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Abstract: In this work, a Z-scheme Bi2WO6/BiO2−x heterojunction was successfully prepared using
a self-assembly strategy. Various characterization techniques demonstrated that the formation of
the heterojunction not only accelerated the separation of photoinduced carriers but also weakened
the recombination rate of photogenerated electron–hole pairs-. The Bi2WO6/BiO2−x composites
had a wider absorption edge than Bi2WO6 in the range of 200–800 nm, which improved the pho-
tocatalytic performance of ciprofloxacin (CIP) degradation under xenon lamps. As a result, the
Z-scheme heterojunction Bi2WO6/BiO2−x composite exhibited excellent photocatalytic activity. Cat-
alyzed by the optimal 20% Bi2WO6/BiO2−x (0.5 g/L), the removal rate of CIP (10.0 mg/L) was
91.8% within 2 h irradiated by visible light, which was 2.37 times that of the BiO2−x catalyst. This
work will provide a fresh perspective on the construction of visible-driven Z-scheme photocatalysts
for wastewater treatment.

Keywords: photocatalysis; ciprofloxacin; Bi2WO6; BiO2−x; Z-scheme heterostructure

1. Introduction

Nowadays, antibiotics play an influential role in healthcare, agriculture and animal
husbandry [1]. For example, ciprofloxacin (CIP), a second-generation quinolone antibacte-
rial drug with broad-spectrum antibacterial and bactericidal activity, is commonly used
to treat bacterial infections in humans and animals [2]. However, these drugs are not
easily broken down in the living body; they remain in feces and eventually accumulate
in rivers, pools and groundwater [3]. Through wastewater discharges and agricultural
runoff, residual drugs can easily enter the aquatic environment, leading to the proliferation
of drug-resistant bacteria that can lead to serious ecological risks [4]. It is imperative
that antibiotics such as CIP should be removed from the ecosystem to ensure public and
environmental health.

In recent years, photocatalysis has been regarded as an environmental purification
technology that can effectively alleviate environmental problems due to its eco-friendly, safe
and efficient characteristics [5,6]. Among the available photocatalyst materials, Bi2WO6 has
attracted widespread attention owing to the low toxicity, favorable stability, and abundant
oxygen defects [7]. Nonetheless, Bi2WO6 exhibits a high recombination rate of combined
electron–hole pairs, which limits practical applications in environmental purification [8,9].
A series of strategies were attempted to alleviate the recombination rate of photogenerated
electrons (e−) and holes (h+), including morphology control [10,11], doping [12], fabricating
defective materials [13,14], and constructing heterojunctions [15,16]. It is prevalent to
couple Bi2WO6 with the different functional materials to form heterostructures, which has
been identified as the most useful approach. Among them, the construction of Z-scheme
heterojunction has been proved to be an effective method to inhibit the recombination of
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electron–hole pairs [17]. Successful cases include Bi2WO6/BiPO4 [18], Bi2WO6/CdS [19],
Bi2WO6/CuBi2O4 [20], Bi2WO6/Ta3N5 [21], Bi2WO6/WO3 [22], Bi2WO6/TiO2 [23] and
Bi2WO6/ZnO [24], and so forth.

A surprising finding in recent years is that all inorganic bismuth-based compounds
have bright prospects for solar energy conversion and environmental remediation [25–27].
Among these, BiO2−x was extensively reported to be a promising candidate for photocat-
alytic applications due to its relatively narrow band gap and plentiful oxygen vacancies [28].
Meanwhile, owing to the existence of mixed Bi3+ and Bi5+, BiO2−x overcomes the draw-
backs of inadequate light absorption range of a monovalent compound [29]. Bi2WO6
and BiO2−x have received a lot of attention in the field of photocatalysis and wastewater
treatment field due to their great potential for applications. However, few studies focus
on the Bi2WO6/BiO2−x-based heterojunction photocatalysis for CIP degradation. At the
same time, the mechanism of the photocatalytic reactions in binary bismuth systems with
oxygen defects is still unclear.

Here, a series of Z-scheme Bi2WO6/BiO2−x heterostructures were fabricated using
a facile electrostatic self-assembly process [30]. The photocatalytic performance of the—
catalysts was verified by measuring its photodegradation performance of CIP. The applica-
tion of a number of catalysts to the photocatalytic degradation of ciprofloxacin is shown
in Table S3, demonstrating that synthesized heterostructures have a prominent effect on
the photocatalytic degradation of ciprofloxacin. Electrochemical tests and photolumines-
cence (PL) spectra proved that the participation of Bi2WO6 could effectively inhibit the
recombination of photogenerated carriers in the Bi2WO6/BiO2−x heterojunction. In short,
constructing Bi2WO6/BiO2−x heterojunction restrains the recombination of photogener-
ated carriers, therefore optimizing broad-spectrum driven photocatalytic activity [31]. In
addition, based on the photocatalyst characterization and experimental evidence, this work
provides a comprehensive understanding of the constructed Z-scheme heterojunction for
CIP degradation processes and paves a possible way for the development of extremely
efficient photocatalysts for wastewater treatment.

2. Results and Discussions
2.1. Synthesis and Characterization of Catalysts

The crystalline structures of the parent BiO2−x, Bi2WO6 and Bi2WO6/BiO2−x compos-
ites were analyzed through their XRD patterns. As shown in Figure 1a, the characteristic
peaks of BiO2−x were located at 2θ = 28.21◦, 32.69◦, 46.92◦, 55.64◦, and 58.54◦, corre-
sponding to the (111), (200), (220), (311), and (222) crystal faces, respectively (JCPDS NO.
47-1057) [32], whereas the peaks at 2θ = 28.30◦, 32.67◦, 46.97◦, 55.66◦, and 58.33◦ were
assigned to the (131), (060), (260), (191), and (262) planes of the Bi2WO6 crystal structure
(JCPDS No. 39-0256) [33]. As shown in Table S1, we calculated the XRD data using the
Scherrer formula, and found that the average grain size of the sample decreased with
the increase in Bi2WO6 loading. The decrease of catalyst grain size will increase the spe-
cific surface area, which can further increase the contact area with the reactant and thus
improve the photocatalytic performance. The increase in FWHM in Bi2WO6/BiO2−x is
attributed to lattice strain in the heterostructure, which may be due to the doping [17]. The
Bi2WO6/BiO2−x composites displayed similar structural features to BiO2−x and Bi2WO6. It
reveals that the crystal structure of the composite remains stable during synthesis, further
confirming the heterostructure formation of Bi2WO6/BiO2−x.

The FT-IR spectra of a series of Bi2WO6/BiO2−x composites exhibited similar vibration
modes to BiO2−x, suggesting small amounts of Bi2WO6 combined with BiO2−x did not affect
the chemical structure of BiO2−x (Figure 1b). In the spectrum of BiO2−x, the absorption
peaks at 519 cm−1, 589 cm−1and 954 cm−1 belonged to the stretching vibrations of the Bi-O
bond [33]. For Bi2WO6, the characteristic peaks at 589 cm−1 and 687 cm−1 could be ascribed
to the stretching vibration of Bi-O and W-O [34]. The peak at 1389 cm−1 was associated
with the W-O-W bridging stretching of Bi2WO6 [35]. There were two signal peaks located
at 1635 cm−1 and 3421 cm−1 that belong to the stretching and bending vibrations of the
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O-H functional groups resulting from the adsorption water, respectively [36]. All these
characteristic peaks of BiO2−x and Bi2WO6 existed in their composites, which proved that
Bi2WO6/BiO2−x heterojunction had been successfully formed.
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Furthermore, Figure 1c shows the Raman spectroscopy of Bi2WO6. For the pure
Bi2WO6 sample, the peaks at 158 cm−1, 305 cm−1 and 825 cm−1 were assigned to the
Bi-O, the bending vibrations mode of BiO6 polyhedron and the symmetric stretching vi-
bration of O-W-O [37,38]. Figure 1d shows the Raman spectra of BiO2−x and a series of
Bi2WO6/BiO2−x composites ranging from 100 cm−1–1200 cm−1. The peaks at approx-
imately 135 cm−1, 480 cm−1 and 615 cm−1 could be ascribed to the Bi-O stretches of
BiO2−x [39]. With the increase in content of Bi2WO6 in the composites, the intensity of the
peak at 305 cm−1 also increased, indicating that the Bi2WO6/BiO2−x heterojunction was
successfully synthesized.

To acquire the porous characteristics of the obtained materials, we proceeded with
N2 adsorption–desorption experiments for BiO2−x, Bi2WO6 and 20% Bi2WO6/BiO2−x.
Figure 1e and Table S2 displayed the N2 adsorption–desorption isotherms of the samples;
the specific surface area of BiO2−x, Bi2WO6 and 20% Bi2WO6/BiO2−x were 5.1639 m2 g−1,
101.5031 m2 g−1 and 10.4902 m2 g−1. According to the IUPAC classification, all of the
materials exhibited type IV isotherms featured with type H3 hysteresis loops, suggesting
these samples contain abundant mesoporous [40,41]. The porous features can be further
found in their pore size distribution curves shown in Figure 1f; the pore sizes of Bi2WO6,
BiO2−x and 20% Bi2WO6/BiO2−x were dispersed between 8.7 and 53.7 nm. Obviously, the
specific surface area of 20% Bi2WO6/BiO2−x was approximately twice that of pure BiO2−x,
indicating that the composites had more active sites and were beneficial to enhancing
photocatalytic performance.

Figure S1a shows the typical nanosheet morphology of the BiO2−x nanostructure.
Bi2WO6 is formed by the accumulation of a large number of nanosheets (Figure S1b).
Figure S1c and Figure 2a show the SEM and TEM images of 20% Bi2WO6/BiO2−x, which
prove that Bi2WO6 nanosheets are loaded on BiO2−x nanosheets successfully. The HRTEM
images (Figures 2b and S2b) show the lattice stripes of 0.315 nm, corresponding to the
(111) crystal plane of BiO2−x nanosheets. Moreover, Figures 2b and S2d show that the
calculated d space values 0.375 nm and 0.226 nm are attributed to the (111) plane and (042)
plane of Bi2WO6. EDS elemental analysis (Figure S3), and the elemental mapping images
(Figure 2d–f) of 20% Bi2WO6/BiO2−x reveal homogeneous distribution of Bi, O, and W
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elements in the sample, which is highly in accordance with the results of TEM images and
indicates the formation of Bi2WO6/BiO2−x heterojunction.
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Bi2WO6/BiO2−x, (d) Bi; (e) O and (f) W elements distribution.

X-ray photoelectron spectroscopy (XPS) technology was performed to elucidate the
surface element composition and valence state of the prepared catalysts and the interaction
between BiO2−x and Bi2WO6. As shown in Figure 3a, in addition to the characteristic
peaks of Bi and O, there are also peaks of W in the 20% Bi2WO6/BiO2−x heterostructure.
Figure 3b–d shows the XPS high-resolution spectra of O, Bi and W XPS, respectively.
For Bi2WO6/BiO2−x hybrid, the deconvolution of the high-resolution spectrum of O 1s
(Figure 3b) gives three peaks at 529.5 eV, 530.4 eV and 531.8 eV, assignable to lattice
oxygen [42], surface hydroxyl group [37] and oxygen vacancies [43] in the as-prepared
samples, respectively. The Bi 4f7/2 and 4f5/2 peaks are situated at 158.3 eV and 163.6 eV,
159.1 eV and 164.5 eV for BiO2−x and Bi2WO6, respectively [39]. Furthermore, the peak
positions of Bi 4f for 20% Bi2WO6/BiO2−x were positively shifted relative to BiO2−x, which
were negatively shifted relative to Bi2WO6 (Figure 3c). The W 4f7/2 and W 4f5/2 peaks of
20% Bi2WO6/BiO2−x are centered at 35 eV and 37.2 eV [44], which are 0.4 eV lower than
those of the Bi2WO6 sample (35.4 eV of W 4f7/2 and 37.6 eV of W 4f5/2) (Figure 3d). This
phenomenon reveals the successful synthesis of Bi2WO6/BiO2−x heterojunction.
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2.2. Optical and Photoelectrochemical Property Analysis

Figure 4a displays the UV–Vis DRS spectra of the prepared photocatalysts. The
absorption edge of 20% Bi2WO6/BiO2−x displayed an obvious red shift compared with
that of Bi2WO6, suggesting that composites could make better use of visible light. The
light absorption edge of Bi2WO6 had a band gap of 2.54 eV, while BiO2−x had a narrower
band gap of 1.34 eV (Figure 4b). The positive slope of the Mott–Schottky curves in Figure
S4a,b indicates that both Bi2WO6 and BiO2−x are n-type semiconductors and the flat
band positions of Bi2WO6 and BiO2−x are −0.289 and −0.436 V (relative to Ag/AgCl).
Furthermore, according to the formulas of ENHE = E(Ag/AgCl) + 0.197 and ECB = Eflat band
− 0.1 (n-type semiconductor), the ECB values of Bi2WO6 and BiO2−x are calculated to
−0.192 and −0.339V vs. NHE, respectively. Additionally, based on the formula EVB = ECB
+ Eg, the valence band positions (EVB) of Bi2WO6 and BiO2−x are calculated to −2.348 and
−1.001eV vs. NHE, respectively. As shown in Figure 4c, such band combinations of Bi2WO6
and BiO2−x were conducive to the formation of the heterojunction. Furthermore, the
photoelectrochemical measurement was also evaluated to investigate the charge separation
and transfer efficiency of samples. From Figure 4d, with light switching on and off, the
photocurrent densities of the 20% Bi2WO6/BiO2−x composite demonstrated the highest
photocurrent density over other samples, and also presented the lowest resistance ability,
indicating enhanced separation of photogenerated carriers in the composites. According
to the electrochemical impedance spectroscopy (EIS) Nyquist plots (Figure 4e), compared
with pure Bi2WO6 and BiO2−x, the formation of Bi2WO6/BiO2−x heterojunction could
significantly reduce the semi-arc, indicating that the carrier recombination rate of the
composite was lowest. In order to further detect the photogenerated electrons and holes
recombination, PL emission spectra is commonly employed. As depicted in Figure 4f, the
PL intensity of Bi2WO6 significantly decreased when it hybridized with BiO2−x, indicating
that the 20% Bi2WO6/BiO2−x samples obtained the superior charge separation ability. In
a word, the separation efficiency of photogenerated carriers in the 20% Bi2WO6/BiO2−x
samples could be greatly enhanced, which could significantly contribute to improving its
photocatalytic activity.
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2.3. Photocatalytic Performance of Catalysts

The photocatalytic performances of BiO2−x, Bi2WO6 and a series of Bi2WO6/BiO2−x
composites were explored through CIP degradation under visible light illumination. As
indicated in Figure S5, no remarkable CIP decomposition was found without any catalyst
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under the illumination of visible light, which indicates that the presence of catalysts is
necessary for the degradation of CIP. As Figure 5a,b showed, the degradation percentage
of 91.8% was achieved by 20% Bi2WO6/BiO2−x after 120 min of degradation process
and its corresponding apparent kinetic constant was 0.02240 min−1, which was higher
than that of BiO2−x by 2.37 times. Thus, the synergistic effect can be achieved using the
combination of Bi2WO6 and BiO2−x via ultrasonication, which may be ascribed to the fact
that the formation of Bi2WO6/BiO2−x heterojunctions can enhance visible light absorption
efficiency, accelerate the transfer rate of photo-generated electron–hole pairs and reinforce
the oxidation ability for CIP decomposition.
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To evaluate the stability of 20% Bi2WO6/BiO2−x, cyclic experiments for the pho-
todegradation of CIP were performed in Figure 5c. 20% Bi2WO6/BiO2−x could retain its
activity well for four catalytic cycles, indicating the great stability of 20% Bi2WO6/BiO2−x.
Moreover, the SEM image of the used 20% Bi2WO6/BiO2−x was almost the same as the fresh
one (Figure S1c,d). Furthermore, in the XRD pattern before and after the photocatalytic
degradation of CIP of 20% Bi2WO6/BiO2−x, it was found that the position of the charac-
teristic peak did not shift, further demonstrating the structural stability during the photo-
catalysis process (Figure S7). The FTIR of CIP (Figure S6a) showed peaks corresponding to
the asymmetric -CH3 stretching vibrations at 2924.06 cm−1, ring vibrations at 1036.7 cm−1,
amidogen νN-H vibrations at 3600 to 2700 cm−1 and the -C-N band finger prints of the
azo nature of dye at 1119.1 cm−1 [45]. Most importantly, these characteristic peaks of CIP
almost disappeared in the presence of 20% Bi2WO6/BiO2−x (Figure S6b–d), suggesting
the degradation of CIP. These results indicated that the as-prepared 20% Bi2WO6/BiO2−x
maintained stable photocatalytic activity during long time photo-degradation reactions.

As shown in Figure 5d, the influence of-pH on the photo-degradation of CIP in suspen-
sions of 20% Bi2WO6/BiO2−x was investigated in the pH range of 3.0–11.0. The dosage of
20% Bi2WO6/BiO2−x and CIP concentration were 0.5 g/L and 10 mg/L, respectively. It can
be seen that when the alkalinity of the solution was increased, the degradation efficiency of
CIP was inhibited. Although the CIP removal decreased at pH 11.0, about 53.6% of CIP
was still removed, proving that 20% Bi2WO6/BiO2−x system could be applied over a wide
pH range. According to Figure 5e, Na+, K+, Ca2+ and Mg2+ had little effect on CIP removal.
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In addition, the inorganic anion NO3
− had little effect on the degradation of CIP, while the

CO3
2− had a significant inhibitory effect on CIP degradation (Figure 5f). Conclusively, the

20% Bi2WO6/BiO2−x system exhibited excellent photo-degradation of organic pollutants.

2.4. Possible Degradation Pathways

In order to explore the photocatalytic degradation mechanism and possible degrada-
tion pathways of CIP, the intermediate products in the degradation of CIP were estimated
using HPLC-MS. There were two possible photocatalytic degradation pathways of CIP, as
shown in Figure 6. Pathway 1, CIP (m/z = 332), was attacked by the active species and
produced the intermediates of products A (m/z = 362). Then, A (m/z = 362) suffered decar-
boxylation to form B (m/z = 334) and was further defluorinated to form E (m/z = 344) [46].
Subsequently, B (m/z = 334) lost both -CO and -C2H5N to form C (m/z = 263), which
defluorinated to D (m/z = 245), respectively. F (m/z = 316) lost -CO and was transformed
to G (m/z = 288), which subsequently lost -C2H5N to form D (m/z = 245) and formed H
(m/z = 190) and I (m/z = 104) through further oxidation. Then, I (m/z = 104) degraded
into small molecular pollutants. Pathway 2, CIP (m/z = 332), suffered decarboxylation to
form J (m/z = 288). Afterward, the piperazine and adjacent C=C in quinolone structure
of intermediate J (m/z = 288) could be further oxidized and allowed the formation of
intermediate K (m/z = 243). Then, the closing of a five-membered ring on intermediate K
(m/z = 243) induced to the formation of intermediate L (m/z = 181) [47]. The side groups
of the middle L (m/z = 181) lost with the cracking of the five-membered ring to form the
middle M (m/z = 171). Finally, these products further oxidized and mineralized into CO2
and H2O.
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2.5. Mechanism Discussion

In order to clarify the main reactive radical species on the degradation of CIP, we car-
ried out scavenging experiments using tertiary butanol (TBA), Na2C2O4, p-benzoquinone
(PBQ) and furfural alcohol (FFA) for quenching hydroxyl radicals (•OH), photo-generated
holes (h+), superoxide radicals (•O2

−) and singlet oxygen (1O2), respectively [48]. As
Figure 7a,b shows, the decomposition efficiency of CIP almost remained when TBA was
added to the suspension, implying that less •OH was produced during CIP degradation.
In contrast, a sharp decrease in decomposition efficiency was observed when Na2C2O4,
PBQ and FFA were added in system; the degradation efficiency of CIP decreased to 39.4%,
45.7% and 42.5%, and the corresponding reaction rate constant decreased to 0.00557 min−1

and 0.00580 min−1and 0.00590 min−1. These results indicated that h+ played a major role
in CIP degradation, •O2

− and 1O2 were the moderate reactive species in the degradation of
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CIP over the 20% Bi2WO6/BiO2−x composite. To verify this conclusion, we conducted ESR
experiments in Figure 7c–f. Upon visible light illumination, the corresponding characteris-
tic peaks intensity of DMPO-•O2

−, TEMP-1O2 and DMPO-•OH in the ESR spectra slightly
increased, while the characteristic peaks’ intensity of TEMPO-h+ decreased significantly
after illumination. As illustrated in Figure 7e, the three peaks’ intensity of TEMPO-h+

would get weaker, demonstrating the existence of photogenerated h+ [6]. Conclusively, the
existence of •O2

−, 1O2, •OH and h+ in CIP photodegradation process was confirmed.
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According to the aforementioned results, the possible CIP photodegradation mecha-
nism was presented in Scheme 1. Under visible light irradiation, both Bi2WO6 and BiO2−x
could be photoexcited and produced electron–hole pairs, and the photo-induced electrons
migrated from the valence band to the conduction band. Since the ECB of Bi2WO6 was more
-positive than the O2/•O2

− potential (−0.33 V vs. NHE), •O2
− could not be generated

in the CB. Therefore, the type II heterojunction did not conform to the structure of this
Bi2WO6/BiO2−x composites, that a Z-scheme charge transfer way was proposed for this
degradation process. The photogenerated electrons in the CB of Bi2WO6 could migrate to
the VB of BiO2−x and combine with h+ by visible light illuminating. In the VB of Bi2WO6
and the CB of BiO2−x, •OH and •O2

− could be produced, respectively. Moreover, most of
the •O2

− further reacted to generate 1O2. These active species gradually converted CIP into
small molecules that were easily broken down. Combined with ESR and radical quenching
reactions, the overall electron transition and CIP degradation reaction in Bi2WO6/BiO2−x
heterostructures were proposed as follows (Equations (1)–(7)) [49–51]:

Bi2WO6/BiO2−x
hν→ h+ + e− (1)

O2 + e− → •O2
− (2)

H2O↔ H+ + OH− (3)

•O2
− + 2H+ → 2•OH (4)

h+ + OH− → •OH (5)

h+ + •O2
→ 1O2 (6)

h+/•O2
−/1O2/•OH + CIP→ CO2 + H2O (7)
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Bi2WO6/BiO2−x composites.

3. Experimental
3.1. Materials

NaBiO3·2H2O, Bi(NO3)3·5H2O, Na2WO4·2H2O, tertiary butanol, Na2C2O4 and
p-benzoquinone were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). Ethylene glycol and furfural alcohol were purchased from Aladdin Reagents Co., Ltd.
(Shanghai, China). Ciprofloxacin hydrochloride monohydrate was used as CIP raw material,
which was produced by the Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

3.2. Preparation of BiO2−x

BiO2−x was prepared using a hydrothermal method. Briefly, 1.2 g NaOH and 1.4 g
NaBiO3·2H2O were incorporated into 30 mL of ultrapure water via magnetic stirring. After
stirring for 30 min, the suspension was transferred into a 50 mL autoclave, and heated at
180 ◦C for 18 h. The mixture was naturally cooled to room temperature and collected via
centrifugation, washed with ultrapure water and dried at 80 ◦C for 4 h under vacuum.

3.3. Preparation of Bi2WO6

Firstly, 0.3881 g Bi(NO3)3·5H2O and 0.1319 g Na2WO4·2H2O were mixed together
in 40 mL of ethylene glycol and stirred for 30 min to obtain the homogeneous solution.
It was transferred into a 100 mL Teflon-lined autoclave and treated at 160 ◦C for 15 h.
After cooling at 25 ◦C, the product was centrifuged and rinsed several times with ethanol
and ultrapure water to remove residual inorganic ions. Finally, Bi2WO6 powders were
oven-dried at 70 ◦C for 12 h.

3.4. Preparation of Bi2WO6/BiO2−x

The Bi2WO6/BiO2−x composite was prepared via an electrostatic self-assembly method
illustrated in Scheme 2. A total of 0.10 g of BiO2−x and different amounts of Bi2WO6 (0.005,
0.01, 0.015, 0.02 and 0.025 g) were added to 30 mL ethanol with ultrasonics for 4 h, and
dried at 60 ◦C for 4 h under vacuum.
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4. Conclusions

In summary, we have successfully prepared a Z-scheme Bi2WO6/BiO2−x heterostruc-
tures using a simple method with excellent photocatalytic CIP degradation performance un-
der visible light irradiation. By constructing a Z-scheme heterostructure, the charge recom-
bination rate was significantly reduced in the photocatalytic degradation of ciprofloxacin.
The Z-scheme charge transfer mechanism in Bi2WO6/BiO2−x heterojunction as investigated
via XPS, photoelectrochemical measurements and ESR experiment greatly enhances the
separation of photogenerated carriers to expedite CIP photodegradation. With the increas-
ing Bi2WO6 content, the average grain size of the samples decreases, and the surface area
of the materials in contact with the pollutant increases, which improves the photocatalytic
performance. The 20% Bi2WO6/BiO2−x samples were constructed to alleviate the problem
of the high recombination rate of photogenerated e−-h+, and the CIP degradation rate
reaches 91.8% under the present conditions. The 20% Bi2WO6/BiO2−x heterostructures still
had good stability and photocatalytic activity after four cycles, showing high potential in
practical applications. Critically, this study demonstrates the successful application of CIP
degradation and provides valuable insights regarding the development of the construction
of heterojunctions to further improve their photocatalytic degradation efficiency.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/catal13030469/s1, Table S1: Crystallite size of the pre-
pared materials [17]; Table S2: Porous parameters of BiO2−x, Bi2WO6 and 20% Bi2WO6/BiO2−x [15];
Figure S1: SEM image of (a) BiO2−x; (b) Bi2WO6; 20% Bi2WO6/BiO2−x (c) before and (d) af-
ter use [5]; Figure S2:TEM images of (a) BiO2−x; (c) Bi2WO6 and HRTEM images of (b) BiO2−x;
(d) Bi2WO6 [47]; Figure S3: EDX spectrum of 20% Bi2WO6/BiO2−x [48]; Figure S4: The Mott-Schottky
plots of (a) Bi2WO6 and (b) BiO2−x at different frequencies (500 Hz, 1000 Hz and 1500 Hz) [41];
Figure S5: Photocatalytic degradation of CIP without any catalyst for comparison tests. (condition:
sample dosage = 0.5 g/L, CIP concentration: 10 mg/L) [1]; Figure S6: FT-IR spectra of (a) CIP,
(b) 20% Bi2WO6/BiO2−x (c) 20% Bi2WO6/BiO2−x after mixing with CIP in the dark for 30 min, and
(d) 20% Bi2WO6/BiO2−x after mixing with CIP in the dark for 30 min and then under visible light
irradiation for 2 h [52]; Figure S7: XRD patterns of BiO2−x, Bi2WO6, fresh and used Bi2WO6/BiO2−x
composites [53]; Figure S8: Bode plots of BiO2-x, Bi2WO6 and 20% Bi2WO6/BiO2−x [54]; Figure S9:
Photocatalytic degradation of CIP with prolonged light time for comparison test. (condition: sample
dosage = 0.5 g/L, CIP concentration: 10 mg/L) [55]; Table S3. The catalytic performance comparison
of recently reported catalysts for CIP degradation based on reduction percentages and reaction time.
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