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Abstract: This work aims to study the structural, optical, and photocatalytic properties of ZrO2

nanotubes (NTs) that have been synthesized using the electrochemical anodization method. The
structural and morphological characteristics of unannealed and annealed (400 ◦C, 500 ◦C, and 700 ◦C)
ZrO2 NTs were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and
transmission electron microscopy (TEM). Details of the structural and morphological results are
depicted to clarify the effect of annealing temperature on the NTs. Furthermore, the reflectivity and
photoluminescence of ZrO2 NTs were found to depend on the annealing temperature. The resulting
bandgap values were 3.1 eV for samples annealed at 400 ◦C and 3.4 eV for samples annealed at 550
and 700 ◦C. Thus, amorphous and annealed ZrO2 NTs were tested in terms of their photocatalytic
degradation of Black Amido (BA) dye. Samples annealed at 400 ◦C exhibited 85.4% BA degradation
within 270 min compared to 77.5% for samples annealed at 550 ◦C and 70.2% for samples annealed at
700 ◦C. The anodized ZrO2 NTs that were annealed at 400 ◦C showed the coexistence of tetragonal
and monoclinic crystalline phases and exhibited the fastest photocatalytic performance against the
BA dye. This photocatalytic behavior was correlated to the crystalline phase transformation and the
structural defects seen in anodized ZrO2.

Keywords: ZrO2 nanotubes; anodization; Black Amido; photocatalysis; crystalline phases

1. Introduction

Wide-bandgap (bg) semiconductor materials have the limitation of visible light absorp-
tion since their bg mainly consists of O2p orbitals (E = 3 eV) [1]. They greatly enhance the
efficiency of power conversion compared to their silicon (Si)-based counterparts. Wide-bg
semiconductors allow the design of faster, shape-controlled, and highly reliable power
devices. These capabilities make it possible to reduce weight, volume, and life-cycle costs.
Today, wide-bandgap semiconductors are attracting much attention for their environmental
applications, such as sensing, photocatalytic devices, solar conversion, and water splitting
via bg engineering. Strain-induced bg engineering by means of tunable sizes and controlled
shapes enhances the quantum confinement effect, allowing targeted applications [2].

Zirconium oxide (ZrO2) is an inorganic ceramic material of great technological impor-
tance distinguished by its many useful properties; it is a refractory material with thermal
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resistance [3], a high dielectric constant (ε≈ 25) [4], good mechanical behavior [5], chemical
stability (except in acidic media) [6], is non-toxic [7], and has good biocompatibility [8].
Moreover, ZrO2 stands out for its optical properties, essentially, its high refractive index [9]
and large optical gap [6]. ZrO2 is used in a wide range of applications, including energy
storage (fuel cell electrolytes) [6], gas sensing (oxygen sensors) [10], heterogeneous cata-
lysts [11], catalytic supports [12], jewelry [9], and as a biomaterial in medical implants [13].
Additionally, ZrO2 is an n-type semiconductor material [14] with a wide bandgap. Two
direct transitions characterize it; the tetragonal and the monoclinic gap energies differ
slightly. The bandgap energy of the tetragonal phase of ZrO2 is typically around 3.0–3.2 eV.
This is lower than the monoclinic phase of ZrO2, which has a bandgap energy of around
3.3–3.4 eV [15,16]. These characteristics imply a localized absorption spectrum in the ultra-
violet range. It is a refractory material, possessing a relatively high refractive index in the
interval of 2.15–2.18 eV [17], and greater transparency (about 42%) [18]. In 2004, for the
first time, Tsuchiya and Schmuki succeeded in elaborating highly controlled self-organized
zirconium oxide porous structures with pore sizes of about 10 nm. These structures were
formed by anodizing zirconium (Zr) foil in an aqueous solution containing sulfuric acid
(H2SO4) and a small amount of ammonium fluoride (NH4F) [19,20]. The synthesis of
ZrO2 nanotubes by anodic oxidation really began with the work of Lee and Smyrl in
2005 [21]. They used a simple electrolyte, i.e., hydrogen fluoride (HF: H2O). By applying a
voltage of 10 V for 10 min, they obtained nanotubes with an amorphous structure of about
10 µm [9,22]. Tsuchiya et al. subsequently optimized the anodization conditions to develop
the nanotubular structure of ZrO2. They performed anodization in an electrolyte containing
ammonium sulfate ((NH4)2SO4) and ammonium fluoride (NH4F). They obtained a layer of
self-organized vertical nanotubes with a diameter of 50 nm and a length of 17 µm [23]. In
fact, when ZrO2 nanotubes are anodized at temperatures lower than 400 ◦C, the resulting
nanotubes have a smaller diameter, lower aspect ratio, and more amorphous surface struc-
ture than those anodized at higher temperatures. Yang et al. (2019) showed that with ZrO2
anodized at 300 ◦C, the resulting NTs had a smaller diameter (35 nm) compared to NTs
anodized at 500 ◦C, which had diameters of 80 nm [24]. The same research group showed
that the aspect ratio of the NTs was also lower at lower anodizing temperatures, indicating
a more truncated morphology with a more amorphous surface.

This work systematically studies the structural, morphological, optoelectronic, and
photocatalytic properties of zirconia nanotubes (ZrO2 NTs) elaborated via oxidative an-
odization. The morphology and the elemental composition of NTAs ZrO2 films were
investigated by transmission electron microscopy (TEM). The structural, morphological,
and optical behaviors of the NTAs ZrO2 films have been examined using X-ray diffraction
(XRD), Scanning Electron Microscopy (SEM), and diffuse reflectivity. The effect of Pt con-
tent and different annealing temperatures on the photocatalytic activity of the ZrO2 NTs
was studied by employing Black Amido as a model dye for bioanalysis. This work is a step
forward in the development of highly selective biosensors.

2. Results and Discussion
2.1. SEM, TEM, and EDX Studies

Figure 1 shows FE-SEM images of unannealed (as-grown) and annealed ZrO2 NTs.
One may notice that the annealing temperature modifies the diameter of the ZrO2 NTs,
together with their method of assembly. The NTs of as-grown zirconia are relatively dense,
with no apparent cracks (Figure 1a). Some obvious cracks appeared at the surface of the
ZrO2 NTs at an annealing temperature of 400 ◦C (Figure 1b), whereas the surface was
partially covered by loose solid matter. At an annealing temperature of 550 ◦C, the ZrO2
NTs are gathered in densely packed large clusters. At an annealing temperature of 700 ◦C,
the ZrO2 NTs are detached into blocks. Therefore, the size and morphology of the ZrO2 NTs
depend on the annealing temperature. This morphological change is due to a structural
modification displayed below via XRD analysis.
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Figure 1. SEM images of (a) as-grown zirconia nanotubes and (b–d) after air annealing at different
temperatures (400 ◦C, 550 ◦C, and 700 ◦C, respectively).

Figure 2 depicts the TEM images of two ZrO2 NTs samples anodized under the same
experimental conditions for 60 min at 40 V; no annealing was applied to the first sample
(Figure 2a) while the second one was annealed at 550 ◦C (Figure 2b). The average external
diameter was estimated to be 65 nm for both samples. Therefore, one can say that the
annealing step does not affect the morphology of the nanotubes. Figure 2c shows the
transparency of the anodized ZrO2 NTs. This aspect will be further studied in the UV-vis
spectroscopy section below. The EDX spectrum of the ZrO2 NTs shown in Figure 3 reveals
only the presence of Zr and O, confirming the formation of ZrOx films and the absence of
impurities. The copper content in this spectrum comes from the copper grid sample holder.
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Scheme 1 shows the different steps during the formation of anodized nanotubes. The
first step consists of the formation of pores, which manifest as holes in the substrate. Then,
the material starts to condense around the pores, forming circular islands. These latter
islands elongate with the advancement of anodization time. Once they reach a certain
length, the nanotubes start breaking down. The anodization step is responsible for the
alignment and the crystallinity of the formed NTs.
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Scheme 1. Steps in the formation of anodized ZrO2 NTs.

2.2. X-ray Diffraction

The XRD patterns were recorded in the 2θ = 20–60◦ angle range for all ZrO2 NT
samples. Figure 4 shows the XRD patterns of as-grown and annealed ZrO2 NTs. The
appearance of a sole Zr peak in the unannealed samples indicates that the as-grown ZrO2
is quasi-amorphous. Hence, all observed XRD peaks located at 2θ = 34.36◦, 36.13◦, 47.57◦,
63.12◦, and 73.20◦ correspond to the crystallographic orientations (002), (101), (102), (103),
(004) of the hexagonal structure of metallic Zr (JCPDS card no. 00-005-0665).
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Figure 4. X-ray diffraction patterns of the as-grown and air-annealed ZrO2 NTs at different tempera-
tures (400 ◦C, 550 ◦C, and 700 ◦C).
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After annealing in air at 400 ◦C and 550 ◦C, the newly appearing XRD peaks cor-
respond to two crystalline phases: tetragonal (T-ZrO2) and monoclinic (M-ZrO2). At
700 ◦C, the tetragonal phase (T-ZrO2) completely disappeared, and all diffraction peaks
corresponded to the (M-ZrO2) phase.

The XRD peaks of the annealed samples located at 2θ = 23.56◦, 27.64◦, 30.86◦, 33.94◦,
34.73◦, 38.18◦, 40.33◦, 44.33◦, 45.08◦, 48.72◦, 49.67◦, 54.83◦, 59.40◦, and 65.22 correspond to
the (110), (−111), (111), (200), (020), (−210), (−112), (211), (−202), (−212), (022), (221), (131),
and (230) crystallographic orientations of the monoclinic ZrO2 phase [JCPDS file: 37-1484],
respectively. Conversely, the XRD peaks at 2θ = 29.54◦, 35.29◦, 47.32◦, 53.44◦, 62.86◦, and
67.85 ◦ are attributed to the (111), (200), (202), (221), (222), (312) of the tetragonal ZrO2 phase,
respectively [JCPDS file: 17-0923]. Tetragonal zirconia forms at temperatures above 1170 ◦C;
nevertheless, it can be stabilized at lower temperatures under the influence of internal
compressive stresses. T-ZrO2 can be formed by adding stabilizing elements or, probably, by
decreasing the size of the crystallites. The tetragonal phase is thermodynamically stable if
the crystallite size becomes smaller than a critical value, which is typically of the order of 20
to 30 nm [25–27]. The surface/interface energy of tetragonal zirconia crystallites would be
lower than that of monoclinic crystallites. Indeed, Wang et al. [28] reported that tetragonal
particle-shaped zirconia could be achieved at room temperature, with sizes beneath 40 nm.
Similarly, Moulzolf et al. [29] and Yeh et al. [30] found that the ZrO2 grain size does not
exhibit a noticeable increase when heat-treated under 600 ◦C.

XRD patterns allowed the estimation of other parameters such as the interplanar
distance, the full width at half-maximum (FWHM), and the crystalline sizes. The latter can
be calculated using the Debye–Scherrer formula [31]:

D = (Kλ/β Cos θ) (1)

where D is the crystalline size, λ is the X-ray incident beam wavelength, K is the Scherrer’s
constant (usually equal to 0.9), β is the width of the FWHM, and θ is the diffraction angle.
All calculations were made using the (111) main peak of the monoclinic crystal phase.

The monoclinic phase content increases with annealing temperature, as shown in
Figure 4. This, in turn, increases the mean crystallite size value, as illustrated in Table 1.
These findings are in agreement with previous studies [32].

Table 1. Crystallite size as a function of the annealing temperature of ZrO2 nanotubes.

Annealing Temperature (◦C) 400 550 700

D (nm) 13.1 15 20.7

The lattice parameters were calculated using Bragg’s law:

2dhkl sin θ = nλ (2)

where dhkl is the inter-reticular distance, θ is the diffraction angle, n is an integer that denotes
the diffraction order (n = 1), and λ is the wavelength of the Cukα X-ray line = 1.5406 Å.
Let us consider the equations relating to the inter-reticular distance, dhkl, and the unit cell
parameters of the monoclinic (Equation (3)) and the tetragonal systems (Equation (4)) [33]:

dhkl =
1√

h2

a2 sin β2 +
k2

b2 + l2

c2 sin β2 − 2 hl
ac sin β2 cos β

(3)

dhkl =
a√

h2 + k2 + l2 ( a
c )

2
(4)
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From Bragg’s law, one can determine the ZrO2 lattice parameters corresponding to
the tetragonal and monoclinic structures. We have summarized the calculated values in
Table 2.

Table 2. The parameters of the monoclinic and tetragonal lattices of ZrO2 NTs.

θ (rad) Sin(θ) (hkl) Dhkl (Å) Structure Lattice Parameter (Å)

0.29 0.28 (200) 2.69

Monoclinic

a = 5.5

0.30 0.29 (020) 2.58 b = 5.2

0.43 0.41 (022) 1.84 c = 5.3

0.30 0.29 (200) 2.60
Tetragonal

a = b = 5.2

0.54 0.51 (222) 1.49 c = 5.1

Figure 5 shows the crystalline structures of the tetragonal and monoclinic phases and
their combination. In the current case, the anodized ZrO2 annealed at 400 ◦C showed
the co-existence of both tetragonal and monoclinic phases. After annealing at 550 ◦C and
700 ◦C, the monoclinic phase was preponderant. The simulation in Figure 5 shows the
coexistence of both phases but does not deal with their abundance from one to the other.
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2.3. Optical Properties

Figure 6 shows the photoluminescence (PL) spectra of the as-prepared and annealed
ZrO2. The emission spectrum of the Zr02 NTs presents a broad band ranging from 380 nm
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to 650 nm, with a peak centered at 485 nm for the annealed samples and a flat level for
unannealed ZrO2 NTs. The PL emission band of ZrO2 could originate from impurities,
intrinsic self-trapped excitons, and intrinsic defects such as singly ionized oxygen-vacancy
defects (F+ centers) and Zr3+ centers. The PL band can be deconvoluted into two bands
located at 425 and 490 nm, as shown in Figure 7. Wang et al. [34] attribute these bands to F+

centers and to (F − F)+ singly ionized two-oxygen-vacancy-defect associations.
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Salah et al. [35] attribute the broad peak centered on 490 nm to a self-activated lumi-
nescence originating from the asymmetry and unusual oxygen coordination of zirconium
in monoclinic ZrO2. The PL intensity increased with the annealing temperature, while the
peak centered at 420 nm became smaller in comparison with the PL peak centered at 490 nm.
This result can be explained by the increasing oxygen defects with the increase in annealing
temperature and also by the crystallographic phase transformation from tetragonal to mon-
oclinic ZrO2, which, in turn, increases the probability of creating a two-oxygen-vacancy
defect association.

Figure 8 depicts the diffuse reflectivity spectra of unannealed and annealed ZrO2
nanotubes at different temperatures (400, 550, and 700 ◦C).
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Figure 8. The light absorption spectra of unannealed ZrO2 and annealed ZrO2 NTs at different
temperatures (400, 550, and 700 ◦C).

The Kubelka–Munk function, which associates the reflectance with the absorption and
scattering coefficients, can be expressed by the following equation [36]:

F(R) =
K
S
=

(1 − R)2

2R
(5)

where K and S are the absorption and diffusion coefficients, respectively.
Zirconium dioxide is a direct bandgap semiconductor; its bandgap energy value (Eg)

was graphically determined via Kubelka–Munk interpolation, using the variation of (F(R)
hν)2 as a function of the energy (hν). The corresponding curves are displayed in Figure 9.

From Figure 9, one can see that when the annealing temperature increases, the energy
of the bandgap increases from 3.1 to 3.4 eV. This result can be explained by the co-existence
of two phases in the ZrO2 NTs, which probably add more defects, particularly at the inter-
facing sites between these crystalline phases. Then, increasing the annealing temperature
led to an increase in tetragonal to monoclinic ZrO2 crystalline phases, while enlarging
the crystallite size. These results indicate the elimination of structural defects induced by
the grain boundary, which leads to the elimination of additional levels in the bandgap,
followed by an increase in the energy gap [37]. Mendez-Lopez et al. (2023) prepared
ZrO2 thin films that had been annealed at different temperatures and studied their trans-
parency and hydrophilicity [38]. These authors concluded that the annealing temperature
affected the structural properties of the tetragonal ZrO2 as well as the hydrophilicity of
the crystalline thin film. In our case, the annealing affected the size of the bandgap, which
shifted from 3.1 to 3.4 eV, concomitant with the appearance of the monoclinic crystalline
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phase. More work is needed in the future to correlate the crystalline phase of ZrO2 with the
material’s chemistry. This aspect is beyond the scope of the current study. From another
perspective, ZrO2 NTs present a high level of hardness, which makes them suitable for
sustainable applications.
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Figure 9. The Kubelka–Munk transformation of the diffuse reflectance spectrum for annealed
ZrO2 NTs.

2.4. Photocatalytic Degradation of Black Amido (BA) and the Stability of the Samples

It has been demonstrated elsewhere that the photocatalytic activity of pure monoclinic
ZrO2 is higher than that of tetragonal ZrO2 under optimum identical conditions [39]. As
shown above, the increase in the annealing temperature leads to the preponderance of the
monoclinic phase at the expense of the tetragonal phase (Figure 4), which, in turn, can
affect photocatalytic degradation activity.

To evaluate the effect of annealing temperatures on the photocatalytic efficiency of
ZrO2 NTs, we used a model organic pollutant (Black Amido—BA). The dye photodegrada-
tion rate using ZrO2 NTs was estimated using the following equation [40]:

D(%) =
A0 − A

A0
× 100 (6)

where A represents the absorbance of the dye solution, peaking at 618 nm after the photo-
catalytic experiments; A0 represents the absorbance of the dye solution, peaking at 618 nm
before the photocatalytic experiments. Figure 10a,b depicts the photocatalytic degradation
of BA in the presence of unannealed and annealed ZrO2 NTs.

Figure 10b shows the variation of the absorbance spectra of BA at 618 nm, as a function
of UV light irradiation time for ZrO2 NTs annealed at 400 ◦C. The decrease in photocatalytic
efficiency as a function of the annealing temperature is related to the presence of the
tetragonal phase. This, in turn, testifies to the existence of hydroxyl groups. It is worth
mentioning that OH-radicals play a fundamental role in the formation and stabilization of
the tetragonal phase in ZrO2. They can act as a driving force for transforming the more
common monoclinic phase into the tetragonal phase. In ZrO2 NTs, hydroxyl radicals are
principally confined within the tubes, which could affect the stability of the tetragonal
phase. Moreover, the geometry of the NTs may affect the structure and stability of the
tetragonal phase, compared to bulk ZrO2. More research is needed to fully understand the
correlation between the tetragonal crystalline phase, hydroxyl radicals’ density, and the
ZrO2 NT structure.
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Figure 10. (a) The photocatalytic degradation of BA in the presence of unannealed and annealed
ZrO2 NTs (400, 550, and 700 ◦C) versus irradiation time. (b) Absorbance spectra illustrating Black
Amido photo-degradation during UV light irradiation in the presence of ZrO2 NTs (annealed at
400 ◦C).

The degradation of Black Amido by ZrO2 NTs involves •OH radicals formed subse-
quently by the reaction of OH- ions with the photogenerated holes. From Table 3, significant
degradation of BA can be seen, the best response of which is attributed to ZrO2 NTs an-
nealed at 400 ◦C, allowing 85% BA photodegradation. This phenomenon can be related
to the breakdown of the azo groups, -N=N-, after the •OH radicals attack [40] into the
formed intermediates.

Figure 11 displays a kinetic study of BA photodegradation as a function of time. The
photocatalytic activity is expressed in terms of the apparent rate constant, K. This constant is
obtained from the straight-line slope of ln(A0/A) against the time plot (Equation (7)) [16,41]:

ln(
A0

A
) = Kt (7)
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Table 3. Photocatalytic performance of ZrO2 NTs as a function of the annealing temperature.

Sample Annealing Temperature (◦C) Degradation Rate (%)

ZrO2-NTs

Unannealed 57.97

400 85.41

550 77.57

700 70.28
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Figure 11. Kinetic study of ln (A0/A) versus irradiation time in the presence of ZrO2 NTs.

Perceptibly, the ZrO2 NTs that were annealed at 400 ◦C show the highest photocatalytic
performance, with the highest decolorization rate constant of K = 6.2 10−3 min−1. Figure 11
shows that the samples annealed at 400 ◦C present the best photocatalytic performance.
This result can be explained by the development of •OH and O2

•- radicals, resulting from
O2 oxidation by an electron from the conduction band (CB) and the reduction of OH by the
photogenerated holes at the valence band (VB), leading to BA degradation at the interface.

As was shown in the SEM images (Figure 1), at 400 ◦C we have well-ordered and
outstanding ZrO2 NTs. Upon raising the temperature to 550 ◦C, the NTs became clogged,
doubtlessly eliminating their high specific surface area features. Further increasing the
temperature to 700 ◦C led to the partial destruction of the NT structure. This explains
the procured photocatalytic degradation results and the highest percentage for the 400 ◦C
sample. In addition, the samples annealed at 550 ◦C and 700 ◦C exhibit higher diffuse
reflectance than those at 400 ◦C, due to their exceedingly disordered structure. Moreover,
these samples present broader gap energy, in contrast to the amorphous and 400 ◦C samples,
which could be imputed to the evaporation of impurity dopants, such as F and C, etc. [16].

The PL spectra in Figure 6 showed that the 550 ◦C and 700 ◦C samples exhibited a
higher PL intensity than those samples annealed at 400 ◦C. This can be attributed to the
prevailing oxygen vacancies and the possibility of creating two-oxygen-vacancy defect
association functions as a trap recombination center of e−/h+ pairs, which explains their
weak photocatalytic performance [42]. Basahel et al. (2018) assumed that tetragonal ZrO2
exhibited the highest surface area [39]. However, the coexistence of two phases (monoclinic
and tetragonal) in the samples annealed at 400 ◦C enhances the surface area compared to
the pure monoclinic phase; yet, combined with its high photocatalytic activity, this leads
to the improvement of the photodegradation process. The possible mechanism of the
photocatalytic activity of anodized ZrO2 nanotubes is presented in Figure 12. Figure 12a,b
shows the bg differences between tetragonal and monoclinic ZrO2, respectively. Under
light irradiation with energy higher than the bg, the photo-excited electrons can follow three
possible paths. The first path (shown as (1) in Figure 12c) is the conventional path from the
valence band to the conduction band of the ZrO2 semiconductor. This path considers the
prepared nanotubes as an ideal semiconductor without defects or impurities. The second



Catalysts 2023, 13, 558 12 of 16

path passes through several types of intra-gap states, situated at different levels (shown as
(2) in Figure 12c). The third path consists of the interfacial charge transfer between T-ZrO2
and M-ZrO2. In the current case, all three paths are possible since our results showed
structural defects, oxygen vacancies, and the co-existence of both crystalline phases.
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Figure 12. (a–c) The possible photocatalytic mechanism of ZrO2 nanotubes. (1), (2) and (3) are the
possible photo-generated electron pathways (for more details, see text).

It has been reported that surface defects induced by low sample crystallinity serve as
recombination centers for the photogenerated electron/hole pairs. However, the high crys-
tallinity of the material promotes photocatalytic activity by transferring the photogenerated
electrons from the bulk to the surface, leading to the inhibition of charge recombination
and enhanced quantum efficiency [43,44]. The promoted charge separation, and, thus, the
inhibited charge recombination, was witnessed by a decrease in the photoluminescence
(PL), as shown in Figure 6. More work is needed to elucidate which mechanism is more
probable after each annealing step at different temperatures.

2.5. Nanotube Stability and Scavenging Experiment

The stability of the prepared ZrO2 NTs was carried out via XRD. The sample that
was annealed at 400 ◦C was subjected to XRD before and after the photocatalytic BA
degradation. Figure 13 shows diffractograms with peaks at similar positions before and
after the degradation, using the NTs and showing their stability. Furthermore, the stability
of the ZrO2 NTs (400 ◦C) was tested after 5 consecutive degradation cycles of BA. The
results showed stable performance after 5 cycles.
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To elucidate the role of the ROS mediating BA degradation over ZrO2 NTs (400 ◦C),
different scavengers have been used. Quenching studies were performed using 1 mM of
benzoquinone (BQ) as an effective scavenger for O2

•−, 1 mM of EDTA as a hole scavenger,
and 20 mM of isopropyl alcohol as an •OH scavenger. Each of the individual scavengers’ ex-
periments was carried out separately. After adding EDTA, the photodegradation of AB was
reduced by 40%, suggesting the dominant contribution of the photogenerated holes in BA
degradation. Conversely, the addition of isopropanol reduced the photocatalytic efficiency
by 31%, testifying to the considerable contribution of the •OH radicals in BA degradation.
However, adding benzoquinone (BQ) slightly reduced the photocatalytic efficiency of ZrO2
NTs, suggesting the weak contribution of the O2

•−. More work is needed to identify the
photo-generated ROS at the interface of ZrO2 NTs using advanced technologies.

3. Experimental
3.1. Anodic Formation Process of ZrO2

Zirconia NTs were prepared by anodizing zirconium foil in an electrolytic bath con-
taining 140 mL of ethylene glycol 98% (1:1), 2 mL of ammonium fluoride (NH4F), and 6 mL
of ultrapure water. All used reagents were of technical grade. The process was carried out
at a constant voltage of 40 V for 60 min at room temperature under continuous magnetic
stirring. After anodization, the samples were rinsed in ultrapure water to remove debris
and occluded ions under ultrasound for 1 or 2 min and then dried in air. The zirconium and
platinum electrodes were the anode and the cathode, respectively, and the distance between
the two electrodes was maintained at 2 cm. The obtained samples were amorphous. The
crystallization was carried out at different temperatures (400, 550, and 700 ◦ C) for 3 h with
a heating rate of 5 ◦C/min in air.

3.2. Characterization of ZrO2 NTs

Field-emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray
spectroscopy (EDS) were used to characterize the morphology of the achieved ZrO2 NTs.
TEM images were carried out using a JEM-100CX2 transmission electron microscope (78290
Croissy-sur-Seine, France). TEM images were obtained by scraping off the oxidized layers
from the substrates and dispersing them in ethanol while applying ultrasonic vibration.

The crystalline structure of the ZrO2 NTs was characterized by XRD using the Rigaku
Ultima IV diffractometer (Austin, TX 78717 USA) in the Bragg–Brentano configuration and
Cu-Kα radiation (λ = 1.54060 Å). VESTA (version 3; Tsukuba-shi, Ibaraki 305-0005, Japan)
was used as a 3D visualization system for the crystallographic study of the ZrO2 phases
and electronic state calculations. The spectral absorption of the ZrO2 NTs samples was
performed using a ultraviolet–visible–infrared spectrometer. The photoluminescence (PL)
signals of ZrO2 NTs were recorded using a fluorescence spectrophotometer (Perkin Elmer
LS55; Waltham, MA 02451 USA) at an excitation wavelength of λ = 270 nm.

The photocatalytic performance of the ZrO2 NTs was evaluated throughout the degra-
dation of Black Amido (BA), a commercial dye diluted in an aqueous solution. A known
mass of the prepared catalysts was placed in a beaker containing BA aqueous solution
and was kept in the dark for 15 min to establish the adsorption-desorption equilibrium,
succeeded by irradiation under UV. The used UV lamp is an OSRAM lamp with a power of
15 W.

4. Conclusions

We have successfully synthesized ZrO2-NTs using the electrochemical method and
studied the effect of annealing temperature on their structural, optical, and photocatalytic
properties. Due to mechanical stress, the nanotubes collapsed and were destroyed at high
annealing temperatures. The tetragonal and monoclinic phases coexisted for all annealed
samples with different proportions. We noticed that an increase in annealing temperature
reduced the tetragonal phase and increased the bandgap. This latter observation was
attributed to the evaporation of the potential impurities introduced by the anodization
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process and the evolution of the oxygen vacancies, as shown by the PL emission spectra.
Crystalline phases play an important role in photocatalytic activity because of their chemical
surface properties. In this work, we found that ZrO2 NTs that were annealed at 400 ◦C
exhibited the fastest photocatalytic performance. The scavenging experiments reduced
photocatalytic activity by 40% when quenching the photogenerated holes, by 31 % after
quenching •OH radicals, and by only 12% when scavenging O2

•−. Further work is needed
to understand the direct relationship between the preparation method, surface chemistry,
and reactivity of such nanotubes for advanced applications.
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