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Abstract: Transition metal-catalysed homogeneous hydrogenation of CO2 to formate or formic acid
has emerged as an appealing strategy for the reduction of CO2 into value-added chemicals. Since
the state-of-the-art catalysts in this realm are primarily based on expensive precious metals and
require demanding reaction conditions, the design and development of economically viable non-
noble metal catalysts are in great demand. Herein, we exploit the thermodynamic correlation between
the crucial reaction steps of CO2 hydrogenation, that is, base-promoted H2-splitting and hydride
transfer to CO2 as a guide to estimate the catalytic efficiency of non-noble metal complexes possessing
a ligand backbone containing a secondary amine as an “internal base”. A set of three non-noble
metal complexes, one bearing tri-coordinated PNP-pincer (1Mn) and the other two based on tetra-
coordinated PNPN-pincer (2Mn and 3Fe), have been investigated in this study. The computational
mechanistic investigation establishes the role of the “internal” amine base in heterolytically splitting
the metal-bound H2, a critical step for CO2 hydrogenation. Furthermore, the thermodynamic
correlation between the hydricity (∆G

◦

H− ) of the in situ generated metal-hydride species and the free
energy barrier of the two crucial steps could provide an optimal hydricity value for efficient catalytic
activity. Based on the computational estimation of the optimal hydricity value, the tri-coordinated
PNP-pincer complex 1Mn appears to be the most efficient among the three, with the other two tetra-
coordinated PNPN-pincer complexes, 2Mn and 3Fe, showing promising hydricity values. Overall,
this study demonstrates how the crucial thermodynamic and kinetic parameters for pincer-based
complexes possessing an “internal base” can be correlated for the prediction of novel non-noble
metal-based catalysts for CO2 hydrogenation.

Keywords: CO2 hydrogenation; non-noble metal; PNP pincer ligand; internal base; hydricity;
DFT calculations

1. Introduction

The anthropogenic release of CO2 due to the extensive combustion of fossil fuels
creates environmental turmoil [1,2]. Over the past few decades, the drastic increase in
atmospheric CO2 concentration has triggered climate change, global warming, rising sea
levels, ocean acidification, etc. [3–6] This motivates researchers to search for alternative
fuels and renewable energy sources. In this direction, the utilization of CO2 as a C1 source
for value-added chemicals and fuels has attracted significant research attention in recent
times owing to the low-cost, high abundance, relatively low toxicity, and recyclability of
CO2 [7,8]. Over the past twenty years, economically viable strategies have been developed
through which atmospheric CO2 can be converted into environmentally congenial fuel
components [9,10]. However, the reduction of CO2 poses tremendous challenges due to its
thermodynamic stability and kinetic inertness [11]. The kinetic inertness of CO2 demands
efficient catalytic processes, which usually involve multiple-electron transfer coupled with
protons or Lewis acids (e.g., transition metals) [9–11]. In this direction, a great amount of
research has been devoted to developing both homogeneous and heterogeneous catalytic
processes for converting CO2 to useful chemicals and fuels [12,13].
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Among the wide variety of homogeneous CO2 reduction pathways [7,14–16], CO2
hydrogenation becomes one of the most attractive ones as this pathway can offer a myriad
range of value-added chemicals, such as formic acid, formate, formaldehyde, methanol,
methane, etc. [17–19], and can serve as a crucial step for sustainable organic synthe-
ses [20,21]. The elemental CO2 hydrogenation process leading to formic acid, formate, or
their derivatives is particularly one of the most efficient pathways of CO2 conversion to
useful chemicals [22–26]. Since the first report of homogeneous CO2 hydrogenation by
Inoue et al. [27], an appreciable number of noble and non-noble transition metal-based
homogeneous CO2 hydrogenation catalysts have been reported with noteworthy turnover
numbers (TON) and turnover frequencies (TOF) [9,26]. Among the noble metal catalysts,
an iridium-pincer catalyst [IrH3(PNPiPr)] (PNPiPr = 2,6-(CH2PiPr2)2C5H3N) was reported
to exhibit a remarkable highest-to-date TOF of 150,000 h−1 for CO2 hydrogenation to
formate [28]. However, when it comes to the non-noble metal catalysts, the reactivity
lacks far behind that of noble metals. The highest CO2 hydrogenation reactivity with a
TOF of 74,000 h−1 has been reported with a cobalt(I)-phosphine catalyst, [CoI(dmpe)2H]
(dmpe = 1,2-bis(dimethylphosphino)ethane), in the presence of a very strong Verkade
base [29]. Therefore, it is highly desirable to develop robust CO2 hydrogenation catalysts
based on environmentally benign and cost-effective non-noble metals that can operate in
ambient conditions. The rational design and development of such catalysts necessitate
an atomic-level, understating of the key reaction steps of CO2 hydrogenation and crucial
thermodynamic and kinetic factor(s) that dictate the overall reactivity.

Transition metal-catalyzed CO2 hydrogenation usually follows a common reaction
mechanism as shown in Scheme 1a [30]. The catalytic cycle consists of three distinct re-
actions steps, involving (i) base-promoted H2-splitting to form a metal hydride species
(I1→ I2), (ii) nucleophilic attack of hydride (H−) of the metal-hydride species (I2) under-
going hydride transfer from metal to CO2 (I3→ I4), and (iii) protonation of the terminal
oxygen of formate (HCOO−) and release of the formic acid (I4→ I5). Previous reports
showed that among these three steps, either H2-splitting or hydride transfer can act as the
rate-determining step (RDS) of the entire catalytic cycle depending on the nature of the cata-
lyst and the corresponding metal-hydride complex [30–34]. This catalyst-dependent switch-
ing of the RDS was demonstrated experimentally using Ru(II) [(η6-C6Me6)-RuII(bpy)(H)]+

and Ir(III) [(η5-C5Me5)IrIII(bpy)-(H)]+ (bpy = 2,2′-bipyridine) complexes, where the former
exhibited an H2-splitting RDS and the later showed a hydride transfer RDS [35].
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Scheme 1. (a) Established reaction mechanism and steps involved in homogeneous CO2 hydro-
genation. (b) Schematic representation of the correlation diagram between the two key reaction
steps of CO2 hydrogenation and hydricity. (c) Chemical structures of the tri- and tetra-coordinated
pincer ligands.
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It has been realized that the H2-splitting step is driven by the strength of the M–H
bond formation in the metal hydride; on the other hand, the hydride transfer is driven
by the ability of the M–H bond to donate the H− to CO2 [36,37]. As such, the electronic
requirement of the two key steps is quite the opposite. Therefore, a delicate balance must be
maintained between the two key steps of CO2 hydrogenation, that is, H2 splitting and hy-
dride transfer for efficient execution of the reaction. As the two crucial steps are connected
by the intermediacy of the M–H bond in the metal hydride intermediate (I2), the balance is
controlled by the strength of the M–H bond (Scheme 1b). The M–H bond strength can be
quantified using a thermodynamic parameter, called hydricity (∆G

◦
H− ), which is a measure

of the ability of the metal-hydride complex to donate its hydride. Understandably, a lower
hydricity (less positive value) will ease the hydride donation, and the opposite is true for the
H2 splitting process. Using phosphine-based catalysts of the type [M(H)(η2-H2)(PP3

Ph)]n+

(M = Fe(II), Ru(II), and Co(III); PP3
Ph = tris(2-(diphenylphosphino)phenyl)phosphine),

Mondal et al. established that metal hydride species possessing relatively low hydricity
exhibit base-promoted H2-splitting RDS, whereas complexes with high hydricity undergo
hydride transfer RDS [36]. In a subsequent report, the same group used hydricity as
a guide to present rational design strategies for predicting efficient CO2 hydrogenation
catalysts based on non-noble metals [37]. These computational reports have been truly
motivating in the rational design and development of non-noble metal-based catalysts for
CO2 hydrogenation to formate or formic acid.

One of the major challenges in base-assisted CO2 hydrogenation reactions is the re-
quirement of an “external” sacrificial base to promote the H2-splitting step as well as the
product release. This can be efficiently circumvented using pincer-based complexes featur-
ing an “internal base” in-built into the pincer ligand. Leitner and coworkers reported how
metal-ligand cooperation through a secondary amine (–N–) functionality in the Mn-PNP
pincer complex (1Mn) can promote the activation of pinacolborane during the hydrobo-
ration of carbon dioxide [38]. Later on, a computational mechanistic investigation by Lei
and coworkers demonstrated the promising potential of complex 1Mn towards CO2 hy-
drogenation to methanol [39]. Hazari et al. showcased how the Lewis acidic behavior of a
PNP-pincer ligand’s N–H moiety can be exploited for the Fe-catalyzed CO2 hydrogenation
to formate [40]. A similar Fe-pincer catalytic system was also used by Bernskoetter et al.
for the CO2 hydrogenation to methanol [41]. These reports present a highly promising
prospect that the N-atom in the pincer chain (Scheme 1c) can be exploited as a base for the
crucial H2-splitting step and the corresponding form as a Lewis acid to stabilize the formate
product (Scheme 1a). The tri-coordinated PNP-pincer ligands, although extremely efficient
in inducing versatile catalytic reactivities in transition metal complexes, occasionally suffer
from ligand dissociation in harsh reaction conditions. Very recently, Li et al. computa-
tionally predicted that a more rigid version of the pincer ligand, tetra-coordinated PNPN
pincer (Scheme 1c), can be highly promising in the hydrogenolysis of polyurethanes [42].
The computationally predicted novel Mn- and Fe-based tetra-coordinated PNPN com-
plexes (2Mn and 3Fe) possessing an “internal base” appear highly promising toward
CO2 hydrogenation.

Herein, we investigate how the two crucial reaction steps of CO2 hydrogenation to
formate/formic acid are the base-promoted H2-splitting and hydride transfer in the cat-
alytic cycle of metal-pincer complexes featuring an “internal base” are correlated with the
hydricity of the metal-hydride intermediate. Specifically, we have performed a mechanistic
investigation and reaction energetics calculations on the tetra-coordinated PNPN-pincer
complexes 2Mn and 3Fe along with the experimentally reported tri-coordinated Mn-PNP
pincer complex 1Mn (Scheme 2) using density functional theory (DFT) calculations. Im-
portantly, we have correlated the driving force (∆G) and reaction barrier (∆G‡) of the
H2-splitting and hydride transfer steps of all the complexes (1–3) with the calculated
hydricities of their metal-hydride intermediates. Finally, based on the correlation plots,
we predicted the catalytic potential of the non-noble metal PNP-pincer complexes for
CO2 hydrogenation.
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Scheme 2. PNP-pincer complexes (1–3) of the non-noble metals (Mn and Fe) possessing the N-atom
as an “internal base” are investigated in this work.

2. Computational Details

All the geometry optimizations and harmonic vibrational frequency calculations
have been performed at the density functional theory (DFT) level, employing the range-
separated hybrid functional ωB97XD in conjunction with the LANL2DZ basis set and
corresponding effective core potential (ECP) on the metals and Pople’s double-ξ basis
set 6-31G(d,p) on the main-group elements. The conductor-like continuum solvation
model (CPCM) with tetrahydrofuran (THF, ε = 7.4257) as solvent was employed during
the geometry optimization. We also investigated whether there is any explicit solvent
effect on the intrinsic reaction barrier and driving force using an explicit solvent (THF)
molecule in the proximity of the reaction center. No noticeable change in the barrier
and the driving force was observed due to the explicit solvent molecule (Figure S1 from
Supplementary Materials). For a relatively accurate estimation of reaction energetics, a
basis set combination of LANL2TZ and the corresponding ECP on the metals and the
triple-ξ basis set 6-311++G(d,p) describing the main-group elements was used for the
calculation of electronic energies at the ωB97XD level. The long-range corrected DFT
functional ωB97XD has been reported in the literature to produce reliable results on the
reaction energetics of metal-pincer complexes [32]. All the transition states were confirmed
by connecting the reactants and products by intrinsic reaction coordinate (IRC) calculations
and characterized by only one imaginary frequency. The enthalpies (H) and Gibbs free
energies (G) were calculated at standard conditions, 298 K and 1 atm. All the calculations
were performed using the Gaussian 16 suite of the quantum chemistry program [43]. A
detailed description of the calculation of thermodynamic hydricities (∆G

◦
H− ) [44–48] at the

DFT level is presented in the Supporting Information.

3. Results and Discussion

The complete reaction free energy profile involving the reaction steps described in
Scheme 1a for CO2 hydrogenation catalyzed by the reported Mn(I)-PNP pincer complex
1Mn leading to formic acid is presented in Figure 1. The energetics for the different reac-
tion steps is calculated at the DFT-ωB97xD level. Prior to the H2-splitting, the molecular
hydrogen binds to the Mn-center in an endergonic manner (I1, ∆G = 10.6 kcal/mol) fol-
lowed by the base-promoted splitting of the metal-bound H2 to generate the metal-hydride
intermediate (I2). The N-atom of the PNP-pincer ligand serves as the “internal base” to
assist the H2-splitting process. The overall process (1Mn → I2) appears to be thermoneutral
(∆G = 0.1 kcal/mol) and involves a moderate free-energy barrier of 14.6 kcal/mol through
an H2-splitting transition state (TS1). The net free energy barrier and free energy change
for the H2 splitting step are similar to that reported earlier by Lei et al. [39] Importantly,
the intrinsic driving force, that is, from the metal-bound H2 complex to the metal-hydride
intermediate (I1→ I2), is calculated to be 10.5 kcal/mol, and the corresponding free-energy
barrier is only 4.0 kcal/mol (I1→ TS1). The low intrinsic free energy barrier for the H2-
splitting step for 1Mn is due to the large entropic penalty associated with the H2 binding,
as clearly seen from the 4.7 kcal/mol overall enthalpy barrier. A relatively large intrinsic
driving force for the H2-splitting process (I1→ I2) for 1Mn is indicative of a rather strong
Mn–H bond in the metal-hydride intermediate I2.
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CO2 hydrogenation to formic acid catalyzed by (1Mn) at the ωB97XD/[6-311++G(d,p)+LANL2TZ]/
CPCM(THF) level of theory. Relative enthalpy (∆H in kcal/mol) values are presented in parentheses.
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A moderately endergonic binding of CO2 (∆G = 4.2 kcal/mol) to the metal hydride
intermediate I2 to form a CO2 adduct I3 precedes the hydride transfer step and the resulting
intermediate I3 undergoes hydride transfer to CO2 to form a formate (HCOO−)-bound
intermediate I4. The overall free energy barrier for the hydride transfer step was calculated
to be 11.5 kcal/mol (I2→ TS2) with an intrinsic barrier of 7.3 kcal/mol (I3→ TS2). The
hydride transfer step for 1Mn was calculated to be overall endergonic by 5.7 kcal/mol
and intrinsically thermoneutral (I3 → I4, ∆G = 1.4 kcal/mol). Therefore, considering
the intrinsic free energy barriers and driving forces, the H2-splitting step appears to be
energetically more feasible for 1Mn as compared to the hydride transfer step.

The final step, involving a proton transfer from the “internal base”, i.e., the N-atom
of the PNP-pincer ligand to the formate (HCOO−), leads to the formic acid-bound cat-
alyst complex (I5) through an endergonic process (I4 → I5, ∆G = 4.8 kcal/mol). This
proton transfer step involves an intrinsic barrier of 5.1 kcal/mol and an overall barrier
of 10.7 kcal/mol. The final release of formic acid (HCOOH) and catalyst regeneration
(I5→ 1Mn) makes the overall process thermoneutral.

As evident from the overall free energy profile in Figure 1 for the CO2 hydrogenation
reaction catalyzed by 1Mn, base-promoted H2-splitting appears to be the rate-determining
step of the overall catalytic cycle. This result is consistent with the previous literature reports
on the CO2 hydrogenation reaction catalyzed by metal-pincer complexes (M = Ir, Fe, Co,
Mn) [32,39]. As our main focus remains on the correlation between the free energy barrier
of the key steps and the hydricity of the metal-hydride intermediate, a fair comparison
between different catalysts needs reaction barriers to be ascertained on the basis of an
identical reference point. To this end, calculation of the free energy barrier using the
infinitely separated species (catalyst + H2) typically predict a substantial entropy change
of ~10 kcal/mol due to the loss of translational and rotational degrees of freedom, as was
also observed for the three catalysts under investigation [36,37,49]. Therefore, we use the
reaction barrier for the key steps, the intrinsic barrier, using the reactant complex (I1) as
the reference point for all the catalysts 1Mn, 2Mn, and 3Fe. A similar strategy of using such
“intrinsic barriers” to establish the correlation between the key steps and hydricity in CO2
hydrogenation reactions has been reported in the literature [36,37].

After analyzing the key steps’ energetics for the reported Mn-PNP complex, we
investigated the same for the computationally predicted tetra-coordinated PNPN-pincer
complexes of Mn (2Mn) and Fe (3Fe). We particularly focus on the reaction energetics of the
two key steps only, i.e., base-promoted H2-splitting, and hydride transfer in the following
discussion. Figure 2 represents the reaction energetics of the key steps exhibited by 2Mn.
The complex 2Mn inherits the lowest energy conformer, where the CO ligand coordinates to
one of the tetragonal positions (Figure S2). The catalytically active form of 2Mn is calculated
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to possess a triplet ground state (32Mn, Figure 2) that is 4.6 kcal/mol lower in free energy
as compared to the singlet. However, the triplet state (32Mn) does not bind to the molecular
hydrogen to undergo the crucial H2-splitting process and must experience a triplet to singlet
spin cross to perform the reaction. Such a spin cross can introduce some uncertainty in
estimating the overall free energy barrier, which could be avoided through “intrinsic” free
energy barriers. The singlet 2Mn experiences a thermoneutral H2 binding to the Mn-center
and, consequently, a moderately lower H2-splitting free energy barrier of 8.4 kcal/mol
(I1→ TS1, Figure 2), leading to the metal-hydride intermediate I2 through the H2-splitting
transition state TS1. This calculated free energy barrier is very similar to the earlier reported
intrinsic H2-splitting barrier [42]. The thermoneutral binding of the molecular H2 to the
Mn center of 2Mn may be attributed to the strong interaction between the Mn center and
H2, as evident from the appreciably high binding enthalpy of −6.8 kcal/mol. The overall
H2-splitting process has a thermodynamic driving force of 6.2 kcal/mol in terms of free
energy. Unlike the H2 binding, the binding of CO2 to the Mn-hydride intermediate in the
subsequent step is moderately endergonic by 5.7 kcal/mol, which is due to the relatively
weak adduct between the metal-hydride intermediate I2 and CO2. The overall hydride
transfer barrier is only 7.4 kcal/mol, including the CO2 binding step, which implies a
marginally low intrinsic hydride transfer barrier (1.7 kcal/mol) for the process. The net
hydride transfer process is calculated to be highly exergonic by 8.5 kcal/mol (I2→ I4) with
an intrinsic driving force of 14.2 kcal/mol.
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Similar to complex 2Mn, 3Fe is a tetra-coordinated PNPN-pincer complex that was also
theoretically predicted during the investigation of the hydrogenolysis of polyurethanes [42].
Complex 3Fe possesses the lowest energy conformer, where the H ligand coordinates to
one of the tetragonal positions (Figure S2). Similar to complex 2Mn, the coordinatively
unsaturated catalytically active form of 3Fe possesses a triplet ground state (33Fe, Figure 3)
that also does not bind to the molecular H2. Therefore, the intrinsic reaction barriers for the
key steps are obtained using singlet species. 3Fe undergoes H2-splitting with an overall
free energy barrier of 9.9 kcal/mol, which is similar to that of its Mn congener. The intrinsic
barrier for this step for 3Fe appears to be just 2.5 kcal/mol lower, 7.4 kcal/mol (I1→ TS1),
as compared to the overall barrier. The subsequent hydride transfer step (I2→ TS2) for 3Fe
involves a lower barrier of 8.1 kcal/mol with a negligible intrinsic barrier of 2.0 kcal/mol
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(I3 → TS2). Both the H2-splitting and hydride transfer steps were calculated to have
appreciable intrinsic driving forces of 10.4 and 13.9 kcal/mol, respectively.
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As reported earlier, the two key steps of CO2 hydrogenation, which are base-promoted
H2-splitting and hydride transfer to CO2 have opposite electronic requirements [30,36,37].
The metal-hydride intermediate (I2) is the bridge and helps attain the balance between
the two steps through the M–H bond. The strength of the M–H bond is quantified by the
thermodynamic parameter, hydricity (∆G

◦
H− ), measuring the metal-hydride intermediate to

donate its hydride. Therefore, correlations between the hydricity of I2 and the free energy
barrier of H2-splitting and hydride transfer would regulate the efficiency of a catalyst
towards CO2 hydrogenation. To estimate the catalytic potential of complexes 1Mn, 2Mn,
and 3Fe, we correlated the calculated hydricities of their in situ generated metal-hydride
intermediates (I2) with the corresponding barriers of H2-splitting and hydride transfer.
The computational protocol for calculating the hydricity is described in the Supporting
Information. The computed hydricity of HCOO− matches exactly with the experimental
value of 43.0 kcal/mol, which supports the computational method applied for calculating
the hydricity in this work. Using the computational method of hydricity calculation as
described in the Supporting Information, the calculated hydricities of 1Mn, 2Mn, and 3Fe
are 55.2, 47.1, and 48.7 kcal/mol, respectively.

Earlier reports by Mondal et al. [36,37] on phosphine-based CO2 hydrogenation cata-
lysts clearly demonstrated that the calculated ∆G

◦
H− of the metal-hydride species is linearly

well-correlated with the barriers (∆G‡) of both H2-splitting and hydride transfer. As one
can expect, ∆G

◦
H− was found to be negatively and positively correlated with the barriers of

H2-splitting and hydride transfer, respectively. This corroborates well with the opposite
electronic requirements of the two key steps of CO2 hydrogenation, that is, a stronger
hydricity will promote the H2 splitting step and a weaker hydricity will promote the hy-
dride transfer step. However, the opposite electronic requirements of the two key steps are
not appropriately reflected when we examine the correlation plots between the “overall”
free energy barrier and calculated hydricity. Specifically, the H2 splitting step shows an
unexpected positive correlation (Figure S4a). On the other hand, the notion of the opposite
electronic requirement of the two key steps of CO2 hydrogenation is nicely followed for
the current complexes when we consider the “intrinsic” free energy barrier. For instance,
the complex 1Mn possessing the highest hydricity (∆G

◦
H− = 55.2 kcal/mol) among three
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exhibits a very low intrinsic barrier for the H2-splitting (4.0 kcal/mol). Whereas, for the
other two complexes, 2Mn and 3Fe, possessing a relatively lower hydricity, the Intrinsic
H2-splitting barrier is much higher, at 8.4 and 7.4 kcal/mol, respectively (Table 1). The
opposite was found true for the hydride transfer steps for the three complexes. Complex
1Mn, with the highest hydricity, traverses a much higher intrinsic hydride transfer barrier
(7.3 kcal/mol) as compared to complexes 2Mn and 3Fe (1.7 and 2.0 kcal/mol, respectively)
(Table 1). We observed a negative correlation between ∆G

◦
H− and ∆G‡ of H2-splitting

(R2 = 1.00, Figure S5a), and a positive correlation between ∆G
◦
H− and ∆G‡ of hydride

transfer (R2 = 0.98, Figure S5b) for complexes 1Mn, 2Mn, and 3Fe. Thus, the use of an
intrinsic free energy barrier, as also suggested in the earlier reports on CO2 hydrogenation
in ref. [30,36,37], gives thermodynamic correlations appropriately reflecting the electronic
requirements of the key reaction steps. On merging the correlations between calculated hy-
dricities of the metal-hydride intermediate (I2) and free energy barriers for the H2-splitting
and hydride transfer together, we could obtain an optimal value in the hydricity (∆G

◦
H− )

scale, at 52.7 kcal/mol, that the catalysts under investigation need to strike for an optimal
CO2 hydrogenation reactivity (Figure 4).

Table 1. Calculated hydricity and intrinsic barriers for H2 splitting and the hydride transfer step.

Species Calculated Hydricity
(∆G

◦

H− , kcal/mol)
Intrinsic H2-Splitting Barrier

(∆G‡, kcal/mol)
Intrinsic Hydride Transfer Barrier

(∆G‡, kcal/mol)

1Mn 55.2 4.0 7.3
2Mn 47.1 8.4 1.7
3Fe 48.7 7.4 2.0
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The combined correlation plot presented in Figure 4 delivers an estimation of the
optimal value for hydricity for Mn- and Fe-based complexes possessing an “internal
base” in the tri- or tetra-coordinated PNP-pincer ligand framework. The metal-hydride
intermediate generated from the Mn-pincer complex 1Mn reported by Leitner et al. appears
to possess a hydricity value (55.2 kcal/mol) closest to the optimal value (52.7 kcal/mol);
therefore, it can be considered as the most promising CO2 hydrogenation catalyst among
the three metal-pincer complexes. The Mn- and Fe-based tetra-coordinated PNPN-pincer
complexes 2Mn and 3Fe possess hydricities of 47.1 and 48.1 kcal/mol, respectively, which
are about 5–6 kcal/mol off from the estimated optimum value. Considering the uncertainty
limit of the DFT-predicted hydricity and reaction barriers, the new tetra-coordinated PNPN-
pincer complexes appear promising in homogeneous CO2 hydrogenation.
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4. Conclusions and Outlook

Non-noble metal-based pincer complexes possessing secondary amine as an “inter-
nal base” have been explored for homogeneous CO2 hydrogenation in this study. Tri-
coordinated PNP-pincer complexes are well-known for CO2 hydrogenation; however, their
tetra-coordinated congeners need attention towards CO2 hydrogenation. The current DFT-
based mechanistic investigation and reaction energetics calculations on one tri-coordinated
PNP-pincer Mn complex (1Mn) and two tetra-coordinated PNPN-pincer complexes (2Mn
and 3Fe) reveal the crucial role of the secondary amine moiety in-built in the pincer backbone
in the heterolytic H2-splitting. The elegant correlation between the calculated hydricity of
the metal-hydride intermediate and the free energy barrier of the crucial H2-splitting and
hydride transfer steps have been used to estimate the catalytic potential of the three pincer
complexes. Specifically, the correlation plot provided an optimum value for hydricity,
which is 52.7 kcal/mol. Indeed, the reported Mn-PNP complex 1Mn appears to be the
most promising in terms of the balancing hydricity (55.2 kcal/mol) of the corresponding
metal-hydride species. The other two tetra-coordinated PNPN-pincer complexes, 2Mn and
3Fe, with relatively lower hydricity of their metal-hydride species, can be considered as
potential catalysts for CO2 hydrogenation within the uncertainty limit of the DFT calcu-
lations. This study provides a foundation for exploring the catalytic potential of a wide
range of metal-pincer complexes towards CO2 hydrogenation and will certainly guide
novel catalyst design and development in this direction.
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