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Abstract: Adsorption is a low-energy, economical, and efficient method for pollutant removal from
water. Because of their unique structure, large specific surface area (SSA), and non-toxicity, bismuth-
based semiconductors, usually researched for the photodegradation of organic molecules, are also
excellent for dark adsorption processes. Here, a three-dimensional adsorbent with a heterostructure
with a hydrangea-like shape made of Bi2MoO6 (BMO) and BiOI (BOI) was synthesized by a one-
pot solvothermal process and investigated for the adsorption of toxic dyes. BOI/BMO with an
I-to-Mo ratio of 2.0 adsorbed 98.9% of the model pollutant rhodamine B (RhB) within 5 min with a
maximum adsorption capacity of 72.72 mg/g in the dark at room temperature. When compared to
pure BMO, the BOI2/BMO heterostructure was 14.1 times more performant because of its flower-like
morphology with multiple planes, an SSA that was 1.6-fold larger, increased porosity, the formation
of heterojunctions, and a negative surface charge attracting RhB. Further investigation indicated that
adsorption by BOI2/BMO fitted the pseudo-second-order kinetic and the Langmuir isotherm models.
In addition, the thermodynamic analysis showed that it was a spontaneous exothermic process
probably relying on physisorption. Thus, the BOI/BMO adsorbent developed here is promising for
the fast removal of toxic dyes from industrial wastewater.

Keywords: BiOI/Bi2MoO6; heterostructure; rhodamine B; dark adsorption; kinetics; thermodynamic

1. Introduction

Water resources are vulnerable to organic dye contaminants released by the printing,
textile, leather, and paper industries [1]. As much as 17% to 20% of all hydrosphere
pollution comes from industrial dyes [2]. One of these dyes, rhodamine B (RhB), is a widely
employed xanthene that damages ecosystems because of its high solubility and stability,
poor biodegradability, as well as a lasting effect on aquatic life [3–5]. In addition, RhB is
suspected to be cardiotoxic, mutagenic, and carcinogenic for humans [6,7]. Other examples
of problematic dyes often found in wastewater include the azobenzene derivative methyl
orange (MO) and the thiazine methylene blue (MB), both of which impact negatively
human health as well as aquatic flora and fauna [8,9].

Traditional wastewater treatments including filtration, flocculation, aeration, and
sedimentation are somewhat efficient for the removal of RhB and other dyes [10]. However,
these techniques suffer from limitations such as secondary pollution, high cost and energy
requirement, and insufficient quality of the water effluent. For these reasons, advanced
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approaches and materials are being researched to eliminate aqueous dye pollution in a
cost-effective manner. This includes the development of systems for the photocatalytic
oxidation, biodegradation, chemical coagulation, and adsorption of dyes [11–18]. Among
these, adsorption is widely investigated because of its simplicity, low energy consumption,
high efficiency, biocompatibility, and tolerance to toxic molecules [19]. It is also easy to
operate and functional over a wide range of pH and other environmental parameters [20].

In the field of pollutant removal, Bi-based semiconductors are mostly studied for the
photocatalytic degradation of toxic molecules [7,11,21,22]. Because of their large specific
surface area (SSA), non-toxicity, and unique structure, these materials are now also getting
developed as dark adsorbents. This includes the adsorption of dyes and metals by BiOBr,
BiOCl, Bi2MoO6 (BMO), Bi2WO6, BiVO4, and BiO2CO3 [23–27].

BMO and the Bi oxyhalides BiOBr and BiOCl have been combined for adsorption
processes, mainly because stable heterostructures have an increased SSA, resulting in a
larger number of contact sites with pollutants compared to homostructures [22,27,28]. BMO
is an Aurivillius oxide made of MoO4

2− slabs interspaced with [Bi2O2]2+ layers [29,30].
This n-type semiconductor has a narrow energy bandgap (Eg), good stability, and is envi-
ronmentally friendly, which is why it is a good candidate for catalyzing visible-light-driven
pollutant oxidation [31,32]. In addition, BMO has a large SSA, and its surface is perme-
able [33]. These properties make BMO suitable for adsorption processes [22,34].

A third Bi oxyhalide, BiOI (BOI), has also been coupled with BMO and the result-
ing heterostructure has been investigated for the photocatalytic degradation of organic
pollutants, but never for dark adsorption [33]. BOI is a ternary V-VI-VII semiconductor
where [Bi2O2]2+ layers alternate with I− layers [35]. In this tetragonal structure, the Bi and
O elements in the [Bi2O2]2+ layer are attached covalently while the I− ions form Van der
Waals bonds with [Bi2O2]2+ [35]. Like BMO, BOI has a narrow Eg and can absorb a large
part of the visible light spectrum, which is excellent for photocatalytic applications [33].
BOI is also known to have a high adsorptive capacity, which is related to its suitable SSA
and porosity [36,37]. Furthermore, the synthesis method of BOI can be adjusted to obtain
three-dimensional flower-like structures with an expanded surface maximizing interaction
with pollutants [38].

In this work, we investigated the dark adsorption capacity of a BOI/BMO composite
for the removal of RhB and other dyes from water. After its synthesis via a one-pot
solvothermal method, the composition, surface, and morphology of the heterostructure
were characterized by different spectroscopic and microscopic techniques. The performance
and stability of BOI/BMO particles with varying fractions of both semiconductors were
then evaluated under different experimental conditions. Lastly, the adsorption properties
of the composite were investigated via kinetics, isotherms, and thermodynamic modeling.

2. Results and Discussion
2.1. XRD, FTIR, and XPS Analyses

The crystal structure of BOI/BMO with different I:Mo molar ratios was evaluated
by X-ray diffraction (XRD) spectroscopy (Figure 1a). For pure BMO, the diffraction peaks
observed at 2θ = 28.3◦, 32.5◦, 46.7◦, 55.44◦, and 58.4◦ correspond to the (131), (002), (202),
(331), and (262) crystal planes of Bi2MoO6 (JCPDS nos. 76-2388). For BOI1/BMO with
a I:Mo ratio of 1.0, no other peak was detected besides the ones associated with BMO.
When the I doping was increased to 2.0, an additional peak was observed at 31.7◦. Further
augmenting the I:Mo ratio to 3.0 resulted in four additional peaks appearing at 29.7◦, 31.7◦,
45.5◦, and 51.5◦. These peaks are distinctive of the (012), (110), (020), and (114) crystal
planes of the tetragonal phase of BiOI (JCPDS no. 73-2062) [39]. Thus, for BOI/BMO
composites, all detected peaks were attributable to either BMO or BOI, indicating high
purity. With an increase in the I/Mo molar ratio, the characteristic peak intensity of BMO
gradually decreased, while that of BOI gradually increased, demonstrating the successful
synthesis of BOI/BMO heterostructures by a one-pot solvothermal method. In addition,
the crystallite size of BMO, BOI1/BMO, BOI2/BMO, and BOI3/BMO, as determined by
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Scherrer’s equation [40], was 9.8 nm, 6.2 nm, 5.9 nm, and 6.4 nm, respectively. The difference
in size between pure BMO and the heterostructure materials is probably due to the high
dispersity and low crystallinity of BOI [41].

Figure 1. (a) XRD and (b) FTIR spectra of BMO, BOI1/BMO, BOI2/BMO, and BOI3/BMO.

Fourier transform infrared (FTIR) spectra of pure BMO and BOI1–3/BMO all exhibited
broad bands at 3450 and 1600 cm−1 attributed to O-H groups from water molecules
adsorbed on the surface (Figure 1b) [42]. Peaks in the 1000–1500 cm−1 range correspond to
C=O and C-O from CO2 impurities deposited on the catalyst [43,44]. The peak at 841 cm−1

originates from the asymmetric and symmetric stretchings of the apical oxygen atom in
MoO6 [45]. The characteristic band at 725 cm−1 corresponds to the bending and asymmetric
stretching of Mo-O in the MoO6 octahedron [46]. In BOI/BMO samples, this peak became
sharper compared to pure BMO, indicating that the formation of BOI, after the addition
of KI to the solvothermal synthesis process, reduced the asymmetric stretching vibration
of the MoO6 octahedron [44]. Peaks at 439 and 556 cm−1 further confirmed BOI formation
and are assigned to Bi-O vibration and stretching mode, respectively [47,48]. Another band at
1375 cm−1 could be distinctive of asymmetric and symmetric stretching vibrations of Bi-I [49].

The X-ray photoelectron survey spectrum (XPS) shows binding energy peaks for
Bi, Mo, O, and I elements on the surface of the BOI2/BMO heterostructure (Figure S1).
A C 1s peak is also present and was attributed to environmental contamination during
sample analysis [50]. Based on the XPS results, the atomic percentages of Bi, MO, O, and
I were 22.03%, 5.68%, 67.66%, and 4.62%, respectively. Thus, the real fraction of I in the
heterostructure is lower than what was actually fed to the reaction. This is consistent with
other studies reporting that not all the added I molecules will react [11,51].

The I 3d high-resolution XPS spectrum of BOI2/BMO exhibited two peaks for I 3d5/2
and I 3d3/2, indicating that the I element existed in the form of I− (Figure 2a) [52,53]. The
Bi 4f spectra of both pure BMO and BOI2/BMO also had two peaks corresponding to Bi
4f5/2 and Bi 4f7/2 and confirming the presence of Bi3+ (Figure 2b). On the same spectra, two
less prominent peaks with higher binding energy were observed for both pure BMO and
BOI2/BMO. These peaks are possibly related to small surface charge effect polarization
changes in the crystal [54]. The Mo 3d spectra had two peaks corresponding to Mo 3d5/2
and Mo 3d3/2, which are characteristic of Mo6+ species (Figure 2c). Both O 1s XPS spectra
of BMO and BOI2/BMO show an asymmetric peak that can be decomposed into three
parts, indicating the presence of surface Bi-O, Mo-O/I-O, and O-H [55–57]. In addition,
peaks on the Bi 4f, Mo 3d, and O 1s spectra of BOI2/BMO shifted toward higher binding
energy compared to pure BMO. This can be attributed to the formation of a built-in electric
field at the interface of BOI and BMO and is another evidence of the successful formation
of the heterostructure [33].
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Figure 2. High-resolution XPS spectra of (a) I 3d, (b) Bi 4f, (c) Mo 3d, and (d) O 1s for BMO and
BOI2/BMO.

2.2. Morphology and Surface Characterization

The scanning electron micrograph (SEM) of pure BMO shows a large sphere made of
aggregated nanosheets (Figure 3a). When BOI was added, the heterostructure became a
three-dimensional hydrangea-like shape with more exposed planes (Figure 3b). In addition,
BOI2/BMO spheres were significantly smaller. Compared to pure BMO, the shape and size
of BOI2/BMO are more suitable for dark adsorption processes by providing a larger number
of binding sites for the pollutant molecules [42,44]. Transmission electron microscopy (TEM)
supported these results and showed that BOI2/BMO had a narrower shape with an outline
that was irregular compared to pure BMO (Figure S2). In addition, high-resolution TEM
(HRTEM) micrographs of both pure BMO and BOI2/BMO exhibited a spacing of 0.32 nm,
corresponding to the (131) crystal plane of BMO. BOI2/BMO also had a spacing of 0.30 nm,
which is distinctive of the (012) crystal plane of BOI, further confirming the synthesis of the
heterojunction adsorbent.

Next, a Brunauer–Emmett–Teller (BET) analysis was conducted to gain more insights
into the surface of the heterostructure (Figure 3c,d). Both pure BMO and BOI2/BMO
displayed type (IV) isotherms with a H3 hysteresis loop indicative of a mesoporous structure
(Figure 3c). In agreement with its morphology and smaller size, the SSA of BOI2/BMO was
larger at 68.6 m2/g compared to 41.9 m2/g for pure BMO. BOI2/BMO also had bigger pores
with an average diameter of 18.2 nm and a total pore volume of 0.31 cm3/g (Figure 3d). In
comparison, the average pore diameter and total pore volume of pure BMO were 15.7 nm
and 0.16 cm3/g, respectively. The bigger SSA and pore volume of BOI2/BMO are beneficial
for adsorption as they increase available active sites and facilitate the rapid transfer of
adsorbate molecules [58].
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Figure 3. SEM micrographs of (a) BMO and (b) BOI2/BMO. (c) N2 adsorption–desorption isotherms
and (d) pore size distribution curves.

2.3. Toxic Dyes Adsorption Performance by BOI/BMO

BOI/BMO composites with different I:Mo molar ratios (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.6,
2.0, 2.6, and 3.0) were evaluated for the removal in the dark of the widely used toxic dye
RhB (Figure 4a,b). This experiment was conducted with 50 mg adsorbent in a 10 mg/L
RhB solution with an unadjusted pH of 4.8. The most performant heterostructure had a
I:Mo ratio of 2.0 and adsorbed 98.9% RhB after only 5 min. This excellent adsorption rate
was 14.1 times higher than pure BMO (7.0%) and 2.3 times higher than pure BOI (43.4%).
BOI2/BMO was also faster than many BMO heterojunction-based adsorption systems for
RhB (Table 1). Besides SSA and porosity, another major factor responsible for the higher
adsorption capacity of the heterostructure was its surface charge. While the zeta potential
of pure BMO was 12 mV, BOI2/BMO exhibited a negative potential of −4.0 mV because of
the abundance of I− anions on its surface. Thus, the composite was more suitable for the
electrostatic attraction of cationic RhB molecules.

Table 1. Examples of RhB adsorption performance by Bi2MoO6-based materials.

Absorbent Time (min) Removal
Efficiency (%)

Adsorbent
Dosage (mg) [RhB] (mg/L) Reaction

Volume (mL) Reference

BiOBr/Bi2MoO6 120 98.4 a 20 30 20 [22]

Bi2MoO6@BiOCl@MOF-199 10 30.0 b 100 7.5 200 [24]

MnFe2O4/Bi2MoO6
/PPy 120 54.9 b 30 10 50 [59]

Bi2MoO6@BiOCl 8 94.0 b 100 7 200 [27]

BiOI/Bi2MoO6
(BOI2/BMO) 5 98.9 b 50 10 50 This work

a The reaction pH was adjusted to 2. b The reaction pH was not adjusted.
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Figure 4. Dark adsorption of RhB (10 mg/L) by (a) BMO, BOI, BOI0.1–1.0/BMO, and
(b) BOI1.6–3.0/BMO (50 mg) over time. Effect of (c) adsorbent quantity and (d) pH on RhB removal by
BOI2/BMO.

When the I:Mo ratio was above 2.0, the performance of the heterostructure adsorbent
declined (Figure 4b). For instance, BOI3/BMO removed 81.6% RhB after 5 min. This
demonstrates the central role of heterojunctions between BMO and BOI for the adsorption
process. As the BOI content increased up to I:Mo = 2, more interfaces were formed between
BOI and BMO. However, when the BOI content was higher than the optimal value, efficient
heterojunctions between the two semiconductors probably plateaued while BOI in excess
started interfering with efficient RhB removal.

Different adsorbent quantities and reaction pHs were then screened to identify optimal
RhB removal conditions (Figure 4c,d). From 5 to 15 mg BOI2/BMO, adsorption rates
increased significantly (Figure 4c). From 15 to 30 mg BOI2/BMO, adsorption rates still
augmented, but slower. For instance, 15 mg and 20 mg adsorbent removed 93.1% and
95.9% RhB after 90 min, respectively. At higher BOI2/BMO concentrations, adsorption rates
nearly plateaued. For this reason, 20 mg adsorbent was chosen to perform the subsequent
kinetics, isotherms, and thermodynamic analyses. Next, 20 mg BOI2/BMO was tested at
pHs ranging from 2 to 10 (Figure 4d). The adsorption performance was optimal at the
most acidic pH of 2 with a RhB removal of 98.0% after 90 min. At more basic pH values,
the adsorbent lost efficiency with the lowest RhB removal of 87.5% recorded at pH 10.
This observation mainly related to the electronic status of RhB at different pH. When the
pH is below 4, RhB cations are mostly monomers in the solution that will be attracted by
negatively charged BOI2/BMO and entered its pores. When the pH is above 4, RhB exists
mainly as a zwitterion, which weakens its positive charge and makes it more likely to
polymerize and less likely to interact with the surface of the adsorbent [60,61].

Besides RhB, the optimal adsorbent BOI2/BMO was also evaluated for the removal of
two other toxic dyes, MO and MB (Figure S3). After 5 min, BOI2/BMO adsorbed 49.1%
MO and 68.1% MB. The equilibrium was reached after 30 min with the adsorption of 59.1%
and 85.0% of MO and MB, respectively. These results show that BOI2/BMO can adsorb
other industrial dyes than RhB, although not as efficiently.
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2.4. Adsorption Kinetics and Isotherms

The dark adsorption of RhB by 20 mg BOI2/BMO over time is presented in Figure 5a.

Figure 5. (a) Time-dependent RhB (10 mg/L) adsorption by 20 mg BOI2/BMO. (b) Pseudo-first-order
kinetics and (c) pseudo-second-order kinetics plots.

In the first 5 min, RhB was rapidly removed from the aqueous solution with an
adsorption capacity at this specific time (qt) of 18.25 mg/g. Then, the adsorption rate
decreased gradually and the equilibrium (qe) was reached after 60 min (23.90 mg/g). At
time 0, there is a large number of active adsorption sites available for the capture of RhB on
the unique surface of BOI2/BMO. Later, adsorption sites become occupied and the little
number of RhB molecules remaining in solution are less likely to encounter a free one and
be removed quickly.

The kinetics data were then integrated into the pseudo-first-order and pseudo-second-
order models to further understand the adsorption mechanism responsible for RhB removal
by BOI2/BMO (Figure 5b,c) The equation (Equation (1)) for the linearized pseudo-first-
order model is:

ln (qe − qt) = ln qe − k1t (1)

where k1 is the rate constant (min−1) and t is the time [62].
The next Equation (2) was employed to calculate the linearized pseudo-second-

order model:
t/qt = 1/(k2qe

2) + t/qe (2)

where k2 is the rate constant (g/mg/min) [63].
The results clearly showed that BOI2/BMO adsorbed RhB according to the pseudo-

second-order kinetics model with an excellent R2 of 0.999, a k2 of 0.022 g/mg/min, and a
theoretical qe of 24.58 mg/g close to the experimental one (Figure 5b,c, Table S1) [64,65].

The impact of the toxic dye’s initial concentration and the temperature on the adsorp-
tion process by BOI2/BMO were then investigated (Figure 6). With the increase in RhB
concentration, the qe values augmented (Figure 6a). This is mainly because the diffusion
rate of RhB at higher initial concentrations into BOI2/BMO was faster and the concentra-
tion gradient force gained in strength [62]. In the case of temperature, BOI2/BMO became
less efficient with lower qe values at 308 and 318 K compared to 298 K (Figure 6a). This
tendency indicates that RhB absorption by the heterostructure is an exothermic process
more performant at lower temperatures.

Data from the isothermal adsorption study were then fitted in the linearized Langmuir
(Equations (3) and (4)) and Freundlich (Equation (5)) isotherm models to explore further
the adsorption mechanism and calculate the theoretical maximum adsorption capacity (qm)
according to the following equations (Figure 6b,c):

ce/qe = 1/(KLqm) + ce/qm (3)

where ce is the concentration of RhB at equilibrium and KL (L/mg) is the adsorption
equilibrium constant of the Langmuir model.
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Figure 6. (a) The adsorption of different RhB concentrations by 20 mg BOI2/BMO at 298, 308, and
318 K. Linear (b) Langmuir and (c) Freundlich isotherm model plots.

The dimensionless separation constant RL was also calculated based on the Langmuir
isotherm model to predict whether the adsorption reaction by BOI2/BMO was favorable
or not:

RL = 1/(1 + KLc0) (4)

where c0 is the initial RhB concentration.
The Freundlich adsorption isotherm model equation is:

ln qe = ln KF + (1/n) ln ce (5)

where KF (L/mg) and n are empirical constants.
The R2 values from these mathematical models indicated that the adsorption process

fitted better with the linearized Langmuir isotherm, which means that RhB molecules
bound to sites homogeneously distributed onto a monolayer (Figure 6b,c, Table S2) [66].
Based on this model, the theoretical qm of BOI2/BMO for RhB at room temperature was
72.72 mg/g. At all the tested temperatures, RL values (0.028~0.039) derived from the
Langmuir isotherm were between 0 to 1. This indicates that RhB adsorption by BOI2/BMO
is a favorable process [67,68].

2.5. Thermodynamic Analysis

To better understand the adsorption of RhB by BOI2/BMO, thermodynamic parame-
ters including standard free energy change (∆G◦), standard enthalpy change (∆H◦), and
standard entropy change (∆S◦) were calculated according to the following equations [69]:

∆G0 = −RTln b (6)

∆H0 = −RT2T1/T2 − T1ln (b2/b1) (7)

∆S0 = ∆H0 − ∆G0/T (8)

where R is the universal gas constant, T is the absolute temperature (K), and b is the
Langmuir adsorption constant (KL converted in mg/g) at different temperatures T.

The calculated thermodynamic parameters are presented in Table 2. ∆G0 values were
below 0 and changed very little with temperature variation, indicating that the RhB ad-
sorption reaction was spontaneous. The ∆H0 average value of −11.53 kJ/mol was negative
further confirming the exothermic nature of RhB capture by BOI2/BMO and indicating that
physisorption was probably the mechanism involved [70]. In general, it is assumed that
adsorption ∆H0 in the −20 to 40 kJ/mol range are indicative of physisorption [71]. The ∆S0

values were positive at all three tested temperatures showing that the randomness at the
interface between the adsorbent and the aqueous solution containing RhB molecules aug-
mented and thus strongly suggesting structural changes in the toxic dye and BOI2/BMO
during adsorption [72].
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Table 2. Thermodynamic parameters for RhB adsorption by BOI2/BMO.

Temperature (K) ∆G0 (kJ/mol) ∆S0 (J/mol/K) ∆H0 (kJ/mol)

298 −30.78 64.60
−11.53 a308 −32.62 68.47

318 −33.64 69.53
a ∆H0 value is the average of enthalpy changes.

2.6. The Stability of BOI2/BMO

Next, a cycling experiment was conducted where the heterostructure adsorbent was
reused multiple times to assess its long-term stability (Figure S4). Following RhB adsorption,
BOI2/BMO was extensively washed three times with anhydrous ethanol and ultrapure
water, dried in an oven at 55 ◦C for 6 h before being recycled. After five cycles, BOI2/BMO
remained capable of removing 90.8% of RhB molecules, showing good stability. In addition,
an SEM image indicated that the hydrangea-like structure of the heterojunction adsorbent
was mostly preserved.

3. Materials and Methods
3.1. Materials

Na2MoO4·2H2O was purchased from Yuanye Bio-Technology (Shanghai, China) and
Bi(NO3)3·5H2O was acquired from Aladdin Chemical Reagent (Shanghai, China). Ethylene
glycol, anhydrous ethanol, KI, RhB, and MB were purchased from Sinopharm Chemical
Reagent (Shanghai, China). MO was obtained from Macklin Biochemical (Shanghai, China).
All reagents were analytical grade and were used without further treatment.

3.2. Synthesis of Pure Bi2MoO6, BiOI, and Heterostructure BiOI/Bi2MoO6

For pure BMO synthesis, 0.325 mmol Na2MoO4·2H2O and 0.65 mmol Bi(NO3)3·5H2O
were separately dissolved in 6 mL ethylene glycol. These two solutions were mixed and
stirred at 500 rpm for 30 min at room temperature. Then, 30 mL anhydrous ethanol was
added to the reaction followed by stirring for an additional 2 h. For the BOI/BMO com-
posites, various concentrations of KI were added at this step. The mixture was transferred
to a Teflon-lined autoclave and reacted at 160 ◦C for 24 h. The resulting solid was then
washed three times with distilled water and anhydrous ethanol. Lastly, the product was
dried in an oven at 55 ◦C for 12 h before being ground into a fine powder. The composites
were labeled as BOIx/BMO where x is the I:Mo molar ratio. Pure BOI was synthesized in a
similar manner to BOI/BMO, but Na2MoO4·2H2O was omitted from the first step.

3.3. Composition, Structure, and Morphology Characterization

The XRD analysis was performed with a D8 Advance X-ray diffractometer (Bruker,
Billerica, Germany) in the 10–80◦ range with Cu Kα as the radiation source. The FTIR
spectroscopy was done with a Nicolet iS5 spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA) in the 4000–400 cm−1 range with a KBr base. The surface of the samples
was studied with an ESCALAB 250 Xi X-ray photoelectron spectrometer (Thermo Fisher
Scientific) with Al Kα radiation. SEM micrographs were taken with a Phenom Pharos G2
field-emission-gun-SEM system (Thermo Fisher Scientific) at an accelerating voltage of
15 kV. TEM and HRTEM images were obtained with a JEM-2100F field emission electron
microscope (JEOL, Tokyo, Japan) at an accelerating voltage of 200 kV. The BET analysis
was carried out with an ASAP 2460 surface area and porosimetry analyzer (Micromeritics,
Norcross, GA, USA). The zeta potential of the samples was recorded with a Nano-ZS ZEN
3600 Zetasizer instrument (Malvern Panalytical, Malvern, UK).

3.4. Adsorption of RhB and Other Dyes by the Bi-Based Adsorbents

In a typical experiment, 50 mg of the adsorbent material was added to 50 mL of
an aqueous solution containing 10 mg/L of toxic dyes. The reaction was then stirred
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at 300 rpm for 90 min at 25 ◦C in the dark. To measure the remaining concentration of
toxic dyes in solution, the adsorption reaction was centrifuged at 10,000× g for 5 min at
room temperature. The remaining RhB, MO, or MB concentration in the supernatant was
measured with an Evolution 220 UV-Visible spectrophotometer (Thermo Fisher Scientific)
at 554 nm, 464 nm, and 662 nm, respectively, as previously described [73–75]. Where
indicated, the quantity of adsorbent added to the reaction was varied between 5 to 50 mg,
the pH of the adsorbate solution was adjusted at values ranging from 2 to 10 with 1 M
NaOH and HCl, the initial concentration of RhB was changed from 10 to 100 mg/L, the
reaction time was extended to 180 min, or the temperature was set at 35 ◦C (308 K) or
45 ◦C (318 K).

4. Conclusions

The BOI/BMO catalyst prepared with an I:Mo ratio of 2.0 by a one-pot solvothermal
synthesis method was the most efficient for the fast removal of toxic RhB by dark adsorp-
tion. It could remove nearly all RhB molecules within 5 min and exhibited a good qm of
72.72 mg/g at room temperature. BOI2/BMO also adsorbed other dyes besides RhB, but
not as efficiently. Its hydrangea-like morphology, large SSA and pore volume, negative
surface charge, as well as heterojunction between two semiconductors are all factors con-
tributing to the superior BOI/BMO adsorption performance compared to pure BMO, BOI,
and other Bi-based adsorbents reported in the literature (Table 1). In summary, BOI/BMO
is a low-cost and environmentally friendly adsorbent showing great potential for practical
application in the field of water treatment.
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and MB by BOI2/BMO; Figure S4: Stability of BOI2/BMO after multiple reuses; Table S1: Parameters
for kinetic models of RhB adsorption by BOI2/BMO; Table S2: Parameters for isotherms models of
RhB adsorption by BOI2/BMO.
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