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Abstract: The hydrosilylation of alkynes is one of the most attractive and, at the same time, most
challenging catalytic transformations, usually demanding the use of noble transition metals. We
describe a catalytic system, based on cobalt(0) complex and bulky N-heterocyclic carbene (NHC)
ligands, permitting the highly effective hydrosilylation of a broad scope of alkynes and silanes. The
application of bulky NHC ligands allowed a decrease in the amount of cobalt necessary for an effective
reaction run to 2.5 mol% and provided excellent selectivity towards challenging α-vinylsilanes. The
developed method tolerates a number of substituted aryl, alkyl, and silyl acetylenes. Moreover, it is
suitable for both tertiary and secondary silanes. Our findings confirm that steric hindrance around
the metal center can effectively increase the activity of a catalyst and ensure better selectivity than
those of analogous complexes bearing smaller ligands.
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1. Introduction

The hydrosilylation reaction of multiple carbon–carbon bonds has a special place in
the contemporary world. Due to its atom economy and the numerous applications of its
products, the reaction is widely used in many branches of chemistry and industry [1,2].
In particular, the hydrosilylation of alkynes can produce vinylsilanes, which are valuable
compounds used in numerous applications such as building blocks for organic synthesis,
reagents in cross-coupling reactions, and cross-linking agents in material science [3–6].

Apart from the many advantages of the hydrosilylation process, it still suffers from the
selectivity problem. The addition of silane molecules to alkynes can produce three different
isomers (α, β-(E), β-(Z)). Moreover, the reaction can be accompanied by side-processes,
such as dehydrogenative silylation, the hydrogenation of olefins, or isomerization. What
is more, hydrosilylation still mostly relies on noble metals, such as Pt [7–9], Rh [10], and
Ir [11]. To date, platinum has been the most commonly used metal in industry due to its
high activity. In particular, Karstedt’s catalyst is most widely used and, although it can
provide a high conversion of products, it usually renders a mixture of regioisomers [12,13].
For economic and ecological reasons, a search for alternatives to these catalysts among
Earth-abundant metals has been undertaken [14,15]. Recently, cobalt complexes have been
of particular interest in terms of hydrogenation and hydroelementation reactions [16–21].
It is worth mentioning that, in recent years, the authors investigating hydrosilylation in the
presence of cobalt complexes have focused on the selective preparation of α-vinylsilanes,
due to the fact that the methods for the synthesis of β-(E) and β-(Z) isomers have already
been well developed and described (Figure 1). The Markovnikov addition is considered
to be much more demanding and reports describing selective methods of α-vinylsilanes
synthesis are limited.
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Figure 1. Selected examples of cobalt-based catalysts for α-selective hydrosilylation of alkynes [22–
28]. 

From among the methods of synthesis of α-vinylsilanes based on cobalt catalysts, 
much interest is paid to those employing complexes with chelating N-donor ligands. In 
2016, Lu [22] and Huang [23] independently reported the Markovnikov selective hydros-
ilylation of alkynes in the presence of cobalt(II) complexes with pyridinebis(oxazoline) 
and oxazoline iminopyridine ligands. Three years later, Chen et al. reported the synthesis 
of α-vinylsilanes in the presence of a cobalt complex with a 2,2′-bipyridine derivative as a 
ligand [24]. However, in the above-mentioned examples, the scope of substrates was lim-
ited to secondary silanes. In 2021, Pawluć et al. developed a very effective catalytic system 
enabling the selective hydrosilylation of alkynes with both tertiary and secondary silanes 
in the presence of 0.05–0.5 mol% of Schiff base cobalt(II) complex [25,26]. Except for the 
overall good activity of the cobalt complexes bearing tridentate (NNN) ligands, the indis-
pensable use of an activator seems to be the major drawback of their proposal. Another 
recently published proposition is the synthetic protocol designed by Park et al. employing 
a cobalt complex with bis(dicyclohexylphosphino)ethane as a ligand [27]. This method led 
to the selective formation of α-vinylsilanes and α-vinylgermanes, but demanded 5 mol% 
of the cobalt complex and over 10 mol% of NaHBEt3 as an activator. In 2021, Deng et al. 
reported the synthesis of dicobalt carbonyl complex-bearing N-heterocyclic carbene lig-
and (NHC), IPr [28]. The application of this complex in hydrosilylation allowed the Mar-
kovnikov selective addition of a series of tertiary silanes to terminal acetylenes in the pres-
ence of 5 mol% of the catalyst. The octacarbonyl dicobalt(0) itself was previously used by 
Isobe for alkyne hydrosilylation, but this method was characterized by a moderate α/β 
ratio [29]. The introduction of a carbene ligand led to significant improvements in the re-
action selectivity, especially in the case of sterically hindered NHCs. 

Recently, bulky NHC ligands have been receiving considerable interest due to their 
ability to stabilize low-valent species and facilitate the reductive elimination step. In-
creased steric hindrance around the metal center in the complex can significantly improve 
the selectivity of the process or even completely change its direction [30–33]. Over recent 
years, our group has been exploring the application of bulky NHCs as ligands in different 
transition metal complexes [9,34–39]. As a consequence of interest, we decided to apply 
them as ligands in cobalt carbonyl complexes and check the effect of increased steric hin-
drance on their catalytic performance in the hydrosilylation of alkynes. 

In this paper, we describe a new catalytic system based on bulky NHCs and octacar-
bonyl dicobalt(0), which enables the selective hydrosilylation of a broad scope of terminal 
and internal alkynes with both tertiary and secondary silanes. 
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From among the methods of synthesis of α-vinylsilanes based on cobalt catalysts,
much interest is paid to those employing complexes with chelating N-donor ligands. In
2016, Lu [22] and Huang [23] independently reported the Markovnikov selective hydrosily-
lation of alkynes in the presence of cobalt(II) complexes with pyridinebis(oxazoline) and
oxazoline iminopyridine ligands. Three years later, Chen et al. reported the synthesis
of α-vinylsilanes in the presence of a cobalt complex with a 2,2′-bipyridine derivative as
a ligand [24]. However, in the above-mentioned examples, the scope of substrates was
limited to secondary silanes. In 2021, Pawluć et al. developed a very effective catalytic
system enabling the selective hydrosilylation of alkynes with both tertiary and secondary
silanes in the presence of 0.05–0.5 mol% of Schiff base cobalt(II) complex [25,26]. Except
for the overall good activity of the cobalt complexes bearing tridentate (NNN) ligands, the
indispensable use of an activator seems to be the major drawback of their proposal. Another
recently published proposition is the synthetic protocol designed by Park et al. employing a
cobalt complex with bis(dicyclohexylphosphino)ethane as a ligand [27]. This method
led to the selective formation of α-vinylsilanes and α-vinylgermanes, but demanded
5 mol% of the cobalt complex and over 10 mol% of NaHBEt3 as an activator. In 2021,
Deng et al. reported the synthesis of dicobalt carbonyl complex-bearing N-heterocyclic
carbene ligand (NHC), IPr [28]. The application of this complex in hydrosilylation allowed
the Markovnikov selective addition of a series of tertiary silanes to terminal acetylenes in
the presence of 5 mol% of the catalyst. The octacarbonyl dicobalt(0) itself was previously
used by Isobe for alkyne hydrosilylation, but this method was characterized by a moderate
α/β ratio [29]. The introduction of a carbene ligand led to significant improvements in the
reaction selectivity, especially in the case of sterically hindered NHCs.

Recently, bulky NHC ligands have been receiving considerable interest due to their
ability to stabilize low-valent species and facilitate the reductive elimination step. Increased
steric hindrance around the metal center in the complex can significantly improve the
selectivity of the process or even completely change its direction [30–33]. Over recent
years, our group has been exploring the application of bulky NHCs as ligands in different
transition metal complexes [9,34–39]. As a consequence of interest, we decided to apply
them as ligands in cobalt carbonyl complexes and check the effect of increased steric
hindrance on their catalytic performance in the hydrosilylation of alkynes.

In this paper, we describe a new catalytic system based on bulky NHCs and octacar-
bonyl dicobalt(0), which enables the selective hydrosilylation of a broad scope of terminal
and internal alkynes with both tertiary and secondary silanes.
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2. Results and Discussion
2.1. Optimization of Reaction Conditions

Inspired by a recent study by Deng, we decided to synthesize a new cobalt carbonyl
complex bearing bulky NHC carbene ligands used in our lab. We made attempts to
isolate the corresponding cobalt(0) complex. Unfortunately, it appeared to be unstable
and underwent rapid decomposition during the NMR characterization (see ESI). Since the
isolated complex could not be stored for a long period of time, we decided to continue
our research with the catalyst generated in situ by mixing the corresponding carbene with
octacarbonyl dicobalt(0) for 30 min directly before the reaction.

At the first stage of the study, different bulky NHCs (IPr*OMe, IPr*Et, IPr*Ph) were
tested to compare their reactivity and overall performance in the studied reaction with
the effectiveness of smaller carbenes such as IMes or IPr. The hydrosilylation of phenyl
acetylene (1a) with an equimolar amount of triethyl silane (2a) was chosen as a model
reaction. We decided to start our investigation with 5 mol% of the cobalt(0) catalyst, as
it was a standard catalyst concentration used in the previous report by Deng. A series
of experiments aimed at the optimization of the type and amount of the catalyst was
performed and the results are presented in Table 1.

Table 1. Optimization of reaction conditions—catalyst type and amount.
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Entry NHC [Co]
(%)

Time
(h)

Conv. 1

(%)
Selectivity 2

α:β-(E):β-(Z)

1 - 5 24 76 32:68:0
2 IPr 5 5 94 95:5:0
3 IMes 5 5 90 90:10:0
4 IPr*OMe 5 3 99 99:1:0
5 IPr*Et 5 3 96 98:2:0
6 IPr*Ph 5 3 97 99:1:0
7 IPr*Ph 2.5 5 95 99:1:0
8 IPr*Ph 1 24 70 97:3:0
9 IPr*Ph 0.5 24 19 93:7:0

Reaction conditions: argon, THF, 60 ◦C, [1a]:[2a] =1:1, [NHC]:[Co] = 2:1, [IPr*OMe] = 1,3-bis{2,6-bis(diphenylmethyl)-
4-methoxyphenyl}imidazol-2-ylidene, [IPr*Et] = 1,3-bis{2,6-bis(diphenylmethyl)-4-ethylyphenyl}imidazol-2-ylidene,
[IPr*Ph] = 1,3-bis{2,4,6-tris(diphenylmethyl)phenyl}imidazol-2-ylidene; 1 determined by GC analysis; 2 determined by
GC analysis and confirmed by 1H NMR spectroscopy of the crude reaction mixture.

As presented in Table 1, the reaction without NHC ligand addition resulted in 76%
of conversion with a significant excess of the anti-Markovnikov product (Entry 1). The
addition of a twofold excess of IPr or IMes ligand to the cobalt(0) precursor switched the
selectivity of the reaction towards the Markovnikov product and meaningly increased the
conversion of the substrates (Entry 2 and 3). The use of the IPr ligand already resulted in
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very good selectivity and conversion, but only the use of bulky NHCs led to an almost
fully selective reaction in the studied conditions (Entry 4–6). We did not observe significant
changes between the effects of the bulky NHCs used in the reaction; thus, the study was
continued using the IPr*Ph ligand. The amount of the catalyst based on the bulky NHC
ligand could be reduced to 2.5 mol% without significant loss of the process effectiveness
and at the same level of selectivity (Entry 7). Since the reduction of the cobalt(0) amount to
1 or 0.5 mol% resulted in a decrease in the substrate conversion, our study was continued
using 2.5 mol% of dicobalt(0) octacarbonyl and a twofold excess of a bulky NHC ligand.

Next, we optimized the type of solvent and temperature to ensure the best conditions
for the tested hydrosilylation reaction. The results are presented in Table 2.

Table 2. Optimization of reaction conditions—solvent and temperature.
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determined by GC analysis and confirmed by 1H NMR spectroscopy of the crude reaction mixture.

The results gathered in Table 2 show that the reactions performed at temperatures
lower than 60 ◦C led to a significant decrease in the substrate conversion to 36% and 10%
at 40 ◦C and room temperature, respectively (Entry 2 and 3). This decrease indicated the
necessity of catalyst activation, which consists of the thermal dissociation of one of the
carbonyl ligands. Subsequently, different organic solvents were tested at 60 ◦C and it was
observed that besides THF, the reaction could be effectively carried out in toluene and DCM
without a meaningful decrease in the selectivity (Entry 4 and 5). The application of polar
aprotic solvents, such as MTBE and acetonitrile, decreased the substrate conversion (Entry
6 and 7). The reaction completely failed in protic solvents such as isopropanol, leading to
only trace conversion (Entry 8).

2.2. Substrate Scope—Alkynes

Using an active and selective catalytic system based on a cobalt(0) complex and a bulky
NHC ligand, a range of substrates were tested to determine the versatility of the method.
At first, a broad scope of acetylenes bearing aryl moieties with both electron-withdrawing
and electron-donating groups were tested, besides alkyl and silyl acetylenes, terminal
diacetylenes and internal alkynes. All of the results are presented in Figure 2.

For the aryl alkynes, the excellent activity of the tested catalytic system and very good
selectivity towards α-vinylsilanes were observed. The proposed system tolerates a broad
scope of substituents, including methyl- (Me), tert-butyl- (tBu), methoxy- (OMe), phenyl-
(Ph), fluoro- (F), bromo- (Br), trifluoromethyl- (CF3), dimetylamino- (NMe2), and cyano-
(CN). The reaction with alkyne-bearing thiophane moiety led to the expected product
with a high selectivity (P12). On the other hand, the test with sterically demanding 1-
ethynylnaphtalene effected in a mixture of β-(E) and β-(Z) (P13), which proves that the
reaction outcome is significantly dependent on the steric nature of the used reactants.
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Figure 2. Substrate scope—alkynes. Reaction conditions: argon, THF, 60 ◦C, 5 h, [1a-u]:[2a] = 1:1,
[IPr*Ph] = 5 mol%, [Co] = 2.5 mol%; isolated yields are given under the product structure. Selectivity
α:β-(E) is given in the parenthesis; 1 selectivity β-(E):β-(Z) is given in the parentheses. 2 Product
without isolation; conversion of the substrates is given.

Encouraged by the positive results obtained for aryl alkynes, we decided to expand the
scope of acetylenes. The method proposed turned out to be suitable for the hydrosilylation
of silylacetylenes, although the isomer formed in the reaction strongly depended on the
steric nature of the substrate. Thus, the hydrosilylation of triethylsilylacetylene led to the
product of Markovnikov addition (P15), but the same reaction of triisopropylsilylacetylene
led to the selective formation of the anti-Markovnikov product (P16). These results are
particularly important since disilylated alkenes are extensively used as versatile reagents in
organic and organosilicon synthesis [40–42].

Our protocol can also be applied in the hydrosilylation of aliphatic alkynes, such as
1-nonyne or cyclohexylacetylene (P17 and P18). The newly designed catalytic system can
also tolerate groups containing heteroatoms in the alkane chain, such as hydroxyl or ester
groups (P19 and P20). Moreover, the reactions of terminal aryl- and alkyl-diacetylenes can
also be performed, leading to bis-silylated products (P21–P22), although their selectivity is
slightly lower (up to 8% of β-E products).

Finally, we decided to test the proposed method in the hydrosilylation of internal
alkynes. Recently, Deng’s group has reported the selective hydrosilylation of internal
alkynes in the presence of Co2(CO)8 [43]. According to our results, the proposed cobalt-
based catalytic system with bulky NHC ligands provides an effective means of the syn-
addition of hydrosilanes to internal acetylenes, leading to a β-(E) product. Unfortunately,
the reaction is limited to aliphatic alkynes only (P23–P25).

It has been established that the presence of a bulky NHC ligand provides high se-
lectivity of the reaction towards Markovnikov products. On the other hand, the reaction
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is also very sensitive to the steric nature of the alkyne substrate, which is significantly
pronounced in the hydrosilylation of sterically demanding triisopropylacetylene, giving
selectively β-(E)-vinylsilane P16. The influence of the alkyne substrates’ steric nature is
presented in Figure 3.
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The mechanistic explanation provided by Deng et al. assumes that the active cat-
alyst involved in the reaction is (NHC)Co2(CO)5. After the CO dissociation and subse-
quent addition of alkyne to the catalyst molecule, the dicobalt bridging alkyne complex
(NHC)(CO)2Co(µ-η2:η2-HCCR)Co(CO)3 is formed. In the next step, the cobalt intermediate
interacts with a silane molecule to form the complex shown in Figure 3. In the case of
acetylenes bearing smaller substituents (e.g., phenylacetylene), a more favorable silane
complex is formed, giving α-vinylsilane as the reaction product. At the same time, using
a very sterically demanding substrate (e.g., triisopropylsilylacetylene), the formation of a
corresponding silyl complex is much more difficult due to the steric repulsive interactions
between the alkyl substituent and hydrosilane molecule approaching the cobalt complex.
Thus, in this case, the formation of Co–H is more favorable and the formation of the
anti-Markovnikov product takes place.

2.3. Substrate Scope—Silanes

As the next step, a series of silanes were tested in optimized reaction conditions. The
results are presented in Figure 4.
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The proposed method proved to be effective for tertiary silanes containing alkyl (P26),
aryl (P28), and alkyl–aryl (P27) substituents. Moreover, in the case of silanes containing
siloxyl substituents, it was possible to effectively carry out the reaction with a high conver-
sion of substrates (P29). However, in the reaction with methyl-bis(trimethylsiloxy)silane,
the selectivity of the process decreased and a mixture of products also containing β-
(Z)-vinylsilane was obtained. In this case, the ratio of the products α:β-(E):β-(Z) was
65:21:14 (P30).

Finally, our catalytic system was tested in the hydrosilylation of secondary silanes
(Figure 5).
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The catalytic methods of alkyne hydrosilylation limit the substrate scope to tertiary
or secondary silanes only. This fact prompted us to perform additional tests to check the
universality of the proposed method. As our aim was to obtain bis-α-vinylsilanes, a twofold
excess of alkynes was added to the reaction mixture in each reaction. When diethylsilane
was used as a reactant, we were able to selectively obtain products of bis-hydrosilylation
(P33 and P34). Surprisingly, in the same reaction conditions applied for hydrosilylation
with diphenylsilane, the process led to the mono-vinylsilane product in majority (P31
and P32). Additionally, traces of bis-hydrosilylation products and unreacted acetylene
were observed in the post reaction mixture. In all cases, the regioselectivity towards the
Markovnikov product was preserved.

2.4. Mechanistic Investigation

In order to determine whether the reaction occurs in a homogeneous manner, a mer-
cury poisoning test was performed. The reaction of phenylacetylene (1a) and triethylsilane
(2a) was performed under standard conditions. Then, after 15 min, 1000 equivalents of
mercury in relation to cobalt were added to the reaction mixture. The obtained result did
not indicate the inhibition of the reaction by excess mercury, and only an insignificant slow-
down in the reaction rate was observed (see ESI, Figure S2). Additionally, we performed
the hot filtration test for the same reaction. The obtained results confirmed that the catalytic
activity of the filtrate was retained and the residue demonstrated only trace activity (see
ESI, Figure S3). The selectivity of the reaction in both tests remained the same. Based on
the performed tests, we assume that the reaction is occurring in a homogeneous manner.

On the basis of the available literature data and our own observations, we propose the
reaction mechanism depicted in Scheme 1.
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At first, the insertion of acetylene occurs parallel to the dissociation of two ligands,
leading to a dicobalt-bridging alkyne complex, which was previously confirmed by Deng.
In the next step, the coordination of silane takes place. The way in which the second
substrate molecule is coordinated is strongly dependent on the steric properties of both
the ligand and the reagents. In most cases, the bulky NHC ligand favors the formation of
the silyl complex, which subsequently leads to the formation of the Markovnikov product.
After the formation of complex III, alkene complex VI is formed. In the last stage, the
product molecule is eliminated, and the resulting complex can react with the next acetylene
molecule. The bulky NHC ligand, due to its large steric hindrance around the metal atom,
can significantly facilitate the reducing elimination step. This may explain the increased
activity of the catalytic system we tested compared to those containing smaller NHC
ligands. The influence of the steric hindrance of NHC ligands on the selectivity and activity
of catalytic active metal species has been widely investigated. It has been proven that the
introduction of a bulky NHC ligand to a metal complex can result in significantly more
active and selective catalytic systems. Our observation confirmed that the bulky ligand
used in these studies plays a crucial role in the highly selective and effective performance
of the developed catalytic system.

3. Materials and Methods
3.1. Instruments and Reagents

All syntheses and catalytic tests were carried out under dry argon, using standard
Schlenk-line and vacuum techniques. All products have been characterized using the
apparatuses available at the Faculty of Chemistry, Adam Mickiewicz University in Poz-
nań. The 1H NMR and 13C NMR spectra were recorded in CDCl3 or C6D6 on a Varian
400 operating at 402.6 and 101.2 MHz, respectively. GC analyses were carried out on an
Agilent 7890B instrument (column: DB-530 m ID 0.53 mm) equipped with TCD. The GC-MS
analyses were performed on a Varian Saturn 2100T equipped with a DB-1 capillary column
(30 m in length and 0.25 mm in internal diameter) and an ion trap detector. IR spectra were
recorded on a Bruker IFS 66v/S spectrophotometer. Thin layer chromatography (TLC) was
conducted on plates coated with a 250 µm thick silica gel layer and column chromatography
was performed on silica gel 60 (70–230 mesh).

NHC carbene precursors were prepared according to procedures described in the
literature [44–47]. All other reagents were commercially available (Merck, Acros Organics,
Stanlab) and used as received. The solvents were dried over CaH2 prior to use and stored
over 4 Å molecular sieves under argon. Dichloromethane was additionally passed through
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an alumina column and degassed by repeated freeze–pump–thaw cycles. The THF was
dried over sodium benzophenone ketyl and freshly distilled prior to use.

3.2. Experimental Procedures
3.2.1. Catalytic Tests

The oven-dried 5 mL Schlenk vessel equipped with a magnetic stirring bar was charged
with a freshly isolated NHC carbene (7.0 × 10−3 mmol) and Co2(CO)8 (3.5 × 10−3 mmol)
in the glove box. Then, THF (1 mL), alkyne (0.14 mmol), silane (0.14 mmol), and internal
standard (decane, 15 µL) were added. The reaction mixture was stirred at the appropriate
temperatures for 3–24 h (see Table 1). The conversion of the substrates and selectivity were
determined by gas chromatography (GC) and confirmed by the 1H NMR spectra of the
post-reaction mixture.

3.2.2. Synthesis of Products P1–P30

The oven-dried 5 mL Schlenk vessel equipped with a magnetic stirring bar was charged
with a freshly isolated NHC carbene (2.5 × 10−2 mmol) and Co2(CO)8 (1.25 × 10−2 mmol)
in the glove box. Then, THF (1 mL), alkyne (0.5 mmol), and silane (0.5 mmol) were
added. The reaction mixture was stirred at 60 ◦C for 5 h. After this time, the solvent
was evaporated under vacuum and the residue was purified by column chromatography
(silica gel 60, n-hexane or n-hexane/DCM). Evaporation of the solvent gave the analytically
pure products.

3.2.3. Synthesis of Products P31–P34

The oven-dried 5 mL Schlenk vessel equipped with a magnetic stirring bar was charged
with a freshly isolated NHC carbene (5.0× 10−2 mmol) and Co2(CO)8 (2.5× 10−2 mmol) in
the glove box. Then, THF (1 mL), alkyne (1.0 mmol), and silane (0.5 mmol) were added. The
reaction mixture was stirred at 60 ◦C for 12 h. After this time, the solvent was evaporated
under vacuum and the residue was purified by column chromatography (silica gel 60,
n-hexane/DCM). Evaporation of the solvent gave the analytically pure products.

3.2.4. Mercury Poisoning Experiment

An oven-dried 5 mL glass reactor equipped with a magnetic stirring bar was charged
with a freshly isolated NHC carbene (7.0 × 10−3 mmol) and Co2(CO)8 (3.5 × 10−3 mmol)
in the glove box. Then, THF (1 mL), phenylacetylene 1a (0.14 mmol), triethylsilane 2a
(0.14 mmol), and decane (15 µL) were added. The reaction was heated with stirring at 60 ◦C
for 15 min. Then, the conversion of substrates was measured using gas chromatography,
and Hg (1000 equiv. in relation to catalyst) was added. The reaction was carried out at 60 ◦C
upon vigorous stirring for 5 h. The reaction course was monitored by gas chromatography.

3.2.5. Hot Filtration Test

A 5 mL glass reactor was charged with a freshly isolated NHC carbene (7.0× 10−3 mmol)
and Co2(CO)8 (3.5 × 10−3 mmol) in the glove box. Then, THF (1 mL), phenylacetylene 1a
(0.14 mmol), triethylsilane 2a (0.14 mmol), and decane (15 µL) were added. The reaction
mixture was warmed up to 60 ◦C in an oil bath and carried out for 10 min. After this time,
the hot solution was filtered under argon on the pad of silica gel to a new Schlenk vessel
and the reaction was continued. The silica gel from filtration was transferred to a second
Schlenk vessel, which was then charged with THF (1 mL), phenylacetylene 1a (0.14 mmol),
triethylsilane 2a (0.14 mmol), and decane (15 µL). The reaction was carried out at 60 ◦C.
The conversion of the substrates in both reactions was observed by gas chromatography.

4. Conclusions

The main conclusion from our results is that bulky NHC carbenes can effectively
increase the selectivity of acetylene hydrosilylation. The synthesis with the designed
catalytic system based on octacarbonyl dicobalt(0) and bulky NHC was proven to be a
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universal method for the hydrosilylation of both terminal and internal alkynes using both
tertiary and secondary silanes. This method ensured higher selectivity compared to that
achieved using smaller NHCs and enabled the selective formation of α-alkenylsilanes
under mild conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13030510/s1: Figures S1–S65: 1H and 13C NMR spectra of
isolated products and cobalt complex [9,23,25,28,41,48–53].

Author Contributions: Conceptualization, M.B. and P.Ż.; methodology, M.B.; formal analysis, M.B.
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34. Żak, P.; Bołt, M.; Lorkowski, J.; Kubicki, M.; Pietraszuk, C. Platinum Complexes Bearing Bulky N-Heterocyclic Carbene Ligands

as Efficient Catalysts for the Fully Selective Dimerization of Terminal Alkynes. ChemCatChem 2017, 9, 3627–3631. [CrossRef]
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