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Abstract: Macrocycles are commonly synthesized via late-stage macrolactamization and macro-
lactonization. Strategies involving C—C bond macrocyclization have been reported, and examples
include the transition-metal-catalyzed ring-closing metathesis and coupling reactions. In this mini-
review, we summarize the recent progress in the direct synthesis of polyketide and polypeptide
macrocycles using a transition-metal-catalyzed C-H bond activation strategy. In the first part,
rhodium-catalyzed alkene-alkene ring-closing coupling for polyketide synthesis is described. The
second part summarizes the synthesis of polypeptide macrocycles. The activation of indolyl and
aryl C(sp?)-H bonds followed by coupling with various coupling partners such as aryl halides,
arylates, and alkynyl bromide is then documented. Moreover, transition-metal-catalyzed C-C bond
macrocyclization reactions via alkyl C(sp®)-H bond activation are also included. We hope that this
mini-review will inspire more researchers to explore new and broadly applicable strategies for C-C
bond macrocyclization via intramolecular C-H activation.

Keywords: transition-metal catalysis; C-H activation; macrocyclization; polyketide macrocycles;
polypeptide macrocycles

1. Introduction

Macrocycles have been defined as cyclic molecules that contain 12 or more covalent
connected atoms, which are featured widely in numerous biologically active natural prod-
ucts and pharmaceutically relevant molecules (Figure 1) [1,2]. Among them, polypeptide
and polyketide macrocycles are the most common. For the synthesis of this important class
of compounds, one of the crucial steps is the late-stage macrocyclization reaction [3-10].
As these precursors leading to the molecules may have different conformational structures,
the key step involving intramolecular the macrocyclization reaction can been challenging.
The common strategies reported so far include macrolactonization [11-13], macrolactamiza-
tion [14-16], and macroaldolization [17-19] (Figure 2). Over the decades, transition-metal-
catalyzed intramolecular coupling and ring-closing metathesis (RCM) have also been
shown to be effective strategies for constructing large rings [20-23]. However, all of the
reported methods have some disadvantages, such as the need to use expensive catalysts,
difficulty in accessing the substrates, and difficulty in introducing alkene functionality
with high selectivity. Furthermore, many of these methods are not atom-economical and
sometimes produce substantial amounts of hazardous wastes that are difficult to treat.
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Figure 1. Representative examples of bioactive macrocyclic natural products.
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Figure 2. General strategies for the direct synthesis of macrocycles.
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In recent years, transition-metal-catalyzed C-H activation reactions have attracted
increasing attention [24-31]. In contrast to the classical cross-coupling reactions, such as
Suzuki coupling, Negishi coupling, and Stille coupling, the C-H bond functionalization
coupling reactions do not need to use organometallic or organohalide reagents. Due to these
remarkable advantages, the C—H bond functionalization reactions have been utilized widely
in organic synthesis, and a large number of excellent reviews on this topic have also been
reported [32—43]. While the intermolecular versions of metal-catalyzed, group-controlled
C(sp?)-H for aryl groups and vinyl groups and C(sp®)-H for alkyl groups have been well
studied, the application of the intramolecular version of macrocyclization to construct
various macrocycles has remained relatively unexplored [44—47]. The lengthy synthesis
of the precursors for the risky macrocyclization step may be one of the main reasons. In
recent years, we have witnessed more activities in the polypeptide area as compared to
polyketide synthesis. In this mini-review, we will mainly focus on the direct synthesis
of polyketide and polypeptide macrocycles involving carbon—carbon-based cyclization
reactions via intramolecular C-H bond macrocyclization reactions (Figure 2) [48].

2. Polyketide Macrocycles

Macrolides containing a diene moiety are found in many bioactive natural products
such as vicenistatin [49-51], geldanamycin [52,53], and cyclamenol A [54]. Therefore, the
development of robust methods to construct structurally diverse macrocycles via C-C
bond macrocyclization containing a fixed configuration of the diene moiety can be chal-
lenging. Extending the reactions they developed for the intermolecular version [55], Loh’s
group in 2018 first reported an efficient method to construct macrolactams containing
diene functionality with high Z and E selectivity via an alkenyl sp?> C-H bond olefination
using a Cp*Rh(IlI) catalyst (Figure 3) [56]. This strategy provides easy access to a wide
variety of macrocodes with different ring sizes in an atom-economical manner. Mech-
anistically, this ring-closing alkene—alkene coupling reaction was proposed to proceed
via a Z-olefinic vinylrohodium(IIl) intermediate of the acrylamide derivative (Figure 4).
Initially, the anion exchange of the [RhCp*Cl,], catalyst with the NaBARF additive and
Cu(OAc),eH,O produced the highly reactive species A, which then selectively activated
the Z-olefinic C(sp?)-H bond of acrylamides to generate the vinylrhodium(III) interme-
diate B. Subsequent coordination and further migratory insertion occurred smoothly to
afford the intermediate D, which finally underwent facile -H elimination to give the
macrocycle product.

The intramolecular alkene—-alkene ring cyclization reaction using the rhodium cata-
lyst led to various macrocycles containing a versatile dienoate moiety. The conjugated
moiety present in the resulting macrocycles is highly versatile and can be converted into
many different functional groups, thereby allowing easy access to macrolides containing
different functionalities (Figure 5). For example, the hydrogenation of the macrocy-
clization product in the presence of the Pd/C catalyst afforded the saturated alkane
product. The treatment of the product with a copper catalyst with PhMe,Si-BPin fur-
nished the 1,4-hydrosilylation product. On the other hand, reacting the product with the
bis(pinacolato)diboron reagent led to the formation of the internal alkene product. Sub-
jecting the product to nitromethane in the presence of 1,8-diazabicyclo[5.4.0Jundec-7-ene
(DBU) led to the 1,4-Michael addition product. Overall, the versatility of the dienoate
products allowed easy access to a wide variety of useful macrocycles that were not easily
accessible using the reported methods.
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Figure 3. Macrolide synthesis via Cp*Rh(Ill)-catalyzed intramolecular oxidative cross-coupling
of alkenes [56].

In 2020, the Loh group further expanded their intramolecular ring-closing alkene—
alkene coupling strategy to «,S-unsaturated ketone substrates (Figure 6) [57]. Under the
same conditions, a wide variety of macrolactams of different ring sizes were synthesized
in moderate to good yields (33—72%). Of note, the intramolecular coupling of the alkene
substrate with no substitution at the a-position also proceeded smoothly to furnish the
corresponding macrolactam at a 44% yield. Moreover, this protocol could afford more
strained 12- and 13-membered ring macrolactams in satisfactory yields. The authors
proposed an analogous catalytic mechanism to elucidate this Cp*Rh(Ill)-catalyzed alkenyl
C(sp?)-H activation-macrocyclization pathway.
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Figure 4. Proposed mechanism for the Cp*Rh(Ill)-catalyzed intramolecular alkenyl sp?
activation—macrocyclization [56].
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Figure 5. Synthetic derivatization of the cross-coupling macrocycle product [56].
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Figure 6. Macrolactam synthesis via Cp*Rh(III)-catalyzed intramolecular ring-closing alkene—alkene
cross-couplings [57].

3. Polypeptide Macrocycles

Peptide-based macrocycles have been shown to have a wide variety of biological
activities [58]. Some important drugs such as the antibiotic vancomycin [59], anti-cancer
agent octreotide [60], and immunosuppressant cyclosporine [61] contain a peptide macro-
cycle structure. Furthermore, in contrast to linear peptides, peptide macrocycles have
improved properties in terms of cell penetration, stability, and selectivity. In recent years,
cyclic peptides have also been used as the delivery systems in peptide—drug conjugates
such as ’Lu-dotatate [62] and edotreotide gallium Ga-68 [63]. In addition to the amide
bond formation strategy, the use of C-H bond functionalization strategies has gained
tremendous attention in recent years due to their ability to construct many different stapled
cyclopeptides. In this part of the review, we will divide them into 3 different categories:
(1) in the first part, we will focus mainly on the sp? C-H bond functionalization of indole
C-H bond macrocyclization; (2) in the second part, we will focus mainly on the C-H bond
functionalization of the aryl C(sp?)-H bond macrocyclization strategy; (3) in the final part,
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we will discuss the recent progress in the inert C(sp3)—H bond (both with and without a
directing group) functionalization macrocyclization strategy.

3.1. C(sp?)-H Bond Functionalization of Indoles

The macrocyclization reactions involving C(sp?)-H bond activation can be grouped
into 2 categories. The first group involves the sp> C-H bond activation of the indole of
Trp residues to couple with different coupling partners. With the assistance of microwave
irradiation, James and co-workers in 2012 first developed a general palladium-catalyzed
method to activate indole C-H bonds of tryptophan derivatives bearing aromatic iodide
side chains for peptide macrocyclization through a Pd(0)/Pd(Il) redox manifold, enabling
the formation of diverse indole-aryl-bridged macrocycles (Figure 7) [64]. In the presence of
2-NO,-BzOH and AgBF, additives, the macrocyclization reaction was typically finished
within 30 min at 130 °C in dimethylacetamide (DMA), which could occur at a remarkably
moderate concentration (30 mM). Both para- and meta-substituted aromatic iodides could
be tolerated with the current protocol, generating a variety of 15- to 25-membered rings
macrocyclization products in yields ranging from 40% to 75%. Of note, unprotected Tyr
was also tolerated in this strategy.

o) ' \ ’{I T(gﬁcé(g mol"/; AcHN
3 gBF4 equiv
/—NH NHAc 0-NO,-CgH4COLH (1.5 equiv) I\O
H

[linker]

H DMA, 130 °C, W, 30 min
N 7/ “NH [Ilnker]
13 examples
COzMe 40-75% yield CO,Me

@Q Co

64%

67% 65% 58%

Figure 7. Synthesis of cyclic peptides via palladium-catalyzed intramolecular indole C-2 C-H
bond arylation [64].

Later, in 2015, Albericio, Lavilla, and their co-workers extended their Pd-catalyzed
C-H activation-macrocyclization protocol, and further demonstrated the intramolecular
C-H bond arylation of indoles of Trp residues at the C2 position with different aryl halides
to construct structurally more complex and constrained cyclopeptides containing unique
Trp(C4)-arene cross-links (Figure 8a) [65] This transformation was compatible with a series
of unprotected amino acid units such as Arg, GIn, Asp, and Ser, which could be applied to
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both solution-phase and solid-phase peptide synthesis processes. Using this strategy, the
authors were able to synthesize a double stapled bicyclic peptide in a 25% HPLC conversion
process, which proved extremely difficult to prepare using previously reported methods. It
should be noted that the competing intermolecular cyclodimerization associated with this
strategy selectively generated cyclodimeric peptides. In order to obtain the determining
factors in controlling the fate of the transformation, Lavilla et al. further carried out
a systematic study of the intermolecular C-H bond arylation of Trp residues bearing
iodinated aromatic side chains, and the results showed that linear peptides containing a
meta- or para-iodophenylalanine unit at adjacent positions selectively afforded cyclic dimers
instead of stapled peptides. Increasing the chain length of the residues remarkably resulted
in the generation of peptide-based macrocycles (Figure 8b) [66].

(a) Albericio, Lavilla et al., 2015
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(b) Lavilla et al., 2016

51% (HPLC-MS) 81% (HPLC-MS)

Condition: Pd(OAc), (20 mol%), AgBF4 (2.0 equiv), TFA (1.0 equiv), DMF (0.10-0.25 M), uW, 90 °C, 20 min

Figure 8. Synthesis of stapled peptides via palladium-catalyzed intramolecular C(sp?)-H bond
arylation [65,60].
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In 2020, Liu and co-workers reported the activation of the C(spz)—H bond of the
N-protected indole at the C2 position with the assistance of the 2-pyridyl directing group
enabled by Cp*Rh(Ill) catalysis. Under the typical reaction conditions of [RhCp*Cl;],
(10 mol%), AgrO (20 mol%), and AgOAc (1.5 equivalent) in CH3CN at 80 °C, the intramolec-
ular C(sp?)-H bond coupling with a tethered maleimide moiety proceeded uneventfully to
provide 3 examples of maleimide-decorated, tryptophan-based macrocyclic peptides in
moderate yields (Figure 9) [67].

o)
N H
ke ][ \)J\O'V'e [RNCp*Clal; (5 mol%) /_\"/N\.)J\OMe
Ag,0 (20 mol%) H
flinker] Q° /
AgOAc (1.5 equiv) L

MeCN, 80 °C, 2 h N \ N
\\/\j @ o N7 |

50% 55%

Figure 9. Synthesis of maleimide-decorated peptide macrocycles via the Cp*Rh(Ill)-catalyzed in-
tramolecular C(sp?)-H alkenylation of tryptophan [67].

In an effort to achieve highly regioselective late-stage peptide macrocyclization,
Wang et al. in 2020 utilized the peptide backbone as endogenous directing groups to
promote site-selective peptide macrocyclization at Trp(C2) (Figure 10a) [68]. Using the
combination of a Pd(OAc); (10 mol%) catalyst and AcOH (6.0 equivalent) additive un-
der an O; (1.0 atm) atmosphere in para-xylene at 100 °C, 12 examples of peptide-based
macrocycles with unique Trp-alkene cross-links were documented in reasonable yields
(20-42%). Under modified conditions, the authors were able to synthesize macrocyclic
peptides containing unique Trp(C4)-alkene cross-links enabled by the palladium-catalyzed
C(sp?)-H olefination at the C4 position of Trp residues bearing a TfNH-directing group
(Figure 9a) [65]. More recently, the same group further extended this method to realize
the rhodium(I)-catalyzed regioselective intramolecular C(sp?)-H bond alkylation of Trp
residues bearing a N-P'Bu, directing group, providing efficient access to diverse peptide
macrocycles with Trp(C7)-alkyl cross-links (Figure 10b) [69].

In 2017, The Ackerman group successfully utilized alkynyl bromide as an internal
coupling partner for the cost-effective manganese(I)-catalyzed late-stage macrocyclization
of 2-pym-protected indole of indole Trp residue, giving rise to a 21-membered, peptide-
based macrocycle with aryl-alkyne cross-links at a 53% yield (Figure 11) [70].
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(a) Wang et al., 2020

Pd(OAc); (20 mol%)
AcOH (6.0 equiv)

p-xylene, 100 °C, O,, 24 h

12 examples
30-42% yield

Pd(OAc); (20 mol%)
AgOAc (2.5 equiv)

AcOH, 100 °C, 24 h

12 examples
20-42% yield

Trp(C4) C—H olefination

(b) Shi, Wang et al., 2022

d o | [Rh(coe),Cl] (5 mol%)
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(tBu)zPN _ 0 4 .
~ toluene, 120 °C, 12 BocHN NP(Bu), 5
o A 9 examples \)\
BocHN HN™ "CO,;Me 25-44% yield 4 O\N COMe
H

Trp(C7) C-H alkylation

Figure 10. Peptide macrocyclizations via site-selective intramolecular C(spz)—H bond functionaliza-
tion of tryptophan [68,69].
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g Cy,NH (2.0 equiv)
\ g DCE (0.01M), 80°C, 16 h VN
N H B 2-pym
N et
2-pym

53%

\ 21

Figure 11. Peptide macrocyclization via manganese-catalyzed intramolecular C(sp?)-H alkynylation [70].

3.2. C(sp?)-H Bond Functionalization of Arenes

Besides the above-mentioned examples of C(sp?)-H bond functionalization of indole
of tryptophan, the intramolecular macrocyclization reactions via transition-metal-catalyzed
C(sp?)-H bond functionalization of simple arenes have also been investigated in recent
years. In 2019, Wang and colleagues elaborated a general backbone-directed approach
to fabricate macrocycle peptides with biaryl cross-links via the palladium-catalyzed in-
tramolecular ortho-C(sp?)-H arylation of short peptides with tethered aromatic iodide side
chains (Figure 12) [71]. The N-terminal benzamides of the peptide backbone act as efficient
directing groups in this strategy, which significantly facilitate this site-specific arylation
process. Under the reaction conditions, biaryl-bridged cyclic peptides with different ring
sizes were synthesized in reasonable yields (20—40%). Moreover, this protocol was also ap-
plicable to the intermolecular ortho-C(sp?)-H arylation of various oligopeptides, furnishing
a series of biaryl-linked products in good yields.
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Pd(OAc), (20 mol%s) 1 Q O

H O R' H AgOAC (2.0 equiv) o
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=, () O WA
o NH >/ o o R o

R = tBu, 40% K/

25% 28% R =Bn, 38%

Figure 12. Macrocyclization of biaryl-bridged cyclic peptides via palladium-catalyzed intramolecular
C(spz)—H bond activation [71].

In a subsequent study, Chen and co-workers disclosed a versatile approach for the syn-
thesis of diverse cyclophane-braced macrocycle peptides through the efficient picolinamide-
directed intramolecular aromatic - and 6-C(sp?)-H arylation of readily accessible linear
peptide precursors with aryl iodides (Figure 13) [72]. The judicious choice of silver ad-
ditive was found to be critical for high efficiency. The intramolecular aromatic C(sp?)-H
arylation reactions occurred smoothly in the presence of the Pd(CH3CN)4(BF4); (10 mol%)
catalyst and 1.5 equivalent of AgOBz additive at 130 °C. Under modified conditions of
Pd(OAc); and AgOAc in hexafluoroisopropanol (HFIP), the alkenyl counterparts were
also compatible with the C-H sources for this approach, giving rise to the correspond-
ing aryl-vinyl C(sp?)-linked peptide-based macrocycles in moderate yields. However,
a remarkable 1:1 mixture of - and J-arylated products was observed for the alkenyl
C(sp?)-H arylation of a smaller ring size. Mechanistically, the reaction was suggested to
occur via Pd(Il)-catalyzed C(sp?)-H activation to produce a putative palladacycle species.
The subsequent oxidative addition (OA) with tethered aryl iodides generated the key
Pd(IV) intermediate, which finally underwent reductive elimination (RE) to afford the C-H
activation-macrocyclization product.

The Wang group in 2018 reported the straightforward synthesis of macrocycle pep-
tides with unique aryl-vinyl cross-links via the late-stage palladium-catalyzed 5-C(sp?)-H
olefination of phenylalanine (Phe) residues (Figure 14) [73]. The peptide backbone amides
were readily employed as internal directing groups to facilitate the macrocyclization of
peptides in the N-to-C direction. This macrocyclization protocol tolerated a broad range of
short peptides, generating a variety of peptide-based macrocycles of different sizes and
shapes. Both activated and unbaised aliphatic alkenes were viable coupling partners for this
macrocyclization. Moreover, the authors also demonstrated the utility of this protocol via
the synthesis of a structurally constrained bicyclic peptide via the one-pot macrocyclization
of B-C(sp?)-H arylation and 6-C(sp?)-H olefination reactions.
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Pd(MeCN),(BF,),

H
o) 0 N H
H H (10 mol%) EH \>.
PAHN\)]\NEH/N\)J\N/\H/N\_/C%M(& AgOBz (1.5 equiv) N Y g Nl
: H :
N H O (0]

@, \©\ TFE, 0.25mM PAHN...” O (200 HN" YO
130 °C, 12-24 h
0 [

N~
H
Lo~ )+ :
N o o l \N/\\% g
W /=0
PAHN 20 HN"TO i S0 g
(7% =0
Cl
OMe
51% 70% 66%
Alkenyl C(sp?)-H arylation
CO,Me |
P HN,
Pd(OAc), (10 mol%)
O _MH 0 AgOAc (1.5 equiv)
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Figure 13. Synthesis of cyclophane-braced peptide macrocycles through palladium-catalyzed in-
tramolecular vinyl and aryl C(spz)—H arylation [72].
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Figure 14. Peptide macrocyclization via Pd(Il)-catalyzed intramolecular §-C(sp?)-H olefination
of phenylalanines [73].

In the same year, Wang and co-workers also reported a peptide-guided C(sp?)-H
activation method for the late-stage macrocyclization of various sulfonamide-containing
peptides via intramolecular ortho-directed C(sp?)-H alkenylation, which was significantly
facilitated by the internal peptide backbone (Figure 15) [74]. Using the N-sulfonated pep-
tides as endogenous directing groups, this macrocyclization protocol featured a broad
substrate scope and tolerated both activated acrylates and unbaised aliphatic alkenes, giv-
ing rise to a series of bioactive peptidosulfonamide macrocycles with aryl-alkene cross-links
over a 34-72% yield range. As an extension of this approach, the same group in 2019 further
achieved the macrocyclization reaction of peptidoarylacetamides under identical conditions
(Figure 16) [75].
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Figure 15. Macrocyclization of peptidosulfonamides via palladium(II)-catalyzed intramolecular
C(spz)—H bond olefination [74].

Subsequently, Wang and colleagues continued their versatile macrocyclization strat-
egy [76], and further accomplished an efficient late-stage macrocyclization reaction of vari-
ous bioactive oxazole-containing peptides through the intramolecular palladium-catalyzed
5-C(sp?)-H olefination (Figure 17a) [77]. In this report, the oxazole motifs in the peptide
backbones acted as endogenous directing groups to promote this ortho-C(sp?)-H olefi-
nation reactions. The resulting oxazole-containing cyclic peptides bearing aryl-alkene
cross-links showed strong cytotoxicity toward cancer cells. Quite recently, Wang et al.
further expanded to report on the late-stage modification and macrocyclization of diverse
thiazole-containing peptides, generating a series of 21-25 membered bioactive peptide-
based macrocycles in 35-59% yields (Figure 17b) [78].
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Figure 16. Macrocyclization via Pd(Il)-catalyzed intramolecular C(sp?)-H olefination of peptidoary-
lacetamides [75].
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Figure 17. Late-stage macrocyclization via intramolecular 6-C(sp?)-H bond olefination of oxazole-and
thiazole-containing peptides [77,78].

3.3. C(sp?)—H Bond Functionalization

In recent years, there has been much interest in the development of stapled peptides,
including polypeptide macrocycles, for drug discovery. Simultaneously, the construction of
C—C cross-linked stapled peptides using the C-H activation coupling strategies has also
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emerged as an attractive strategy for peptide-based macrocycles synthesis. Although there
are many reports on the intermolecular C(sp®)-H bond functionalization of amino acids
and peptides [79-81], the intramolecular version of C(sp®)-H bond functionalization for
polypeptide macrocycles synthesis is still very rare. Inspired by Yu’s backbone-assisted inert
C(sp®)-H activation strategy for the late-stage derivatization of various short peptides [82],
Albericio, Noisier, and co-workers in 2017 elegantly established an efficient palladium-
catalyzed C(sp)-H activation method without relying on any external directing group
for peptide stapling (Figure 18) [83]. Unprecedentedly, this process allowed the linkage
between N-terminal alanine (Ala) and C-terminal phenyl alanine (Phe) residues. The role
of the solvent was found to be crucial for this peptide macrocyclization process, and using
t-BuOH as the co-solvent they significantly suppressed the unwanted side reactions. Under
the optimized reaction conditions, the intramolecular C(sp?)-H arylation of N-terminal Ala
with meta-iodinated Phe proceeded smoothly with good to excellent conversion rates, and
a wide variety of cyclic hydrocarbon cross-linked polypeptides bearing different ring sizes
macrocycles were synthesized in modest yields. Moreover, this strategy is also compatible
with solid-phase peptide synthesis, enabling the rapid synthesis of new peptide motifs.

Pd(OAc), (10 mol%)
PhthN @@@ OMe AgOAc (2.0 equiv) PhthN @@@ OMe
q toluene/tBuOH (0.1 M)
100 °C, 24 h
30 examples

Gl NH \}—‘ \}—@m
PhthN}@_ 4 prin—,) €9 G~ NH PhthN 4 NH
\@/ COzMe \@/ COQMe \©/ COzMe

88% conv. (29%) 96% conv. (25%) 77% conv. (31%)

%}GI \)\—@— H:g—el
PhthN 4 NH PhthN Ely— NH PhthN y— NH
\@/ C02Me \@/ COQME \@/ Cone

77% conv. (53%) 80% conv. (44%) 54% conv. (52%)

Bu tBu

fl
Phtth_Ala“_ «_-CO2Me PhthN\)\_SGF@\Ser N

- iy
\©/\/ \O/ CO,Me

57% conv. (23%) 63% conv. (53%)
Figure 18. Stapled peptides obtained via Pd(II)-catalyzed intramolecular C(sp3)-H arylation [83].

Almost at the same time, Wang and co-workers also demonstrated an analogous macro-
cyclization via the intramolecular 3-C(sp®)-H arylation of amino acids at the N-terminus
of the peptides, which could proceed smoothly in both solution-phase and solid-phase
peptide synthesis approaches (Figure 19) [84]. In this protocol, 1,2-dichloroethane (DCE)
was used as the solvent to achieve remarkable efficiency. This approach tolerated a broad
scope of peptide substrates, including tetra- and pentapeptides, delivering a diverse variety
of polypeptide macrocycles bearing CS—Ar cross-links between the -carbon of amino
acids and the aromatic ring of Phe/Trp, with satisfactory diastereoselectivity. Successfully,
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the authors applied this macrocyclization methodology to the total synthesis of the key
fragment in the bioactive natural product celogentin C.

Pd(OAc), (10 mol%)
PhthN @@@ OMe AgOAC (2.0equiv)  phinN @@@ OMe

DCE, 100 °C, 24 h

A
16 examples |
19-87% yield Z
O O NPhth
H H H H
o N\)LNH o N\)LNH N

“\__Ph o) PhthN" l
PhthN' 14 kf t M 14 Kfo ?5 0~ "N
NH NH 0

COMe CO,Me NH
MeO2C
19% 52% 87%
0
U H  CO,Bu 0 H
NN N— Pd(OAc), (10 mol%) N._COxtBu
N AgOAc (2.0 equiv) E '
HN o HN
o N\
DCE, 100 °C, 24 h
PhthN™" N
H I s 32% yield PhthN

Figure 19. Synthesis of peptide macrocycles via palladium(Il)-catalyzed intramolecular C(sp®)-H
arylation [84].

Through the assistance of 8-aminoquinoline (AQ) as the bidentate directing group [85],
Chen et al. in 2018 developed a broadly applicable strategy for the efficient synthesis of
cyclophane-braced peptide macrocycles from readily accessible linear peptide precursors
via the exo-type intramolecular B-C(sp®)-H macrocyclization of diverse alkyl appendants
bearing iodinated aromatic side chains or tethered aryl iodides (Figure 20) [86]. The choice
of ortho-phenyl benzoic acid (0PBA) as the efficacious additive significantly promoted
this AQ-directed intramolecular B methylene C(sp?)-H arylation reaction. Both protected
and unprotected amino acid units were compatible with this macrocyclization strategy.
Various cyclophane-braced peptide macrocycles of different sizes and shapes were syn-
thesized in moderate to good yields. However, the amide-linked AQ auxiliary was found
to be difficult to remove from the peptide macrocycles in this case. Mechanistically, this
AQ-directed intramolecular macrocyclization process was proposed to occur through a
concerted metalation-deprotonation (CMD) catalytic mechanism. With the assistance of the
carboxylate ligand, the reversible 3-C(sp®)-H palladation produced a chelation-stabilized
five-membered alkylpalladium(II) species. Subsequently, this putative palladacycle inter-
mediate underwent intramolecular oxidative addition and reductive elimination to afford
the expected peptide macrocycles.
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Figure 20. Synthesis of cyclophane-braced peptide macrocycles via palladium-catalyzed intramolecu-
lar C(sp3)—H arylation [86].

By taking advantage of readily accessible and removable N,N-bidentate picolinamide
(PA) auxiliaries, Chen and co-workers in 2019 also described the efficient Pd-catalyzed
intramolecular remote -C(sp®)-H arylation of diverse N-terminal aliphatic amino acid
units via Pd(II)/Pd(IV) catalysis (Figure 21a) [87]. This reaction tolerates 'y—C(sp?’)—H
bonds at both methyl and methylene positions of peptide substrates. Unprotected peptides
bearing diverse free polar side chains were proven to be compatible substrates for this
PA-directed C(sp®)-H macrocyclization protocol, and the cyclization reaction occurred
smoothly with high efficiency. Through the typical combination of a Pd(MeCN)4(BF4),
catalyst and AgOAc additive, 30 examples of this transformation were documented with
reasonable yields up to 80%. Encouraged by this success, the same group further elaborated
on the efficient synthesis of cyclophane-braced peptide macrocycles via the palladium(II)-
catalyzed, AQ-directed endo-type intramolecular B methyl C(sp®)-H arylation reaction with
tethered aryl iodides, giving rise to a broad range of cyclic peptides featuring different ring
sizes in satisfactory yields (Figure 21b) [88].
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Figure 21. Synthesis of cyclophane-braced peptide macrocycles via intramolecular C(sp®)-H
arylation [87,88].

4. Conclusions

In summary, we have witnessed a surge in the use of intramolecular C-H bond
activation—-macrocyclization reactions to construct polypeptide macrocycles, and to a lesser
extent polyketide macrocycles. Despite the remarkable advantages of using C-H activation
strategies for the straightforward synthesis of diverse polyketide and polypeptide macro-
cycles, it is not yet possible to completely avoid the use of substrates bearing alkene or
aryl iodide functionalities for the C-H bond activation—-macrocyclization reactions. The
application of the C-H bond macrocyclization strategy is still an untapped territory, and
strategies utilizing transition-metal-free electrocatalytic photoredox C—H bond activation
remain to be tested. Most of the reported strategies utilize the aryl C(sp?)-H activation
methods to construct macrocycles. Sporadic examples utilizing alkenyl C(sp?)-H bond
and alkyl C(sp®)-H bond activation methods have also emerged in recent years. With the
surge in activities related to C—-H bond activation, more reports utilizing C-H activation
strategies for macrocyclization can be envisaged in this fascinating field.
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