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Abstract: Hydrogen is considered one of the most important forms of energy for the future, as it
can be generated from renewable sources and reduce CO2 emissions. In this review, the different
thermochemical techniques that are currently used for the production of hydrogen from biomass
from plantations or crops, as well as those from industrial or agro-industrial processes, were analyzed,
such as gasification, liquefaction, and pyrolysis. In addition, the yields obtained and the reactors,
reaction conditions, and catalysts used in each process are presented. Furthermore, a brief comparison
between the methods is made to identify the pros and cons of current technologies.
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1. Introduction

The growth in the world population generates significant increases in fossil fuel
consumption, leading to an increase in anthropogenic emissions of greenhouse gases and
global warming. According to the 2015 World Energy Statistical Review report, almost
85% of energy consumption mainly depends on these reserves, resulting in environmental
problems, energy crises, and depletion of sources [1]. For these reasons, one of the main
challenges today is to address the growing global demand for energy and discover ways to
meet this demand through sustainable and environmentally friendly energy solutions [2].
To substitute fossil fuels, researchers are exploring new alternative sources of renewable
fuels with environmental safety in mind [3]. Among the promising renewable energy
resources are biodiesel, bioethanol, and hydrogen. According to Zhang et al., biodiesel is
considered a stable, biodegradable, non-toxic, and environmentally friendly renewable
energy source with excellent acid catalytic activity, ideal in the field of biorefinery [4]. It
is also easy to store/transport and is technically and economically accessible [5,6]. It can
be produced from fatty acids, various edible oils, and non-edible oils with small-chain
alcohol by esterification/transesterification over an acid/base catalyst [7]. Biodiesel shows
a similar combustion performance to fossil diesel [8]. There are also several studies related
to the production of bioethanol; for instance, different biomasses have been evaluated, such
as sorghum biomass, Delonix regia pods, waste date palm fruits, etc., to obtain bioethanol
through enzymatic hydrolysis processes, using different biomasses and processes applying
acid hydrolysis, followed by fermentation with yeasts [8–11]. In addition to studies on the
production of biodiesel and bioethanol, there are several studies related to hydrogen, which
is considered one of the most important forms of energy for the future due to its cleanliness
and high calorific value. As a result, it has become a focus of renewed interest in many
parts of the world [12]. It has been proposed as a high-yield potential energy vector—it has
the highest energy density of all fuels and energy carriers with a yield of 122 MJKg−1. It is
believed to be an effective replacement for gasoline because 9.5 kg of hydrogen is enough
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to replace 25 kg of gasoline. Its properties of high energy density, fast burning, high octane
number, and zero damage potential, will soon make it the fuel of choice [13]. Even when
comparing hydrogen with electricity, which can also be produced by renewable sources,
electricity has the disadvantages of transmission and heat losses caused by high voltages
and electrical resistance, while hydrogen offers some advantages, such as high conversion
efficiency of energy, abundant sources, ability to be created with zero emissions from water,
and long-distance transportation [2]. As for the cons of hydrogen as a biofuel, its storage
is challenging. As the lightest molecule, hydrogen gas has a very low density: 1 kg of
hydrogen gas occupies more than 11 m3 at room temperature and atmospheric pressure,
and pure hydrogen has flammable and explosive characteristics [14]. Thus, for hydrogen
storage to be economically viable, its storage density must be increased. Various storage
methods are currently being investigated [15]. However, expensive equipment is required
to liquefy hydrogen, as well as to transport the liquid hydrogen [16]. In addition, biomass
conversion techniques (e.g., gasification and pyrolysis) have some limitations and are very
energy intensive [17].

The predominant method for hydrogen production is based on natural gas or other
fossil fuel sources that require abundant energy and result in the emission of a signifi-
cant amount of CO2 into the atmosphere [18]. An alternative to obtaining hydrogen is
the use of biomass energy, which is considered a green source with almost zero carbon
emissions. Unlike solar energy, biomass has no time limit. This energy source contains
significant amounts of carbon and hydrogen, making it favorable for producing fuels and
chemical products [19]. In addition, lignocellulosic biomass is broadly accessible as a
low-cost renewable feedstock with a nonreactive nature [20]. It has a high potential for the
production of bio-oil and other chemical products [21] and is considered the fourth largest
energy source available [22]. Residues are obtained from forestry and agriculture, although
biomass grown in Europe is significantly more expensive than biomass grown in Latin
America [23]. Forestry residues generated by wood extraction operations have traditionally
been considered products of low economic value [24].

Different methods of converting biomass into hydrogen have been developed, and
thermochemical and biochemical conversion is the most recommended. Alongside biomass
thermochemical conversion processes, other methods include gasification, pyrolysis, and
liquefaction, with steam gasification considered the most promising to produce hydrogen-
rich synthesis gas. In this route, the use of steam as a gasifying agent not only provides
H2-rich synthesis gas but also causes minimal environmental impact, especially preventing
NOx formation with low CO2 generation, making the hydrogen obtained to be considered
“green” [25,26]. However, the wide varieties of biomass have different physical charac-
teristics and chemical compositions, which always result in different steam gasification
efficiencies [27]. Biomass containing less sulfur in the fuel reduces acid rain. As a result,
the use of biomass fuel instead of fossil fuel causes a decrease in GHG (greenhouse gas)
emissions [28]. In this review, the different thermochemical techniques that are currently
used for the production of hydrogen from biomass from plantations or crops, such as
gasification, liquefaction, and pyrolysis, are described. Complete monitoring of the process
is carried out, from the characterization of the most widely used types of biomass to its
transformation into hydrogen. The yields obtained from both hydrogen and different
by-products are described and a brief comparison is made between methods to identify
the pros and cons of current technologies. In this way, a source of useful information is
provided that details advances in research toward the production of new energy sources.

2. Biomass

Biomass refers to organic materials derived from living entities, such as plants and
animals. A variety of agricultural and forestry residues, household, commercial, and
industrial waste, as well as particular energy crops, are examples of raw materials for
bioenergy. The structure of biomass may vary depending on the feedstock types [29].
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Lignocellulosic biomass is the most abundant type of biomass, considered to be any
organic substance derived directly or indirectly from the photosynthesis process that is
available in a renewable way and can be used as an energy source [24,25,27]. Generally,
lignocellulose biomass can be categorized into four main sources: agricultural residues,
forestry residues, energy crops, and cellulosic waste. As a wide category of biomass, agro-
industrial biomass incorporates both food-based and non-food-based portions of crops [30].
Its composition is very diverse, with its main components being cellulose, hemicellulose,
and lignin [29,31].

From the point of view of chemical and structural composition, cellulose (C6H10O5)x
is a linear polymer consisting of a D-glucose chain linked by β-(1,4)-glucosidic bonds.
Approximately two-thirds of cellulose’s mass is organized in an ordered structure to
form stable crystallization zones, and high-density hydrogen bonding in crystallization
zones makes cellulose less soluble and recalcitrant in conversion. Therefore, cellulose is
insoluble in water and most organic solvents [32]. Hemicelluloses (C5H8O4)m are hetero-
geneously branched biopolymers containing a variety of polysaccharides, including xylan,
glucuronoxylan, arabinoxylan, glucomannan, and xyloglucan. They are relatively easy to
hydrolyze. Lignin [C9H10O3(OCH3)0.9 − 1.7]n is an aromatic polymer synthesized from
phenylpropanoid precursors. It confers rigidity to the cell wall, in addition to protecting
cellulose and hemicellulose from hydrolytic attack by plant pathogens. The structural
composition is presented in Figure 1.

Due to their different compositional characteristics, there is no single way to classify
biomass, so they can be grouped differently according to their purpose and scope. The
most used classifications are as follows [33]:

Wood and woody biomass: mainly composed of carbohydrates and lignin. Generally,
this category consists of materials such as trees and residue roots, bark, and leaves of
woody shrubs.

Herbaceous biomass: Herbaceous biomass comes from plants that have a non-woody
stem and that die back at the end of the growing season. This category includes pasture,
grain, or seed crops from the food-processing industry and their by-products, such as
cereal straw.

Aquatic Biomass: This category includes macroalgae, microalgae, and emergent plants.
It is considered the ideal feedstock for the production of third-generation biodiesel, as it
does not compete with food crops, along with the advantage of producing considerably
higher amounts of biomass per hectare compared to terrestrial crops.

Biomass from human and animal waste: The most common sources are bones, meat
meal, various types of animal manure, and human manure.

Mixed biomass: In some cases, when several substrates belonging to the different
classes mentioned above are found in hybrid form, they are classified in this category.

Globally, biomass sources are available in various categories, but the top four sources
that benefit energy industries are crops, agricultural residues (crop residues), forestry
residues, and municipal solid waste [34]. Forest and agricultural residues represent the
most abundant natural biomasses in the natural world with an approximate yield of around
200 billion tons. In China, the annual yield of agricultural residues can reach 900 million
tons, followed by Brazil (600 million tons), India (550 million tons), Indonesia (165 million
tons), and Argentina (129 million tons). The countries with annual production between 5
and 10 million tons are Malaysia, Zambia, Mozambique, the Czech Republic, Sri Lanka,
Kenya, and Bulgaria, while the countries with potentially less than 5 million tons/year are
Rwanda and Niger [35,36].
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Figure 1. Structure of biomass.

We can consider the elemental composition of different types of biomasses and their
calorific value. The most investigated residues are sugarcane bagasse, wood sawdust,
different parts of banana plants, bamboo wood, etc. The amount generated depends on the
agricultural production of each country and the country’s processing industries. These crop
remnants are generally left in the ground after harvesting or milling and can potentially
be used as biomass or an energy source. Of the types of biomass presented in Table 1,
those with the highest hydrogen content and lowest ash content are wood sawdust, banana
pseudostem, and Chlorella vulgaris. These are considered suitable for hydrogen production
according to their physicochemical characteristics.
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Table 1. Lignocellulosic biomass characteristics for hydrogen production.

Biomass
Elemental Analysis High Calorific Power

(Kcal/kg)
%

Ash
%

Humidity Ref.
% C % H % N % S % O

Woods and woody biomass

Bamboo 39 ± 3 6.1 ± 0.2 0.6 ± 0.3 0.018 ±
0.006 54 ± 3 4359–4568 1.4–3.0 44.51 [37,38]

Oil palm frond biomass 41.9 7.2 - 0.6 49.8 - 4.3 67 [39,40]

Sawdust agricultural
waste materials 44.75 6.31 1.68 0.05 46.87 3155.30–4411.48 1.03 59.38 [41–43]

Palm empty fruit bunch 40.8 4.1 - 0.52 52.8 4633.6 1.6 75.60 [44]

Herbaceous biomass

Rice husk and dust 39.8–41.1 5.7 ± 6.1 37.4 ±
36.6 - 0.5–0.6 4301.10–4573.50 16.21 9.53 [45,46]

Banana peels 35.65 ±
0.21

6.19 ±
0.07

1.94 ±
0.16

0.020 ±
0.0955

45.94 ±
0.17 4533.3 13.44 89.09 [27,47]

Banana pseudo-stem 42 5.62 1.08 - 51.30 3702.11 1.4–3.0 91.3 ± 0.5 [48–50]

Palm kernel shells 45–55 5.70 - 0.05–0.20 30–45 3854.97 2–5 44–55 [19]

Olive pits 44.81 6.40 - - 47.93 - 2 12 [22]

Peanut shells 47.52 5.67 1.59 0.13 34.94 3907.52 11.5 10.1 [51,52]

Sunflower husk
granules 52.1 5.8 0.7 0.14 37.2 4394.76 2.8 5.68 [52]

Bagasse 58.10 6.54 S/V 0.19 34.57 2388.46–2627.3 7.91 10.21 [53]

Corn 85.35 1.69 S/V S/V 12.12 7237.03 1.92 10.01 [54]

Aquatic Biomass

Chlorella vulgaris 52.8 7.24 4.81 0.35 28.2 5181.64 5.93 ±
0.81 6.8 ± 1.11 [55]

Phaeodactylum
tricornutum 51.1 6.80 2.75 0.207 27 4945.03 - - [55]

Synechococcus
elongatus 48.8 6.88 10.1 0.069 25.2 4600.86 - - [55]

The selection of the best process to use depends on the physicochemical properties
of the biomass. Residues with high moisture content, such as herbaceous plants, lend
themselves to a “wet/aqueous” conversion process, which involves biologically mediated
reactions, while “dry” biomass, such as wood chips, is more economically suitable for
gasification, pyrolysis, or combustion. Aqueous processing is used when the moisture
content of the material is such that the energy required for drying would be excessively
large compared to the energy content of the product formed [56]. In addition to mois-
ture, other properties are analyzed, such as ash calorific value, fixed and volatile carbon
proportions, metal/residue content, alkali metal content, and cellulose/lignin ratio. For
dry biomass conversion processes, the first five properties, including moisture, are of
interest, whereas, for wet biomass conversion processes, the first and last properties are the
most important [57].

3. Hydrogen Production from Biomass

Based on the process of gas generation, the direct production of hydrogen from
biomass can be achieved by two routes: thermochemical methods and biochemical pro-
cesses using microorganisms. The former include gasification, pyrolysis, and liquefaction
and are considered the most effective methods for producing hydrogen-rich gases from
biomass. These processes define all biomass into liquid and gaseous biofuels, which are
then synthesized into the required chemical. Otherwise, they can be used directly as a
transportation fuel. Thermal gasification is a known thermochemical method, producing a
temperature of 800 to 1000 ◦C and involving partial oxidation of biomass in the presence
of gasifying agents, such as steam or oxygen and air that provide O2 in amounts less than
stoichiometric amounts [48]. In the case of gasification with air, energy for the process is
produced by partial combustion of the fuel, whereas for gasification with steam, energy
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from an external source is required to generate steam and is, therefore, more challenging.
Syngas (a mixture of CO and H2) and biofuels are the main products of gasification and
pyrolysis, respectively. Biofuels are also determined in the synthesis of gas through some
specific conversion techniques, such as bio-oil reforming, bio-oil gasification, online pyrol-
ysis reforming, etc. [58,59]. Pyrolysis or co-pyrolysis is another promising technique for
hydrogen production. In this technique, the heating and gasification of organic matter take
precedence in a temperature range of 500–900 ◦C at a pressure of 0.1–0.5 MPa. Although
the pyrolysis process is considered the precursor to gasification, it differs significantly. The
primary products of pyrolysis comprise condensable gases and solid carbon. Condensable
gases can be further decomposed into CO, CO2, H2, and CH4, liquid, and char through
homogeneous gas-phase reactions and heterogeneous thermal gas–solid-phase reactions.
In addition, non-condensable gases, such as H2, CO, CO2, and LHG (light hydrocarbon
gas), are formed due to the cracking of condensable vapor through gas-phase reactions.
Another thermochemical process is gas liquefaction, which is a highly complex process that
consumes a lot of energy [60]. Liquid hydrogen is produced by cooling, purifying, convert-
ing ortho to hydrogen, expanding, and liquefying hydrogen feed gas from atmospheric
temperature to approximately 20 K [61].

There are also several biohydrogen production routes that use the biochemical pro-
cesses of microorganisms, such as, depending on the type of dark substrate and the mi-
croorganism, biophotolysis, indirect photolysis, fermentation, and photofermentation. The
biophotolysis process is similar to the photosynthesis process in that a water molecule is
used by the microbial photosynthesis mechanism to transfer solar energy to molecular
hydrogen. Scenedesmus spp., Chlorococcum spp., and Chlorella spp are considered to be
algal strains that produce inefficient hydrogen cells using this route of hydrogen production.
At the end of biophotolysis, two protons are released from the water molecule. Hydrogen
is formed by the presence of hydrogenase or by the reduction in CO2 [62] Indirect photol-
ysis is the process in which many cyanobacteria and microalgae can be used to produce
hydrogen from starch or glycogen. Two steps are involved in indirect biophotolysis: the
synthesis of carbohydrates using light energy and the production of hydrogen from the
synthesized carbohydrate using the cell’s metabolism under dark and photodecomposition
conditions [20,62]. Dark fermentation is considered the most promising technique for
biohydrogen generation through biomass conversion. It has a net energy ratio equivalent
to 1.9, while for steam-reforming methane, it is only 0.64. Hydrogen production can be
carried out by anaerobic bacteria, which is grown in a substrate rich in carbohydrates or a
dark substrate. In this method, in addition to obtaining hydrogen, acetic, butyric, lactic, and
propionic acids are produced, as well as solvents such as ethanol, methanol, and acetone.
Photofermentation involves the production of hydrogen from the conversion of organic
substrates by photosynthetic microorganisms. In this process, anoxygenic photosynthetic
bacteria, especially purple bacteria without sulfur, are capable of reducing H+ ions to
gaseous H2 by reducing the power obtained from the oxidation of organic compounds. It
is estimated that the yield of H2 is around 9–49 gKg−1 of raw material [63].

3.1. Hydrogen Production from Catalytic Biomass Gasification

A reliable method of using biomass is gasification to produce syngas. However, more
studies are currently required to eliminate the technical barriers to this process, such as the
formation of tar and the accumulation of ash. Tar can cause serious operational problems
in downstream equipment, such as coolers, filters, and channels, that impose a high cost
on the system. These problems require the removal of at least part of the produced tar
before using the produced gas. Therefore, tar control and removal are vital issues for the
development of biomass gasification on an industrial scale. One of the most promising
methods for tar removal that provides multiple benefits is catalytic gas cleaning [64].

Hydrogen production through biomass gasification varies in performance due to
different factors, such as the use of catalysts. The desired properties of the catalyst include
high catalytic efficiency, low cost, and high practical value [65]; according to Mastuli,
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factors such as dispersion, basicity, and binding strength play more important roles in
the biomass gasification of biomass in supercritical water to produce hydrogen [66], as
well as in reaction conditions, taking into account some critical parameters, such as the
equivalence ratio, metallic catalysts, temperature variations, and gasification agents in
hydrogen production.

The partial temperature and rate of heat have an important effect on the performance
of gasification, as well as on the composition pressure and the yield of the gaseous products.
During the gasification process, some unwanted components, such as tar, are also produced,
and these are the cause of many problems, such as blocking downstream equipment and
increasing operating costs. High heating rate and gasification temperature could increase
syngas (H2 and CO) production and decrease tar production. However, in situ catalytic
tar reduction is the most reasonable and effective strategy to remove tar and convert it to
useful product gas [67]. The investigation of catalysts in the gasification process is a very
important aspect because the right catalyst can rapidly increase the efficiency of gasification
and hydrogen production, as well as decrease the formation of unwanted components [54].

The content of H2 and CH4 during gasification increases significantly as the temper-
ature increases; thus, CO content increases by 10% (650 ◦C to 850 ◦C) and CO2 content
decreases slightly [65]. Scheme 1 shows the gasification process, along with the chemical
reactions that occur in the process.
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Table 2 shows the main reaction conditions applied, the type of reactor, the catalysts
used in the gasification reaction, and the yields achieved in terms of hydrogen production.

Hydrogen Production from Non-Catalyzed Biomass

According to a study by Rauch, the sorption-enhanced gasification of biomass is highly
advantageous, as it can produce hydrogen-rich syngas with a relatively high hydrocarbon
content, especially methane, as a source of energy and syngas [68]. Decomposition without
a catalyst at high temperatures presents an almost complete conversion of methane. Partial
oxidation can be used in this context, presenting advantages over other reforming methods,
including fuel flexibility, fast response time, simplicity, long useful life [69], long service life,
and a wide range of operating conditions for various feedstocks. It also yields catalyst-free
single-stage reforming of natural gas. Catalyst-free operation allows natural gas to be
reformed in a wide range of operating conditions [70].

According to Agarwal et al., the production of H2 from non-catalyzed pyrolysis shows
that the yield of H2 was directly proportional to the time and temperature of pyrolysis,
increasing energy expenditure compared to the catalytic reaction [71]. However, Ioannidou
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reports that the presence of a catalyst seems to increase the quality of both the liquids
and the gases produced, showing an increase in H2% and its calorific value compared to
non-catalytic reactions in corn pyrolysis [72].

As can be seen in Table 2, the reaction temperature ranges from 300 ◦C to a maximum
value of 950 ◦C. The most common reactors are fixed-bed and fluidized-bed reactors. Fixed-
bed reactors can have countercurrent mass flow and, in this case, the biomass and reactant
flow in opposite directions. While in fluidized-bed gasification systems, the flow direction
is the same. Bubbling and circulating, differing with respect to speed and fluidizing agent,
are the most common effects in the reviewed investigations of water vapor and nitrogen
gas. In some special cases, argon carrier gas and oxygen vapor are also used. Figure 2
shows the gasification process.

Catalysts 2022, 12, x FOR PEER REVIEW 11 of 22 
 

 

Gao et al. carried out an experimental study using a fixed-bed gasifier with a steam 

reformer with a porous ceramic packing layer, which acts as a catalyst and is composed 

of 𝑆𝑖𝑂2 , 𝐴𝑙2𝑂3 , 𝑀𝑔𝑂 , 𝐹𝑒2𝑂3 , and 𝑁𝑎2𝑂 + 𝐾2𝑂 + 𝐶𝑎𝑂 , 𝑇𝑖𝑂2 + 𝐵𝑎𝑂 + 𝑁𝑖𝑂  in a percent-

age of 26, 60, 11, 1, 1.1–1.5, and 0.8, respectively. This porous ceramic reformer showed 

good performance in the tar cracking process, not only avoiding its production in the or-

ganic phase but also not presenting the deactivation problem that typically occurs when 

using a catalyst for reforming [41]. Another study in which unconventional catalysts were 

presented is that of Ning et al., who used catalytic steam from corncob char to obtain hy-

drogen-rich synthesis gas. Using a laboratory-scale fixed-bed gasifier, the method of char-

absorbing catalysis was used to load the catalyst, using four alkaline salts 𝐾𝑂𝐻, 𝐾2𝐶𝑂3, 

𝑁𝑎𝑂𝐻, and 𝑁𝑎2𝐶𝑂3. The results showed that 𝐾𝑂𝐻 and 𝑁𝑎𝑂𝐻 exhibited higher catalytic 

behavior, reaching a maximum hydrogen yield of 197.8g Kg−1char. In addition, the 𝐶𝑂2 

concentration decreased with the increase in 𝐾𝑂𝐻 concentration and the 𝐶𝑂 concentra-

tion increased from 24% to 29.5% [54]. Studies such as that of Guozhao Zhang show that 

the use of calcined dolomite improves catalytic activity, offers improvements in synthesis 

gas production, and decreases tar production and steam reforming of light hydrocarbons. 

Other factors, such as the effect of the steam/biomass ratio, have an influence on the 

synthesis gas obtained, as well as on the formation of undesirable products, which also 

depend on the application given to the synthesis gas; additional purification steps are nec-

essary, for example, a higher 𝐻2/𝐶𝑂 ratio is needed for fuel cells, while the ratio of 2 is 

more appropriate for the Fisher–Tropsch process, so it is important to consider this in 

future experimental processes. 

 

Figure 2. Gasification system scheme. 

3.2. Hydrogen Production from Pyrolysis of Biomass 

According to Vuppaladadiyam, pyrolysis is a thermochemical conversion to obtain 

value-added products [85]. It can convert biomass into fuel gas, liquid oil, and solid coal 

efficiently in the absence of oxygen [86,87], which occurs at relatively low temperatures 

(between 350 and 700 °C). This process involves the heating and drying of a biomass par-

ticle, as well as the release of volatiles. It could be considered a very attractive process 

because the hydrogen produced is clean and free of contaminants, that is,  𝐶𝑂  and 

𝐶𝑂2 [88]. The fast pyrolysis of solid biomass is of particular interest as it produces a sig-

nificant yield of liquid that can be used as a fuel. Various types of pyrolysis reactors are 

known, such as the fluidized-bed flash pyrolyzer, the Auger reactor, the rotating cone 

Figure 2. Gasification system scheme.

Table 2. Operating conditions and results obtained using the gasification method.

Biomass Reactor Gasification Agent Reaction Conditions Catalyst H2 Ref.

Pine sawdust RLF Water steam T = 800–950 ◦C. t = 6.4–4.5 s.

Porous ceramic :
MgO, Fe2O3, Na2O,
K2O, CaO, TiO2 y

BaO.

24, 985 mmol g−1 [41]

Rice husk FBR–bubbly Air T = 950 ◦C CaMg(CO3)
45.9% vol with

temperature rise to
950 ◦C

[64]

Banana peel FBR quartz Water steam S/C: 21.7; T = 1023 K — 3.42 mmol g−1 [73,74]

Rice husk FBR Steam plus
silica sand

T = 600 ◦C; P = atmospheric
t = 24 h; S/B = 0.4.

CaO samples;
(Mg, K, Na) 17.5–20.5 mmol g−1 [21]

Oil palm SCWG reactor batch Water steam T = 380 ◦C; P = 22.1 Mpa
20NiO/MgO,

20CuO/MgO and
20ZnO/MgO

35.4 mmol mL−1 [39]

Oil palm SCWG reactor
discontinuous Water steam

T = 400 ◦C
P = 25 Mpa
t = 30 min

Zn doped with
MgO nanometric 118.1 mmol mL−1 [39]

Corn straw RLF Water steam
with oxygen T = 800–950 ◦C, t = 10 min

Biochar with (KOH,
K2CO3, NaOH y

Na2CO3).

197.8 mmol g−1 [54]

A mixture of
banana peel,

Japanese cedar, and
rice husk

RLF Argon carrier gas T = 650–850 ◦C, t = 2 h,
v = 50 cm3/min K2CO3 y CaO

66.8% when the
temperature rises to

850 ◦C.
[12]
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Table 2. Cont.

Biomass Reactor Gasification Agent Reaction Conditions Catalyst H2 Ref.

Palm kernel shells ADG Water steam T = 800 ◦C, 5–10 Kpa NiO/MD H2 + CO = 80.4% [19]

Wood sawdust FBR Steam and N2 T = 700 ◦C v = 35 ◦C/min. Fe/CaO 38.21 mmol g−1 [75]

Cotton stall,
rice husk

-FPBO
-RLF two stages Water steam T = 600–700 ◦C v = 0.1 g/min CaO 11.55 mmol g−1 [76]

Sugar cane bagasse RDS T = 500–800 ◦C

Nickel
nanocatalysts
(Ni/CNT)

supported on
carbon nanotubes

21.8 mmol mL g−1 [53]

Banana pseudostem Reactor SCWG Water steam win N2
T = 300–600 ◦C t = 60 min,

P = 22 and 25 Mpa
with metal

(Ni/Fe/Ru) 11.1 mmol mL g−1 [40]

Wheat straw RDS Water steam
T = 300, 400, 500 ◦C,

P = 23–25 Mpa, t = 15, 30 and
45 min

Nickel catalysts 5.78 mmol mL g−1 [77]

Oil palm Reactor WGS Steam T = 800 ◦C atmospheric
pressure

59.25% by volume
to 800 ◦C, CGE

(cold gas efficiency)
maximum of 84%.

[78]

Sorghum RLF Steam T = 773 K v = 11,8 K/min.
t = 90 min. P = 9.6–29.6 Mpa K2CO3 and Na2CO3 11.9 mmol g−1 [79]

Pinewood FBR Water steam T = 650–850 ◦C Dolomite, olivine,
and magnesite 15.8% [65]

Cane bagasse RDS Water steam P = 25 Mpa, T = 800 ◦C KOH 75.6 mmol g−1 [80]

Nutshell Batch microreactor Water steam T = 600 ◦C
t = 30 min P = 220 bar KOH y Na2CO3 4.63 mmolg−1 [81]

Palm shell FBR Water steam
T = 900 ◦C
P = 5 Mpa

t = 16.3 min
Sodium on Pt/Al2O3 31.5 mmol g−1 [28]

Rice husk Reactor WGS Water steam T = 700 ◦C
P = 1 atm CaO 6.58 mmol g−1 [76]

Pine sawdust RLF Water steam T = 730 ◦C
P = 1.5 Mpa t = 6 h NiO/Dolomite 22.95 mmol g−1 [82]

Wood Reactor: Ryield and
Rgibbs CO2, water steam

T = 750 ◦C
P = 1 atm

t = 6 h
CaO/C 85.55 mmol g−1 [83]

Banana peel RLF N2–air T = 320 ◦C
t = 25 min - 32.71 mmol g−1 [73]

Rice straw FBR Steam
T = 650 ◦C
P = 1 atm
t = 5–7 h

CaO 24.63 mmol g−1 [84]

RLF: fixed-bed reactor; FBR: fluidized-flow reactor; RDS: discontinue reactor; SCWG: supercritical water gasifica-
tion; SWG: critical water gasification; FPBO: fast pyrolysis bio-oil; ADG: allothermal downdraft gasifier.

Another important aspect of the development of the reaction is the use of catalysts.
Catalytic gasification reactions show evidence of greater efficiency in the process and better
results are obtained when a catalyst is added. The most widely used catalysts are metallic
ones, such as Ni, Fe, Ru, Na, and K, followed by Al2O3, CaO, MgO, CO3, zeolite, and
dolomite, as can be seen in Table 2. The Ni-based catalyst shows high tar removal efficiency
in the range of 50% to 70% and an improvement in H2 production linked to residence time.
In the 45 min it takes to increase from 2.8 to 5.78 mmol/g, a volume fraction of synthesis
gas was obtained in a percentage of 48.2% H2, 28.2% CO, 15.9% CO2, and 7.6% CH4 and
a calorific value of 11.5 MJ/Nm3. By adding nickel nanocatalysts (Ni/CNT) supported
on carbon nanotubes, the yield is 21.8 mmol H2/g of biomass, while catalysts with CaO
support present a yield of 256.81 mL/g of biomass and a 67% reduction in tar from 550 ◦C
to 700 ◦C. By adding Fe on a CaO support, the synthesis gas yield was 38.21 mol/kg of
biomass, the H2 yield was 26.40 mol/kg of biomass, LHV values were 8.69 MJkg−1, and
gasification efficiency was 49.15% with a ratio of Fe/CaO = 5% being the optimized mass.
The gasification reactions with catalysts with both aluminum silicate, CaO, zeolite, and
dolomite present an equivalent ratio of 0.235, 1.94 m3kg−1 of synthesis gas yield, 57.4%
cold gas efficiency, and a low calorific value of 4.61 MJm−3.
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Gao et al. carried out an experimental study using a fixed-bed gasifier with a steam
reformer with a porous ceramic packing layer, which acts as a catalyst and is composed
of SiO2, Al2O3, MgO, Fe2O3, and Na2O + K2O + CaO, TiO2 + BaO + NiO in a percentage
of 26, 60, 11, 1, 1.1–1.5, and 0.8, respectively. This porous ceramic reformer showed
good performance in the tar cracking process, not only avoiding its production in the
organic phase but also not presenting the deactivation problem that typically occurs when
using a catalyst for reforming [41]. Another study in which unconventional catalysts
were presented is that of Ning et al., who used catalytic steam from corncob char to obtain
hydrogen-rich synthesis gas. Using a laboratory-scale fixed-bed gasifier, the method of char-
absorbing catalysis was used to load the catalyst, using four alkaline salts KOH, K2CO3,
NaOH, and Na2CO3. The results showed that KOH and NaOH exhibited higher catalytic
behavior, reaching a maximum hydrogen yield of 197.8 g Kg−1 char. In addition, the CO2
concentration decreased with the increase in KOH concentration and the CO concentration
increased from 24% to 29.5% [54]. Studies such as that of Guozhao Zhang show that the
use of calcined dolomite improves catalytic activity, offers improvements in synthesis gas
production, and decreases tar production and steam reforming of light hydrocarbons.

Other factors, such as the effect of the steam/biomass ratio, have an influence on the
synthesis gas obtained, as well as on the formation of undesirable products, which also
depend on the application given to the synthesis gas; additional purification steps are
necessary, for example, a higher H2/CO ratio is needed for fuel cells, while the ratio of 2
is more appropriate for the Fisher–Tropsch process, so it is important to consider this in
future experimental processes.

3.2. Hydrogen Production from Pyrolysis of Biomass

According to Vuppaladadiyam, pyrolysis is a thermochemical conversion to obtain
value-added products [85]. It can convert biomass into fuel gas, liquid oil, and solid coal
efficiently in the absence of oxygen [86,87], which occurs at relatively low temperatures
(between 350 and 700 ◦C). This process involves the heating and drying of a biomass
particle, as well as the release of volatiles. It could be considered a very attractive process
because the hydrogen produced is clean and free of contaminants, that is, CO and CO2 [88].
The fast pyrolysis of solid biomass is of particular interest as it produces a significant
yield of liquid that can be used as a fuel. Various types of pyrolysis reactors are known,
such as the fluidized-bed flash pyrolyzer, the Auger reactor, the rotating cone reactor, and
the vacuum pyrolysis reactor [87]. Scheme 2 shows the pyrolysis process, along with the
chemical reactions that occur in the process.
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According to Table 3, it can be seen that the temperature ranges up to a maximum
value of 900 ◦C. An increase in temperature affects the yield of hydrogen production, which
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is more common between 500 and 600 ◦C, and the residence time of the reactions occurs in
a relatively short time, which yields lower costs and better results. The yields are above
40% in weight. Catalysts play a very important role in the production of synthesis gas,
and it can be seen that nickel-based catalysts are the most used because they improve the
efficiency and productivity of the gas and the removal of tar. More promising due to its
performance and low cost, alumina is also a highly regarded catalyst. The fixed-bed reactor
is considered within the study as the most used in the pyrolysis process. Figure 3 shows
the pyrolysis process.

Table 3. Operating conditions and results obtained using the pyrolysis method.

Biomass Reactor Gasification Agent Reaction Conditions Catalyst Results Ref.

Baggase Double-bed
microreactor Ar-H2

T = 850 ◦C
P = 1 atm t = 30 min

Ni and Fe
nanocatalysts

Yield
H2 = 35.32 mmol g−1 biomass [53]

Pine Tree RLF Air T = 550 ◦C
t = 17 min

Zeolites-quartz
sand Yield H2 = 18% in weight [85]

Wood chips RLF Water steam T = 700 ◦C Ni/Char 109.848 mmol g−1 biomass [89]

Sewage sludge Quartz RLF Water steam
T = 600 ◦C

v = 100 mL/min
t = 20 min

CaO Yield = 42.59%
12.07 mmol g−1 biomass [84]

Sawdust RLF Water steam

T = 650 ◦C
P = 101.325 KP
v = 30 mL/min

t = 20

Ni − Fe/CaO Yield H2 = 18.29%
20.40 mmol g−1 biomass [90]

Guangxi black
skin bagasse Quartz FPBO Argon atmosphere

T = 250 ◦C
P = 0.28 MPa

v = 40 mL/min
t = 5 min

Ni/SiC 19.065 mmol g−1 biomass [91]

Pine and fir wood FPBO of two steps -

T = 500 ◦C
P = 0.28 MPa
v = 0.2 L/min

t = 5 min

NiAl2O4/Al2O3
Yield H2 = 48.12%

9.34 mmol H2g−1 biomass [92]

Rice husk FPBO continue flow N2 T = 700 ◦C Al2O3 Yield H2 = 47.9% [93]

RLF: fixed-bed reactor; FPBO: fast pyrolysis bio-oil.
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3.3. Hydrogen Production by Liquefaction

Liquefaction is an emerging potential route for hydrogen production, still in the early
stage of investigation. Distinct from gasification and pyrolysis, the main product of biomass
liquefaction is bio-oil, and it operates at low temperatures (250–325 ◦C) and high pressure
(20 MPa). This can be classified into two processes: direct liquefaction and hydrothermal
liquefaction. Hydrothermal liquefaction of wet biomass is normally operated at moderate
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temperatures (250–370 ◦C), high pressures (4–22 MPa), and preferably in the presence of a
catalyst to break down the polymeric structure of the biomass. It has an advantage over the
pyrolysis process in that it is not necessary to perform biomass drying pretreatment, which
implies energy savings. For this reason, this process is highly desirable for the processing
of aquatic biomass, garbage, and organic sludge; however, it presents some disadvantages,
such as the severe reaction conditions and the low yield of hydrogen from the reformation
of the oil produced as a result of hydrothermal liquefaction because the main products
of this process are a liquid biocrude oil together with a gas stream, an aqueous phase,
and a solid waste by-product. Scheme 3 shows the process. To address these challenges,
some researchers have proposed coupling hydrothermal liquefaction with aqueous phase
reforming, which is a catalytic process capable of converting oxygenates dissolved in water
into a hydrogen-rich gas that can be used to upgrade biocrude [96,97]. The reactors used
can be batch or continuous. Although continuous reactors give a higher conversion of
raw material, most of the studies focus on batch conditions. Due to these facts, no plant
has been implemented on a commercial scale so far, and it is necessary to explore many
factors, such as the reaction mechanism, thermal and kinetic behavior, optimization of
process parameters, reactor design, and economic analysis [98,99]. Figure 4 shows the
liquefaction process.
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In Table 4, it can be seen that the effect of process parameters, such as temperature,
pressure, catalyst, type of parameter, and reaction time are significantly important for



Catalysts 2023, 13, 766 13 of 19

the production of H2. In addition, liquefaction is mainly focused on the production of
liquid fuels, and additional processes such as gasification are needed for the production
of hydrogen. The best yields were obtained using Chlorella vulgaris and fruit pulp. It is
also observed that all investigations were carried out in batch reactors, so a study of the
economic and environmental feasibility of this method should be carried out.

Table 4. Operating conditions and results obtained through biomass liquefaction.

Biomass Reactor Reaction Conditions T (◦C)/P
(Mpa)/t (min) Catalyst H2, mmol g−1 Ref.

Coconut shell Tubular batch 600 ◦C/
23–25 Mpa K2CO3 4.8 [77]

Fruit pulp Batch 600 ◦C/
25 Mpa

RU/activated
charcoal 54.8 [100]

Microalgae Batch 385 ◦C/
26 Mpa —- 4 [101]

Chlorella Vulgaris Non-stirred batch 350 ◦C/35 Mpa/
30 min —- 30 [102]

Chlorella Vulgaris Batch
350 ◦C/

Atmosphere
/0–60 min

—- 38–72 [103]

Scenedesmus
obliquus Batch

240–320 ◦C/
5 Mpa/
60 min

CaOH 5.55 [104]

Household waste Batch 240–320 ◦C/5 Mpa/
60 min

Bentonite/
Nb − tTiO2

3.9 [105]

4. Technical and Economic Evaluations

Climate change and global warming have garnered a lot of interest due to the need
to reduce anthropogenic emissions of greenhouse gases, which is why the low-carbon
economy contributes to implementing new and profitable energy systems [108]. Therefore,
renewable energy technologies, such as solar, wind, hydro, biomass, geothermal, and
hydrogen, have been introduced to generate electricity to overcome the current environ-
mental crisis [109]. An official report from the International Energy Agency (IEA) states
that the demand for the use of fossil fuels to generate electricity has begun to decrease since
2019 [110]. Hydrogen is a very interesting energy carrier with an energy yield of 122 KJg−1,
which is 2.75 times more than the fossil fuels [111]. Solid biomass in the United States was
estimated to be able to supply 48 million metric tons (MMT) of hydrogen per year [112].

Research shows that the cost of renewable energy has an indirect effect on attitudes
towards the use of renewable energy through the associated impact on the perception
of ease of use and perceived usefulness [110]. To optimize processes, biomass must be
as cheap as possible according to Klein and Lepage, as conditions have a significant
impact on cost, including energy to increase temperature and pressure, electricity used
for equipment or reactions, and catalyst type and cost. Cost estimates are also affected
by external factors, such as fluctuating fossil fuel prices, variations in a given country’s
biofuel policies, and emissions [113,114]. Biomass gasification represents an effective and
promising conversion technology for different energy carriers/chemicals, it has promising
potential to offer high energy-conversion efficiency (in the range of 57 to 59%), lower energy
costs, and decarbonization penalties (around 2.2 to 3.5 net), and present negative carbon
emissions [108]. One of the key characteristics of biomass-based sources is their potential
renewability. The overall efficiency of power generation from biomass is low (15–30%) [115].
The gasification life cycle cost was 35% lower than a single gas system. For systems
with large biomass gasification, the capital cost is considered to be around USD 700/kW
of hydrogen. The results show that forestry-residue-derived hydrogen is economically
competitive (USD 1.52–2.92/kg H2) compared to fossil-derived hydrogen [116].

Studies on the techno-economics of the fast pyrolysis of corn stover to hydrogen
production demonstrate a production cost of USD 2.1–3.09/kg of H2 [85]. The cost of
producing hydrogen gas should typically be near to USD 0.3/kg H2, which is equivalent
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to the cost of gasoline (USD 2.5/GJ) [111]. The biogas production cost of these types of
processes should be considered. These expenditures, therefore, cause the production cost
of hydrogen using biomass materials to be in the range of USD 1.2–2.4/kg, while natural
gas reforming can produce hydrogen with a cost of less than USD 0.8/kg [113].

5. Main Remarks and Conclusions

Hydrogen is considered the fuel of the future; however, obtaining it still presents great
challenges. In order for it to be environmentally sustainable in the long term, it must be
generated from resources that are renewable and carbon neutral. In this sense, the main
raw material that meets these conditions is lignocellulosic biomass, which is characterized
by its abundance and low cost. It is considerably cheaper than crude oil in energy terms.
From the thermochemical methods reviewed in this study, it can be observed that the types
of biomasses mostly used are wood and woody biomass. This is due to the fact that they
have a lower moisture content and a greater amount of lignin compared to herbaceous
biomass, which would imply a lower energy cost in drying processes; however, there are
also various studies for different types of algae.

Tables 2–4 present the different biomasses used for the production of hydrogen as
well as the reaction conditions and the results obtained with the main thermochemical
methods that have been developed. The pyrolysis and gasification methods are those that
have seen the most research and are considered in the literature as economically viable and
competitive with the conventional method of natural gas reforming. The product obtained
in gasification with steam is 1–6 g without the application of a catalyst and 6–8 g with
a catalyst for every 100 g of biomass, which makes evident the necessity of a catalyst in
this process, managing to improve the performance of H2, as well as energy costs, due
to the decrease in the conditions of both temperature and reaction time. Additionally,
the biggest drawback of gasification is the production of tar because it causes serious
problems for the subsequent use of synthesis gas; therefore, the optimization of the catalyst
is essential to improve this method. Another important aspect is the type of reactor used.
Performance improvements can come from new designs, such as catalytic membrane
reactors, which improve syngas conversion by changing the equilibrium of the reaction.
Regarding the results obtained in the biomass pyrolysis-reforming process in two steps,
they are encouraging as an alternative form of biomass gasification. The main advantage
of this process is that a tar-free product is obtained, which is the biggest challenge of
gasification; however, the deactivation of the catalyst, especially its stability, must be
taken into account for future studies so that this method can be scaled. For its part, the
liquefaction process is still under investigation, with studies using only batch reactors. This
method is promising because it does not require biomass pretreatment, which implies a
lower energy cost corresponding to drying processes. Because this method is still under
investigation, the reaction conditions are not optimized, being very severe and with very
low yields.

In the future, the conversion of biomass to hydrogen will largely depend on many
factors, including the availability of biomass, technological development, measures taken
to solve the problems mentioned above, and political regulations on clean fuels.
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