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Abstract: Heteroatom-doped porous carbon material (H-PCM) was synthesized using Anacardium
occidentale (cashew) nut’s skin by a simple pyrolysis route. The resulting H-PCM was thoroughly
characterized by various analytical techniques such as field emission scanning electron microscopy
(FE-SEM) with energy-dispersive X-ray (EDX) spectroscopy, high-resolution transmittance electron
microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, nitrogen adsorption–desorption
isotherms, X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier transform
infrared (ATR-FTIR) spectroscopy. The obtained results strongly demonstrated that the synthesized
H-PCM exhibited a porous nature, continuous sponge-like and sheet-like smooth morphology, and
a moderate degree of graphitization/crystallinity with oxygen-, nitrogen-, and sulfur-containing
functionalities in the carbon matrix. After the structural confirmation, as-prepared H-PCM has
used a sustainable electrocatalyst for hydrogen evolution reaction (HER) because the metal-free
carbonaceous catalysts are one of the most promising candidates. The H-PCM showed excellent HER
activities with a lowest Tafel slope of 75 mV dec−1 and durable stability in 0.5 M H2SO4 aqueous
solution. Moreover, this work provides a versatile and effective strategy for designing excellent metal-
free electrocatalysts from the cheapest biowaste/biomass for large-scale production of hydrogen gas
through electrochemical water splitting.

Keywords: cashew nut; pyrolysis; porous carbon; electrocatalyst; hydrogen evolution reaction;
clear/green energy

1. Introduction

Recently, nanomaterials with different architectures and supports have played a key
role in industrial catalysis. Electrocatalysts are a variety of catalysts, which participate in
a selective electrochemical reaction to increase the reaction rate of redox processes at the
electrode/electrolyte interface. The electro-catalytic processes can occur at the electrode
surface or electrode itself [1,2]. In recent days, various electro-catalytic reactions including
oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution
reaction (HER), and carbon dioxide reduction reactions are significantly important due
to their involvement in green energy and environment-based applications [3,4]. Partic-
ularly, electro-catalytic HER is mainly focused on the bulk production of hydrogen gas
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through water splitting. Platinum and platinum-based composites are served as benchmark
electrocatalysts for HER in all pH ranges. The scarceness and expense of platinum-based
electrocatalysts hinder their applicability [5–9]. Hence, the replacement of noble platinum is
necessary with cost-effective materials. Recent studies proved that nitrogen-doped carbon
materials act as good electrocatalysts for HER and ORR reactions [10–12].

Carbon is capable of forming more than one crystalline form due to its valency, which
is called allotropes of carbon. Graphite, diamond, and amorphous carbon are the most
common allotropes of carbon. Depending on the arrangement of atoms the properties of
allotropes can vary [13]. The crystal structure of diamond is an infinite three-dimensional
array of carbon atoms, which makes less chemical reactivity, extreme hardness, and in-
sulating properties of diamond, whereas the crystal structure of graphite amounts to a
parallel stacking of layers of carbon atoms leads to the fascinating properties such as good
electrical conductivity, softness, and lubricity of graphite [14,15]. The electrical conductivity,
defects, and porosity of carbon materials can be easily tuned by the doping of electron-rich
heteroatoms including nitrogen, oxygen, sulfur, and boron. Hence, the heteroatom-doped
carbon materials received great attention from researchers owing to their excellent electrical
conductivity, optical properties, and capacitive behavior which helps the applicability
of heteroatom-doped carbon materials in catalysis, electrocatalysis, energy storage, and
fluorescent sensors [16–18]. Particularly, nitrogen-doped carbon nanoparticles have com-
peted with other heteroatom-doped carbon nanomaterials due to their applicability in
energy-related applications including water-splitting reactions HER, OER, and ORR.

The nitrogen-doped carbon materials can be synthesized by pyrolyzation of green
carbon sources such as glucose, citric acid, dried plant parts, and biowastes under the
nitrogen atmosphere. This method provides various benefits including cost-effectiveness
and a simple experimental setup [19,20]. Sun et al. reported the synthesis of nitrogen-
doped porous carbon using orange peel by carbonization using a tube furnace under the
nitrogen atmosphere [21]. Sekhon and Park conducted an excellent review on biomass-
derived nitrogen-doped porous carbon nanosheets for energy technologies [22]. Moreover,
Matsagar et al. reviewed the recent progress of biomass-derived nitrogen-doped porous
carbon and its applications [23]. Chen et al. described that nitrogen/sulfur-doped porous
graphene displayed enhanced electro-catalytic activity towards HER that was comparable
to that of commercial electrocatalysts such as Pt-free MoS2 catalysts [24,25]. Many authors
utilized natural green biowastes/biomass for the synthesis of carbon materials [26–28].

Here, porous carbon materials were synthesized using cost-effectiveness and a greener
route. The present study involved the synthesis of heteroatom-doped porous carbon
material (H-PCM) using Anacardium occidentale (cashew) nut’s skin (CNS) by a simple
pyrolysis route under the nitrogen atmosphere. The CNS contains several phytoconstituents
and is easily accessible at a low cost. The corresponding phytoconstituents can act as the
source of carbon, nitrogen, oxygen, and sulfur for the formation of a carbon matrix during
the pyrolysis process. The synthesized H-PCM was characterized by various surface- and
structure-confirming analytical tools. Further, the synthesized H-PCM are coated on carbon
cloth and used as electrocatalysts for HER in acid media. The HER reaction is monitored
by linear sweep voltammetry, electrochemical impedance spectroscopy (EIS), and Tafel
methods. Moreover, this investigation throws light on the mere future for more possibilities
to transform solid waste into environmentally friendly energy conversion.

2. Results and Discussion

The morphologies investigation of the synthesized porous carbon material was thor-
oughly studied using FE-SEM with energy-dispersive X-ray (EDX) spectroscopy, selected
area electron diffraction (SAED), and TEM measurements were performed. The FE-SEM
images of H-PCM (Figure 1a–e) displayed the porous structure with interconnected chan-
nels that might be favored for the transport of electrolytes. In addition, the presented pores
facilitate the easy release of bubbles that are produced during the HER. Figure 1f–k displays
the FE-SEM images and their corresponding elemental mapping of H-PCM. Carbon, oxy-
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gen, nitrogen, and sulfur have been detected in the H-PCM from the elemental mapping
measurements. The presented heteroatoms were distributed uniformly throughout the
carbon matrix. Furthermore, as shown in Figure 1l, the elemental composition of the synthe-
sized H-PCM was further confirmed from the EDX spectrum. The spectrum demonstrated
that the H-PCM exhibits carbon, oxygen, nitrogen, and sulfur elements. Apart from these
essential elements, silicon, and platinum are presented in the spectrum, silicon is from
silicon wafers that are used as substrate, and platinum that used for coating.
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Figure 1. (a–e) FE-SEM images at different magnifications of synthesized H-PCM; (f) FE-SEM
electron image of synthesized H-PCM and the corresponding EDX mapping of (g) carbon, (h) oxygen,
(i) nitrogen, (j) sulfur, and (k) overlapping of all the presented elements; (l) EDX spectrum results of
presented elements in the synthesized H-PCM.
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Further, the overall morphology and porous structure of the synthesized H-PCM were
revealed by TEM/HRTEM analysis. Figure 2a–c shows the TEM images of synthesized
H-PCM with different magnifications. These images demonstrated that the H-PCM exhibits
a mixture of continuous sponge-like and sheet-like architecture with many disordering
interconnected porous textures [29,30]. The obviously observed pores are distributed in the
range of approximately several nanometers, and this is in favor of the rapid transport of
electrolytes which might be facilitated the electrochemical reaction toward HER. HRTEM
image (Figure 2d) shows indistinct lattice fringes with a typical turbostratic structure
which revealed the partial graphitization of synthesized H-PCM. The existence of abundant
heteroatom-containing functional groups mitigates the degree of graphitization. It was
expected that this outstanding nature of H-PCM will enhance the electric conductivity and
will be a potential candidate for electrochemical reactions [31]. Furthermore, the analysis
of SAED confirms the degree of crystallinity/graphitic nature of materials. The inset of
Figure 2d depicts the dim narrow rings suggesting partial graphitization/crystallinity
of H-PCM.
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Figure S1 demonstrates the XRD pattern of H-PCM synthesized using CNS waste.
The XRD peaks positioned at 2θ = 26 and 44◦ correspond to the reflections of the (002)
and (100) planes for the characteristic graphitic carbon, respectively [32–34]. The absence
of sharpness in the two diffraction peaks (2θ = 26 and 44◦) indicates that the H-PCM
partial graphitic state/disordered carbon structure, and also might have smaller carbon
sheets. This result coincides well with the TEM results. Apart from these two distinguished
peaks (2θ = 26 and 44◦) that are responsible for graphitic carbon, many other minor peaks
were observed. The minor peaks might be from the phytoconstituents and minerals
from the biomass/biowaste materials. The quality of the carbon materials in respect of
the graphitization of synthesized H-PCM was further evaluated by Raman spectroscopy.
Raman spectra of H-PCM (Figure 3a) exhibit two major peaks positioned at 1345 and
1595 cm−1 are attributed to the D- and G-bands, respectively [35,36]. The D-band is
correlated to the breathing mode of defective/disordered (sp3) carbon, whereas the G-
band corresponds to the vibration mode of the graphitic/crystalline (sp2) carbon [37]. The
slightly low intensity of the graphitic band (G-band) compared to the D-band can be due
to the existence of functional groups. The relation between the intensity of the D-band
and G-band (ID/IG) determined the graphitization/crystallinity and arrangement of the
graphene planes in the synthesized H-PCM [38]. The ID/IG value of H-PCM was calculated
as 1.03, which implies the partial graphitization/crystallinity and structural defects that
might be due to the porosity as well as because of the doping of heteroatoms/heteroatoms-
containing functionalities. Apart from these two major peaks, the low intense and broad
Raman vibration is located around 2800 cm−1 and is denoted as a 2D-band which is a
fingerprint of graphene order (number of graphene sheets) in the H-PCM [39,40]. In
the case of unclear separation between the D-band and G-band, the determination of
graphitization/crystallinity is complicated. Hence, the Raman spectrum of H-PCM was
deconvoluted, and the graphitization/crystallinity was determined by the area of the
D-band and G-band (AD and AG). The ratio of AD/AG was calculated as 0.95 (Figure 3b),
which indicates the acceptable graphitic order of H-PCM. Overall results strongly revealed
that the synthesized H-PCM exhibit graphitic order with partial structural defects.
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Figure 3. (a) Raman spectrum and (b) Raman spectrum with deconvolution of D-band/G-band of
synthesized H-PCM.

ATR-FTIR spectroscopy is used to study the chemical composition and surface func-
tional groups on the synthesized H-PCM. Figure S2 shows the ATR-FTIR spectrum of
as-synthesized H-PCM. The characteristic absorption bands at 3375 cm–1 belong to the
stretching vibration of O–H groups on the H-PCM surface [41]. The N–H stretching vibra-
tion of H-PCM appeared around 3100 cm−1 [42]. The absorption peaks of H-PCM around
2835 and 2700 cm−1 are overlapped and displayed as a broader band which belongs to
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the C–H and S–H stretching vibrations, respectively. The ATR-FTIR spectrum of H-PCM
exhibits absorption bands at 2362 and 2332 cm−1, which can be accredited to the stretching
vibration of atmospheric –CO2 and –C≡N functional groups, respectively. The absorption
bands at 2106 and 1650–1850 cm−1 correspond to the stretching vibration of –C=N and
C=O functional species. The absorption peak at 1580 cm−1 is assigned to the stretching
vibration of sp2 carbon bonding (C=C) in the porous carbon matrix of the H-PCM [43]. The
stretching vibration bands of C–N/C–S are located in a range of 1330–1420 cm−1. The ab-
sorption bands in the area between 1120 and 1000 cm−1 might be ascribed to the stretching
vibrations of C–OH (alkoxy) and C–O–C (epoxy) functional groups, respectively [44]. The
out plane aromatic ring stretching vibration of the –CH2 band emerged at 826 cm−1 in the
ATR-FTIR spectrum of the H-PCM [45]. The absorption peaks located at 710 and 616 cm−1

correspond to the stretching vibrations of the C–S groups [46]. The absorbance peak at
470 cm−1 corresponds to the S–O stretching vibrations in the porous carbon framework.
The ATR-FTIR spectral results show that elements such as carbon, oxygen, nitrogen, and
sulfur are exhibited in the synthesized H-PCM which suggests the heteroatoms doping
into the H-PCM.

The XPS is used to further investigate the chemical composition and elemental state of
surface groups on H-PCM. As shown in Figure S3, the synthesized H-PCM mainly contains
carbon, oxygen, nitrogen, and sulfur with atomic percentages of 67, 28, 3, and 2, respectively.
The high-resolution XPS spectrum of C 1s (Figure 4a) exhibits five main peaks at 284.1 eV,
corresponds to the carbon-bonded with hydrogen (C–H), 284.8 eV credited to the signal
of disorder sp3-bonded carbon and graphitic sp2-bonded carbon, 285.8 eV confirms the
C–O (epoxy and alkoxy), C–N, and C–S functionalities, 286.6 eV suggests the presence of
carbonyl groups (C=O), and 287.5 eV, attributed to carboxyl species (H–OC=O) [6,47–49].
The existence of graphitic sp2 (C=C) bonds and epoxy/alkoxy (C–O–C/C–O–H) bonds
might enhance expectations of the electric conductivity of electrocatalysts (H-PCM). The
high-resolution O 1s spectrum can be deconvoluted (Figure 4b) into three distinct binding
energy peaks at 531.3, 532.5, and 533.6 eV that are accredited to the C=O, C–O/S–O, and
O=C–O functional species, respectively [39,50]. The high-resolution N 1s spectrum can be
deconvoluted into three peaks positioned at binding energies of 398.9, 400.8, and 404.1 eV,
which were credited to the C–N–C (pyridinic), C–N–H (pyrrolic), and C3–N (quaternary N
atoms) functional moieties, respectively [51,52]. The presence of C–N proves that nitrogen
was incorporated successfully into the porous carbon matrix of H-PCM. The high-resolution
S 2p spectrum can be divided into four binding energy peaks by deconvolution. The
peaks appeared at 164.1 and 165.3 eV, corresponding to S 2p3/2 and S 2p1/2, respectively,
suggesting the possibility of aromatic C–S–C and C=S functionalities [53,54]. The C–S–C
group profoundly demonstrates that the H-PCM is successfully doped with sulfur [55].
Other binding energy peaks positioned at 168.8 and 169.9 eV suggests the existence of
oxidized sulfur (OS) in the form of OS3/2 and OS3/2, respectively; basically present C–
SO–C (sulfoxide) and C–SO2–C (sulfone) in the H-PCM [56,57]. The aromatic C–S–C and
C=S functionalities could modify the atmosphere of the porous carbon surface/edges and
improve the total polarization of the medium [57]. The incidence of sulfur species can also
enhance electrochemical reactions by increasing the conductibility of the carbon matrix.
These findings of heteroatom functionalities are consistent with FT-IR results. Thus it was
believed that the HER performance would be enhanced by the presence of heteroatoms [58].

The numerous number of micropores and mesopores is one of the key factors in deter-
mining the electrochemical activity by easily allowing electrolytes and strong holding of het-
eroatoms during the electrochemical reaction. Nitrogen sorption (adsorption–desorption)
measurements were performed on the synthesized H-PCM under standard temperature
and pressure. As shown in Figure S4, the synthesized H-PCM exhibited a combination
of type I and type IV isotherm characteristics in nature with a type H4 hysteresis loop
appearance that indicates acceptable pores with a layered structure in the carbon matrix of
H-PCM. The characteristic type I isotherms were displayed in the lower relative pressure
(P/P0 < 0.1) with high nitrogen adsorption quantity in a vertical design, suggesting that



Catalysts 2023, 13, 542 7 of 14

H-PCM possessed a higher number of micropores [59]. The nitrogen sorptions relative
pressure (P/P0) within the range from 0.2 to 0.9 represents the type IV isotherms with an
H4 hysteresis loop, indicating that the H-PCM had mesoporous adsorption characteris-
tics nature [60]. The isotherms that appeared with higher relative pressure (P/P0 > 0.9)
represent the macropores that originated from slit holes in the carbon structure and wide
spacing within the layered structure of H-PCM. The combination of isotherms type I and
IV indicated that the synthesized H-PCM contains adequate porous structures including
micropores, mesopores, and macropores. Micropores and mesopores are responsible for
the higher specific surface area, whereas macropores also help to transport chemical com-
ponents. The presented porosity of synthesized H-PCM has been verified by the FESEM
and TEM/HRTEM observations. The obtained Brunauer–Emmett–Teller (BET) surface
area of synthesized H-PCM was 565 m2 g–1. These porous structures with high surface
presented H-PCM is more beneficial for the electrons and ions which resulting enhanced
electro-catalytic activity towards HER [61].
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The HER performance was examined using synthesized H-PCM as a catalyst in
0.5 M H2SO4 aqueous solution under atmospheric conditions. The linear sweep voltam-
metry studies of H-PCM-adorned carbon cloth (H-PCM/CC) are performed at the scan
rate of 10 mV s−1, and the corresponding polarization curves are presented in Figure 5a
and Figure S5. As shown in Figure 5a and Figure S5, the cathodic current density (CCD)
of the unadorned carbon cloth did not alter much upon increasing the negative potential,
suggesting the lower catalytic activity of bare carbon cloth. Whereas, the CCD of the syn-
thesized H-PCM/CC increased quickly by increasing the negative potential, indicating that
the synthesized H-PCM possessed higher catalytic activity toward HER [59]. The initial
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potential of the bare platinum plate (standard catalyst) was nearing zero, and the delivered
lowest overpotential (70 mVRHE) at a CCD of 10 mA cm−2, while unadorned carbon cloth
has negligible HER activity (overpotential: 918 mVRHE). The synthesized H-PCM catalyst
delivered an overpotential of 133 mVRHE at a CCD of 10 mA cm−2 that is comparable to
that of the bare platinum catalyst. The synthesized H-PCM (H-PCM/CC) catalyst exhibits
high catalytic activity toward HER compared to bare carbon cloth. The doping of het-
eroatoms including nitrogen and sulfur possibly enhanced the electro-catalytic activities of
the synthesized H-PCM. The Tafel slope of the catalyst is one of the significant parameters
for determining the HER performance. The Tafel slope of H-PCM/CC is 75 mV dec−1 in
the HER process follows the Volmer–Heyrovsky mechanism (Figure 5b) [62]. The lowest
Tafel slope of H-PCM-adorned carbon cloth implies fast reaction kinetics of synthesized
H-PCM catalyst towards HER [63]. Moreover, the lower Tafel slope of H-PCM suggests
their excellent catalytic performances. Even though the Tafel slope is greater than that of the
bare platinum catalyst, that is comparable to or lower than that of earlier reports (Table 1).

EIS is one of the significant tools for studying electro-catalytic materials in terms
of examining the electrode and electrolyte interface reaction including charge transfer
resistance and coating effect. The EIS Nyquist plot of the synthesized H-PCM electrode
(H-PCM/CC) was measured at open circuit potential in 0.5 M H2SO4 aqueous solution,
and obtained results were fitted (Figure 5c). As shown in the EIS Nyquist plot, the charge
transfer resistance of H-PCM/CC is around 1.9 Ω cm−2. The lowest charge transfer
resistance for the H-PCM/CC working electrode demonstrated that the synthesized H-
PCM exhibits faster reaction kinetics which can result in excellent HER. The highest HER
performance might be due to the comparable degree of graphitization, high surface area
with acceptable porosity, and heteroatom-containing rich functionalities. In addition, the
EIS Nyquist plot is nearly perpendicular to the y-axis, suggesting the good conductance
of the prepared electrocatalyst (H-PCM). The recorded EIS Nyquist plot is perfectly fitted
with the proposed equivalent circuit as shown in the inset of Figure 5c [6]. Furthermore, the
EIS Nyquist plots are recorded at different overpotentials (0.57, 0.47, 0.37, 0.27, 0.17, 0.07,
−0.03, and −0.13 VRHE), which are shown in Figure 5d. The EIS Nyquist plots displayed
that charge transfer resistance gradually decreased while increasing the overpotential,
suggesting the kinetics of HER depends on the supplied potential. Notably, the higher HER
performance occurred at the higher overpotential.

The stability of the synthesized electrocatalyst is one of the essential criteria for the
applicability of real-time applications. Hence, the long-term durability measurement of syn-
thesized H-PCM is performed by the chronoamperometry method at a controlled potential
of −0.15 VRHE, as shown in Figure 6a. The durability test was conducted in 0.5 M H2SO4
aqueous solution for 24 h, and the retention rate of current density was maintained at nearly
100% compared to the initial current density, manifesting that the H-PCM was remarkably
stable [64]. Nitrogen and sulfur-rich carbon materials showed remarkable catalytic activity
toward HER with outstanding stability [65]. The linear sweep voltammetry polarization
curve of the H-PCM/CC electrode was again recorded at the scan rate of 10 mV s−1 after
the completion of the stability study. The obtained linear sweep voltammetry polarization
curve was compared with the initial linear sweep voltammetry polarization curve of the
H-PCM/CC electrode (Figure 6b). There is no significant difference in both linear sweep
voltammetry polarization curves (before and after stability), authenticating that the syn-
thesized H-PCM is greatly stable and could be a potential candidate as an electrocatalyst
for HER in the acidic media. In addition, the EIS Nyquist plot of the synthesized H-PCM
electrode measured at open circuit potential in 0.5 M H2SO4 aqueous solution after the
prolonged stability and obtained results were compared to before the prolonging stability.
Figure S6 shows the EIS Nyquist plots of synthesized H-PCM electrodes obtained before
and after prolonged stability. The EIS Nyquist plots exhibit insignificant changes before
and after, suggesting excellent stability in the acidic medium towards HER. Aforesaid,
all the analytical results strongly imply that the synthesized H-PCM catalyst (metal-free
electrocatalyst) had great application value toward HER in the acidic medium.
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Figure 5. Electro-catalytic studies of synthesized H-PCM, bare platinum plate, and bare carbon cloth
electrodes in 0.5 M H2SO4 aqueous solution towards HER under static atmosphere; (a) linear sweep
voltammetry polarization curves at the scan rate of 10 mV s−1, (b) Tafel plots, (c) EIS Nyquist plot
and suitable fitting with the equivalent circuit of H-PCM electrode recorded at open circuit potential,
and (d) EIS Nyquist plot of H-PCM electrode at different overpotentials.
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Table 1. The HER performances of H-PCM were compared with the reported ones.

Electrocatalysts Preparation
Method

Overpotential at
10 mA cm−2 (mV)

Tafel Slope
(mV dec–1) Reference

SrTiO3@MoS2 Calcination 165 81.41 [66]
NA9 Carbonization 184 164 [67]

NPCF Annealing 248 135 [64]
S–MoS2/rGO/CNTs Carbonization 159 85 [68]

Mo2C/C Pyrolysis 133 71 [69]
LS-PC Pyrolysis 135 85 [45]

PS/MoS2 Pyrolysis 154 71 [70]
Porous Mo2C/C Sintering 556 123.9 [59]

Ni/P-doped carbon Pyrolysis 297 134.9 [71]
BS-800 Calcination 413 98 [72]
H-PCM Pyrolysis 133 75 This work

3. Materials and Methods
Synthesis of Heteroatom-Doped Porous Carbon Material

CNS waste was dried in sunlight, then it was made into a fine powder using a
commercial mixer grinder. The fine powder of CNS was carbonized at a mild temperature
of 800 ◦C under the nitrogen atmosphere for 3 h in a tubular furnace. After the completion
carbonization process, the furnace was allowed to cool down to room temperature, and
the resulting fine black powder was collected for further analysis. The detailed synthesis
process of H-PCM was described in Scheme 1.
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Scheme 1. Synthesis of biomass-derived heteroatom-doped porous carbon material by simple
pyrolysis and their eco-friendly energy applications.

4. Conclusions

Here, an easy and cost-effective metal-free electrocatalyst was established using waste
biomass of CNS via a one-pot pyrolysis route and utilized for HER in an acidic medium.
The heteroatoms such as oxygen, nitrogen, and sulfur species are uniformly distributed
as well as chemically bonded in the biomass-derived porous carbon matrix. The obtained
H-PCM exhibits a moderate degree of crystallinity with abundant functionalities. Notably,
the synthesized H-PCM possessed a high BET surface area of 565 m2 g−1. The exhib-
ited porous structures with interconnected channels not only support the transportation/
penetration of electrolytes but also the bubbles produced are rapidly released during the
HER process. Furthermore, the nitrogen and sulfur doping in the porous carbon matrix
played an essential role in the improved electrochemical conductivity during HER. Such
outstanding specific characterization of H-PCM bestows the excellent electro-catalytic
activity for HER in the acidic electrolyte (0.5 M H2SO4 aqueous solution), and the H-PCM
displayed a lower Tafel slope (75 mV dec−1) and excellent long-lasting durability. This
work demonstrates a facile strategy to design the waste biomass-based H-PCM electro-
catalysts by simple pyrolysis for HER applications and will also be extended in essential
energy-related applications.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal13030542/s1. Materials, instrumentation methods, and fabrication of working electrode
and electrochemical measurements of the synthesized H-PCM, Figure S1: XRD pattern of synthesized
H-PCM; Figure S2: ATR-FTIR spectrum of synthesized H-PCM; Figure S3: XPS survey scan spectrum
(inset of Pie chart: presented elements with atomic %) of synthesized H-PCM; Figure S4: Nitrogen
sorption isotherms of synthesized H-PCM under standard temperature and pressure; Figure S5: HER
polarization (LSV) curves for bare platinum plate, H-PCM/CC, and bare carbon cloth electrodes in
0.5 M H2SO4 aqueous solution at a scan rate of 10 mV s−1; Figure S6: EIS Nyquist plots of synthesized
H-PCM electrode obtained before and after prolonged stability.
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Y.R.L. All authors equally contributed to this work. All authors have read and agreed to the published
version of the manuscript.
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