrate was dissolved in a methanol
solution, and a yellow transparent solution was formed by sonication. The cobalt nitrate
hexahydrate and 2-MI were dissolved in the methanol solution, separately, and sonicated
for 30 s to dissolve completely; then, a purple solution was formed by uniform mixing.
After 5 min, the methanol solution of phosphomolybdic acid was added dropwise into
the mixture at an appropriate rate and stirred vigorously for 30 min. After stirring, it
was naturally aged for 24 h. Then, the precursor was washed with the methanol solution
several times and vacuum-dried at 60 ◦C to obtain a powder labeled as ZIF-67-Mo (the
comparison precursors with Co/Mo atomic ratios of 2:1 and 1:2 were labeled ZIF-67-Mo-1
and ZIF-67-Mo-2, respectively).

3.3. Preparation of CoMoN@NCNTs Nanocomposites

CoMoN@NCNTs were prepared by the high-temperature pyrolysis of ZIF-67-Mo with
a dicyandiamide-assisted synthesis strategy. Argon gas with a sufficient steady flow was
continuously pumped into the tube furnace to maintain an inert gas atmosphere. A total
of 0.1 g of ZIF-67-Mo powder and 0.5 g of dicyandiamide were placed on both ends of
the quartz boat, and the temperature was increased to 300 ◦C from room temperature
at a heating rate of 2 ◦C min−1 for 1 h. The temperature was increased to the target
carbonization temperature (600 ◦C, 700 ◦C, and 800 ◦C) at a rate of 2 ◦C min−1. After
carbonization for 2 h, black powder was obtained and labeled as CoMoN@NCNTs-600,
CoMoN@NCNTs-700, and CoMoN@NCNTs-800, according to the target temperature. The
samples thermally treated at 700 ◦C with ZIF-67-Mo-1 and ZIF-67-Mo-2 as precursors were
labeled as CoMoN@NCNTs-700-1 and CoMoN@NCNTs-700-2.

3.4. The Characterization of CoMoN@NCNTs Nanocomposites

X-ray diffraction (XRD) patterns were measured on a Bruker D8 X-ray diffractometer
under Cu-Ka radiation (λ = 1.5418 Å) in the 2θ range between 10◦ and 80◦. Raman spectral
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data were measured by a 488 nm laser-excited Raman spectrometer (Renishaw 1000B).
Morphological and structural characterization were tested on a TESCAN MIRA LMS
scanning electron microscope (accelerating voltage, 15 kV) and transmission electron
microscope (TEM) and were mapped on an FEI Talos F200X microscope (accelerating
voltage, 200 kV). The elemental composition and valence states of the CoMoN@NCNTs
nanocomposites were analyzed by Thermo Scientific K-Alpha (XPS) spectroscopy. The
system was operated at 15 kW with a monochrome Al Kα source. The specific surface
area and pore size distribution of the nanotube materials were calculated by using the
Brunauer–Emmett–Teller (BET) method, the model was Micromeritics APSP 2460.

3.5. Electrocatalytic Performance

All electrochemical tests were performed on an electrochemical workstation (CHI
760E) with a three-electrode system. The working electrode was prepared by a rotating disk
electrode (RDE) or rotating ring disk electrode (RRDE) and silver/silver chloride reference
electrode or platinum wire counter electrode, respectively. All test potential ranges and
related calculations in this paper were converted to relative hydrogen standard potentials
by the standard calibration equation E(RHE) = E(Ag/AgCl) + 0.197 V + 0.059 × pH. The 5 mg
electrocatalytic sample was dissolved in 480 µL of isopropanol, 480 µL of an aqueous
solution, and 40 µL of Nafion solution to form 1000 µL of dispersion liquid, which was
sonicated for 30 min to form a uniformly dispersed catalyst ink. In total, 10 µL of ink was
evenly dropped onto the smooth surface of the mechanically polished glassy carbon disk
electrode (diameter = 5 mm, A = 0.19625 cm2) and dried naturally at room temperature to
obtain a working electrode with catalyst film.

In this paper, the electrochemical oxygen reduction reaction (ORR) catalytic per-
formance of nanocomposites was investigated in an oxygen-saturated 0.1 M potassium
hydroxide solution at a potential range of 0 V–1.0 V; the CV curve and LSV polarization
curve corresponding to the electrocatalytic material were obtained by the cyclic voltamme-
try method and the linear sweep voltammetry method, respectively. The scan rate of the
CV test was 50 mV s−1, and the scanning rate of the LSV polarization curves at different
rotation rates from 400 to 2025 rpm was 5 mV s−1. The electron transfer number during the
ORR is calculated by the Koutecky–Levich (K-L) equation [37]:

1/J = 1/JL + 1/JK = 1/Bω1/2 + 1/JK (1)

B = 0.62nFC0(D0)2/3ν−1\6 (2)

JK = nFkC0 (3)

where J is the current density, including JK, which is the kinetically limited current density;
B is the inverse of the slope of the K-L curve obtained from different speeds;ω is the rotation
rate of the catalyst-coated working electrode; F is the Faradaic efficiency of 96,485 C mol−1;
C0 (1.2×10−6 mol cm−3) and D0 (1.9 × 10−5 cm2 s−1) are the overall concentration and
diffusion coefficient of O2 molecules, respectively; and ν is the kinematic viscosity of
0.01 cm−2 s−1.

In addition, the LSV polarization curve obtained by the RRDE test can further evaluate
the electron transfer number and hydrogen peroxide yield of the electrocatalytic material
during the ORR [38]:

N = 4 × ID/(IR/N + ID) (4)

H2O2% = 200 × (IR/N)/(IR/N + ID) (5)

where IR is the current density of the disk electrode during the RRDE test; ID is the current
density of the disk electrode; and N (0.37) is the Pt ring collection efficiency on RRDE.
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The long-term stability and methanol resistance of CoMoN@NCNTs nanocomposites and
commercial Pt/C were measured by chronoamperometry.

The OER electrochemical measurements of the electrocatalytic samples were also
carried out by rotating disk electrodes in an O2-saturated 0.1 M KOH electrolyte. The LSV
polarization curve of the OER was measured at 1600 rpm with a scan potential range of
1.0 V–2.0 V and a scan rate is 5 mV s−1. All electrochemical tests in this paper have been
corrected for internal resistance (IR) compensation.

4. Conclusions

In summary, a facile and feasible synthetic strategy was proposed. MOF-derived
nitrogen-doped carbon nanotubes coated with multi-active component CoMoN@NCNT
nanocomposites were prepared by the dicyandiamide-assisted pyrolysis of ZIF-67-Mo
nanosphere precursors capturing volatile CNx. The CoMoN@NCNTs-700 nanocomposite
exhibited excellent ORR and OER bifunctional activity and good stability; its stability was
shown to be better than that of commercial Pt/C after a continuous reaction of 18,000 s.
The relative current retention rate of CoMoN@NCNTs-700 was about 91.03% and it had
the lowest Tafel slope (54 mV dec−1). Compared with commercial RuO2, it had a better
overpotential of up to 370 mV. Furthermore, the tubular structure of CoMoN@NCNTs-700,
an evenly distributed ordered structure, can prevent the agglomeration of nanoparticles
and the loss of active components. Abundant microporous structures expose more active
sites, increase the contact area between reactants and catalytic active sites, and accelerate
electron and ion transport to facilitate the reaction process. At the same time, with the
action of metal particles, metal-nitrogen, pyridine nitrogen, and other active components,
the bifunctional catalytic performance of the material is further enhanced.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13050801/s1, Figure S1: the LSV of a series of prepared compos-
ites at a rotating speed of 1600 rpm for ORR in 0.1 M KOH; Figure S2: the LSV of (a) CoMoN@NCNTs-
600 and (b) CoMoN@NCNTs-800 with different rotating speeds (400 to 2025 rpm) in 0.1 M KOH;
K-L curves of (c) CoMoN@NCNTs-600, and (d) CoMoN@NCNTs-800; Figure S3: the LSV of series
of prepared composites at a rotating speed of 1600 rpm for OER in 0.1 M KOH; Figure S4: CV
of CoMoN@NCNTs-600 measured at different scan rates from 2 to 10 mV s−1; Figure S5: CV of
CoMoN@NCNTs-800 measured at different scan rates from 2 to 10 mV s−1; Figure S6: ORR Tafel plots
of CoMoN@NCNTs-700, CoMoN@NCNTs-700-1, and CoMoN@NCNTs-700-2; Figure S7: OER Tafel
plots of CoMoN@NCNTs-700, CoMoN@NCNTs-700-1, and CoMoN@NCNTs-700-2; Table S1: ORR
and OER activities of previously reported bifunctional electrocatalysts at 1600 rpm.
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