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Abstract: In this work, Ce, Zr, and Al are used to promote Y2O3 as supports for Ni/NiO, with
the expectation to obtain more efficient catalysts for DRM reaction. XRD and Raman results have
testified that all the three cations have been doped into the lattice of Y2O3 to form a solid solution
structure, thus obtaining supports with decreased crystallinity and improved surface areas. As a
result, all the modified catalysts display evidently improved reaction performance. The Ni–support
interaction of the modified catalysts is enhanced in comparison with the unmodified catalyst, thus
having improved Ni dispersion. Moreover, the modified catalysts have improved alkalinity, which
is beneficial to activate CO2 and enhance the activity. In addition, it is found that all the modified
catalysts possess a richer amount of surface active oxygen species (O2

δ− and O2
−), which is critical

to eliminate carbon depositions. It is believed that the interaction of these factors is responsible for
the enhanced DRM performance of the modified catalysts. In situ DRIFTS results have confirmed that
the addition of the secondary metals can improve the DRM activity of the catalyst by accelerating the
conversion of formate intermediate species.

Keywords: dry reforming of methane; Y2O3 support; secondary metal doping; coking resistance;
surface active oxygen species; surface alkaline sites

1. Introduction

The use of fossil energy produces a large amount of CO2, which causes the global
greenhouse effect and triggers a series of problems such as glacier melting, sea level rise,
and extreme climate [1]. The CO2 molecule has high stability and reaction inertia. To
realize added-value CO2 conversion, it is necessary to design a reasonable conversion
route. Methane dry reforming (DRM) can convert two greenhouse gases, CH4 and CO2,
into syngas. Moreover, the H2/CO ratio in the produced syngas is around 1 [2], which
can be directly used as raw materials for the Fischer Tropsch reaction [3]. Therefore, the
implementation of the DRM reaction can not only alleviate the energy crisis, but also help to
improve the living environment [4], whereas a highly active and effective catalytic system
still needs to be developed to industrialize this reaction.

The DRM reaction process usually includes the following reactions:

CH4 + CO2 → 2H2 + 2CO ∆Hθ
298 = +247 kJ/mol (1)

CO2 + H2 → H2O + CO ∆Hθ
298 = +41 kJ/mol (2)

CH4 → C + 2H2 ∆Hθ
298 = +75 kJ/mol (3)

2CO→ C + CO2 ∆Hθ
298 = −172 kJ/mol (4)

As shown in Equation (1), DRM is a strong endothermic reaction with the formation of
2 mole of more gaseous products [5]. Therefore, it favors high temperature and low pressure
in terms of the thermodynamic equilibrium. In the past two decades, Ni-based catalysts
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have been widely used in the DRM reaction due to its high initial activity, abundant
resources, and relatively low price. However, rapid deactivation of Ni-based catalysts can
take place during a DRM process due to severe coke deposition (Equations (3) and (4))
and Ni active site sintering at elevated temperatures. Therefore, it is very important to
design and develop a high-efficiency DRM catalyst, which can tolerate high temperature
and prevent coke deposition. Up until now, many efforts have been devoted to promote
the DRM performance of Ni-based catalysts, for instance: (1) choosing a suitable support
to enhance the Ni–support interaction [6]; (2) tuning the surface-acid–base properties and
oxygen species by doping with a secondary metal [7]; (3) optimizing the synthesis method
to obtain highly dispersed Ni active species [8].

Yttrium oxide, a rare earth oxide, has excellent chemical and thermal durability, which
has been employed as catalysts, catalyst supports, or promoters for various reactions [9].
Compared with the acidic Al2O3 support and inert SiO2 support, the alkaline Y2O3 sup-
port is more conducive to CO2 adsorption. The activated CO2 adsorbed on the catalyst
surface will generate more adsorbed oxygen (Oads), hence effectively inhibiting carbon
deposition [10]. Takeshi et al. prepared nano-porous Ni/Y2O3 catalysts with a one-step
dealloying technique, which showed significant anti-coking performance compared with
traditional Ni-based catalysts [11]. Fatesh et al. loaded Gd and Ni on an Y2O3 support,
which displayed significantly improved activity compared with the unmodified Ni/Y2O3
catalyst, and an 82.8% H2 yield can be achieved at 700 ◦C. It was reported that the addition
of a secondary active metal component to a DRM catalyst can prevent active site aggregation
and coke formation [12]. Mahadi et al. prepared CeO2, La2O3, Sm2O3, and Y2O3 doping
Co/Al2O3 catalysts for DRM and found that the dispersion of Co was improved. The
Y2O3-doped Co/Al2O3 catalyst exhibited the best activity and coking-resistance ability [13].
Wang et al. reported enhancing the Ni–support interaction in Ni/ZrO2 catalysts through Y
doping on ZrO2, thus improving the activity and stability of DRM reaction [14].

Inspired by these previous works, Ce, Zr, and Al were selected as the secondary metals
to dope a Ni/Y2O3 catalyst to improve its DRM performance. It is well known that CeO2
has a good oxygen capacity and strong ability to disperse surface active components [15];
ZrO2 is a metal oxide possessing acidic, basic, and redox properties, and it is easy to
generate surface oxygen vacancies [16]; γ-Al2O3 is a porous material with good thermal
stability and rich surface acidity [17]. By using multiple characterization techniques, it
was found that the doping of these secondary metals can affect the Ni–support interaction,
thereby improving the Ni dispersion on the surface [18]. The Ce-modified catalyst exhibits
the best catalytic stability and the lowest carbon accumulation degree, which is mainly
due to the increase in the quantity of active surface oxygen species and the inhibition of
Ni sintering.

2. Results
2.1. XRD and Raman Analysis of the Supports

Figure 1A displays the XRD patterns of the supports. The diffraction peaks of the
Y2O3 support with 2θ of 20.49◦, 29.07◦, 33.78◦, 35.91◦, 39.85◦, 43.49◦, 48.43◦, and 57.38◦

correspond to (211), (222), (400), (411), (332), (431), (440), and (622) crystallite planes of
cubic Y2O3 [19]. The ion radius of Y3+ in Y2O3 is 0.102 nm, and the corresponding radii
of Ce4+, Zr4+, and Al3+ are 0.097 nm, 0.084 nm, and 0.054 nm. For Ce-, Zr-, and Al-doped
Y2O3 supports, the diffraction peak is similar to that of pure Y2O3 without detectable CeO2,
ZrO2, and Al2O3 signals, respectively. The maximum diffraction peaks at around 29◦ are
extracted and enlarged beside the main figure. It is observed that Ce, Zr, and Al with a
smaller ionic radius can cause lattice shrinkage after entering the Y2O3 lattice, resulting in
a peak shift to higher angles [20,21]. As can be seen from cell parameters of the supports in
Table S1, the side length decreases after doping with the secondary cations with smaller
ion radius. The above results show that the modified Y2O3 solid solution supports are
successfully synthesized. Meanwhile, the average crystallite sizes of the modified supports
are calculated using the Scherrer formula, which are smaller than that of pure Y2O3. It can
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be seen that the crystallinity of the modified supports decreases after cation doping to form
solid solutions, resulting in an increase in the surface area.
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Figure 1. (A) XRD patterns and (B) Raman spectra of the supports.

The structures of the supports are characterized by Raman spectroscopy in Figure 1B.
Several main Raman peaks are observed at 377 cm−1, 330 cm−1, and 469 cm−1, which are
attributed to the typical Tg + Ag, Eg, and Tg stretching vibrations modes of the Y2O3 phase,
respectively [22], and no peaks of other metal oxides are observed. This confirms that all
the secondary cations are successfully incorporated into the Y2O3 matrix to form a solid
solution structure, being well consistent with the XRD results.

2.2. Activity Evaluation

Figure 2 shows the DRM activity test results of the catalysts. All the data are collected
after 30 min of stabilization at a corresponding reaction temperature, which can accurately
reflect the initial activity at the temperature. As seen from Figure 2A–C, with the increase in
the temperature, CH4 conversion, CO2 conversion, and H2 yield increase evidently. From
Figure 2D, one can see that the H2/CO ratio gradually increases with a rise in temperature,
which might be ascribable to the reverse water–gas shift reaction (CO2 + H2 → CO +
H2O) [23]. The reaction performance of the modified catalysts is generally better than that
of the unmodified sample. 5Ni/Al0.1Y0.9Ox exhibits the best initial activity, which may be
due to its largest surface area (Table S1) and highest Ni dispersion.

To explore the stability of the catalysts, they are tested at 750 ◦C for 50 h. As exhibited
in Figure 3, the unmodified Ni/Y2O3 catalyst has low initial activity and poor stability,
possibly due to the sintering of Ni active sites and coking. For all the modified catalysts, the
5Ni/Ce 0.1Y0.9Ox exhibits the most stable CH4 conversion and H2/CO ratio, and there is no
obvious decrease during the 50 h test, which may be ascribed to the excellent oxygen storage
capacity of the CeOx component. Although 5Ni/Al0.1Y0.9Ox and 5Ni/Zr0.1Y0.9Ox exhibit
a similar initial activity to 5Ni/Ce0.1Y0.9Ox, more than a 10% drop in CH4 conversion is
detected, indicating that these two catalysts still experience deactivation, but slower than
the unmodified Ni/Y2O3.

To further investigate the DRM performance of the catalysts, the apparent activation
energy of each catalyst is calculated. The CH4 conversion rates are always maintained below
10% by changing the catalyst amount, and the Arrhenius curves in Figure 3D are drawn
with the reaction rates in the range of 450–500 ◦C. As calculated in Table 1, the unmodified
5Ni/Y2O3 has the largest activation energy of 102.7 KJ·mol−1, while the 5Ni/Al0.1Y0.9OX
has the smallest one of 92.8 KJ·mol−1, which is consistent with the reaction performance
and surface area results. Meanwhile, the turnover frequency (TOF), Rw, and Rs of CH4
conversion at 450 ◦C are specifically calculated for each catalyst. Notably, the TOF is based
on Ni loading and dispersion, Rw is normalized by the catalyst mass, and Rs is normalized
by the catalyst surface area. Particularly, both TOF and Rs can reflect the intrinsic activity of
the catalysts [24]. Obviously, the TOF and Rs rank as 5Ni/Al0.1Y0.9Ox > 5Ni/Ce0.1Y0.9Ox >
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5Ni/Zr0.1Y0.9Ox > 5Ni/Y2O3, proving that the doping of all the cations can generate more
active Ni sites, which enhances the intrinsic activity of the modified catalysts.
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Table 1. DRM kinetics results of the catalysts.

Catalysts Rw 450 ◦C
(10−3 mmol·g−1·s−1) [a]

Rs 450 ◦C
(10−4 mmol·m−2·s−1) [b]

TOF 450 ◦C
(10−2·s−1)

Ea
(KJ·mol−1)

5Ni/Y2O3 3.3 0.8 9.6 102.7
5Ni/Ce0.1Y0.9Ox 5.5 1.2 12.7 93.4
5Ni/Zr0.1Y0.9Ox 5.2 1.0 11.3 96.0
5Ni/Al0.1Y0.9Ox 6.4 1.3 13.6 92.8

[a] Rw: CH4 conversion rate based on catalyst mass. [b] Rs: CH4 conversion rate based on catalyst surface area.

2.3. Carbon Deposition on the Spent Catalysts

TGA-DSC and Raman techniques are employed to analyze the coke formation on
the spent catalysts after 50 h stability tests. In Figure 4A, the minor weight loss between
100 and 200 ◦C can be assigned to water desorption, and the major weight loss between
500 and 700 ◦C can be attributed to the loss of deposited carbon on the spent catalysts,
which is accompanied by an evident exothermic peak around 490 ◦C [25]. As calculated
in Table 2, the weight loss of carbon deposition on the unmodified 5Ni/Y2O3 is 11.3%. In
contrast, the weight loss of 5Ni/Ce0.1Y0.9Ox, 5Ni/Zr0.1Y0.9Ox, and 5Ni/Al0.1Y0.9Ox is 3.5%,
4.8%, and 7.4%, respectively, testifying that Ce, Zr, or Al doping can effectively suppress
coking of the modified catalysts. The coking rates on the used catalysts are also calcu-
lated, which follows the order of 5Ni/Ce0.1Y0.9Ox < 5Ni/Zr0.1Y0.9Ox < 5Ni/Al0.1Y0.9Ox <
5Ni/Y2O3. 5Ni/Ce0.1Y0.9Ox displays the slowest coking speed, in good accordance with
its most stable reaction performance in all the catalysts.
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Table 2. Quantified coking results measured by Raman and TGA-DSC.

Catalysts Weight Loss of Carbon
Deposition (%)

Coking Rate
(mg·gcat−1·h−1) [a] IG/ID

5Ni/Y2O3 11.3 2.3 1.10
5Ni/Ce0.1Y0.9Ox 3.5 0.7 0.67
5Ni/Zr0.1Y0.9Ox 4.8 1.0 0.97
5Ni/Al0.1Y0.9Ox 7.4 1.5 1.07

[a] Temperature ranged from 300 ◦C to 800 ◦C from TGA.

The Raman spectra are demonstrated in Figure 4B, in which two carbon peaks can
be obviously observed. The peak at 1350 cm−1 is named the D band corresponding to
amorphous carbon deposits, which is easier to remove [26]. The peak at 1580 cm−1 is named
the G band with respect to graphitized carbon, which is more difficult to eliminate and is
usually considered to be a main cause of catalyst deactivation in DRM [27]. The intensity
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ratio of the G band to the D band (IG/ID) can be used to determine the graphitization
degree of coking, hence being calculated in Table 2. The IG/ID of the unmodified Ni/Y2O3
catalyst is largest, indicating that it has the highest graphitization degree among all the
catalysts. The addition of all the secondary metal cations decreases the graphitization
degree, as testified by the decreased IG/ID values. Notably, 5Ni/Ce0.1Y0.9Ox shows the
smallest graphitization degree, testifying that most of its carbon deposit is in an amorphous
state. Therefore, it is concluded that the Ce doping is the most effective to increase the
coking-resistance ability of Ni/Y2O3. In brief, both TGA-DSC and Raman results are
consistent with each other, which also agrees with the stability test data.

2.4. XRD and N2-BET of the Freshly Calcined, Reduced, and Spent Catalysts

The XRD patterns of the freshly calcined, reduced, and spent catalysts are presented
in Figure 5. Figure 5A shows the XRD results of the fresh catalysts. The typical diffraction
peaks of NiO crystallites can be observed along with the initial diffraction peaks belonging
to the Y2O3 phase, but with varied intensities for the modified and unmodified Ni/Y2O3
catalysts [19,28]. The NiO mean crystallite sizes of the catalysts are calculated by the
Scherler formula with the NiO (111) peak, and listed in Table 3. 5Ni/Y2O3, the unmodified
catalyst with the worst performance, has the largest NiO size of 11.5 nm. The NiO crystallite
size decreases, and the surface area increases after metal cation doping.
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[a] Calculated from XRD; [b] Determined by N2-BET. 

  

Figure 5. XRD of the (A) Fresh, (B) Reduced, and (C) Spent catalysts.

Table 3. Surface areas and crystallite sizes of the catalysts before and after the reaction.

Catalysts Fresh Catalysts Reduced Catalysts Used Catalysts

Surface Area
(m2·g−1) [b]

NiO Crystallite
Size (nm) [a]

Surface Area
(m2·g−1)

Ni Crystallite
Size (nm)

Surface Area
(m2·g−1)

Ni Crystallite
Size (nm)

5Ni/Y2O3 39.7 11.5 37.9 12.6 33.5 22.5
5Ni/Ce0.1Y0.9Ox 43.4 10.3 41.1 11.0 39.5 14.5
5Ni/Zr0.1Y0.9Ox 43.8 10.0 42.0 10.9 39.8 15.7
5Ni/Al0.1Y0.9Ox 53.1 9.2 51.3 10.2 48.3 17.3

[a] Calculated from XRD; [b] Determined by N2-BET.
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In Figure 5B, all the reduced catalysts present characteristic diffraction peaks of the Ni
phase, demonstrating that the original NiO has been fully reduced to metallic Ni. To facili-
tate comparison, the mean Ni crystallite sizes of the reduced catalysts are also calculated in
Table 3. Obviously, 5Ni/Al0.1Y0.9Ox has the smallest size of 10.2 nm, corresponding to its
highest initial activity among all the catalysts. In addition, 5Ni/Al0.1Y0.9Ox has the largest
surface area in all the catalysts despite it being freshly calcined, reduced, or used.

Figure 5C demonstrates the XRD patterns of the catalysts after the 50 h stability test. It
is observed that the intensities of the metallic Ni phase in the catalysts increase, indicating
that the Ni grains aggregate during the long-term DRM tests. As shown in Table 3, the
Ni crystallite size of 5Ni/Ce0.1Y0.9Ox catalyst increases slowly from 11.0 nm to 14.5 nm
after the 50 h reaction, which is slower than the growth rate of Ni grains on the other
three catalysts, indicating that the catalysts have the best thermal stability. Therefore, it
is inferred that the Ni–support interaction of the 5Ni/Ce0.1Y0.9Ox catalyst could be the
strongest among all the catalysts. Former studies have shown that the crystallite size of Ni
plays a key role for the activity, stability, and anti-coking ability of a DRM catalyst. Usually,
a smaller crystallite size relates to better activity, stability, and anti-coking ability [29].

2.5. TEM Analysis of the Ni Distribution over the Fresh Ni/Y2O3 Catalysts

TEM and HRTEM tests are carried out to study the morphology and particle size
distribution of the catalysts. In Figure 6, all the modified and unmodified Ni/Y2O3 catalysts
are composed of irregular particles without a special shape. In addition, it is noted that
the NiO particle size from TEM is slightly larger than the crystallite size calculated by
XRD, indicating that Ni has slight secondary aggregation [30]. The NiO particle sizes
calculated by TEM are in the sequence of 5Ni/Y2O3 > 5Ni/Ce0.1Y0.9Ox > 5Ni/Zr0.1Y0.9Ox
> 5Ni/Al0.1Y0.9Ox. The result is similar to the crystallite sizes measured by XRD, which
confirms that the modification by the secondary metal cations improves the dispersion of
the active Ni/NiO component. In addition, HRTEM images show that NiO crystallites
are detected, which mainly expose the (200) crystal plane. In addition to this, only Y2O3
particles that mainly expose the (222) crystal plane are observed. No other metal oxide
components are found. The HRTEM results correspond to the XRD patterns, which further
proves the successful synthesis of the solid solution supports, with the Ce4+, Zr4+, and Al3+

cations being incorporated into the lattice of cubic Y2O3.

2.6. H2-TPR and XPS Studies of the Freshly Calcined Catalysts

The H2-TPR technique is employed to investigate the redox behaviors of the supports
and the freshly calcined catalysts. As shown in Figure S1, all the supports, either unmodified
or modified, do not display any evident reduction peak below 800 ◦C. This indicates that
all the detected peaks on the Ni/Y2O3 catalysts in Figure 7 can be ascribed to the reducing
of NiO species. The H/Ni atomic ratios in Table 4, which are normalized by NiO contents,
are about 2 for all the samples, indicating that Ni species exist predominantly in the form
of the Ni2+ state.

The low-temperature peak around 350 ◦C is attributed to the reduction of crystalline
NiO grains, which has weak interaction with the support and is easy to reduce. The peak
around 400 ◦C is relatively broad, which could relate to the NiO species having close contact
with the support, and has stronger interaction, thus being more difficult to reduce [31].
During the reduction process, this part of NiO can form highly dispersed Ni active species
on the surface of the catalysts because of the retarded nucleation process [32]. Based on
the quantification results in Table 4, all the modified catalysts possess a larger amount of
H2 consumption of this peak than the unmodified 5Ni/Y2O3, thus obtaining smaller Ni
crystallites, as detected by XRD. In more detail, the H2-TPR results show that NiO and
Ce0.1Y0.9Ox have the largest amount of H2 uptake of this peak, implying that Ni/NiO can
be strongly anchored on the Ce0.1Y0.9Ox support surface, thereby obtaining the smallest
Ni/NiO crystallite size, which explains its superior stability.
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Figure 6. TEM images (A1,B1,C1,D1), particle size distribution (A2,B2,C2,D2) and HRTEM im-
ages (A3,B3,C3,D3) of the freshly calcined catalysts. (A1–A3) 5Ni/Y2O3, (B1–B3) 5Ni/Ce0.1Y0.9Ox,
(C1–C3) 5Ni/Zr0.1Y0.9Ox, (D1–D3) 5Ni/Al0.1Y0.9Ox.
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Table 4. Quantified H2-TPR results of the fresh catalysts.

Catalysts
H2 Consumption (mmol·g−1)

α Peak β Peak Total H/Ni

5Ni/Y2O3 0.37 0.49 0.86 2.0
5Ni/Ce0.1Y0.9Ox 0.16 0.71 0.87 2.0
5Ni/Zr0.1Y0.9Ox 0.30 0.59 0.89 2.1
5Ni/Al0.1Y0.9Ox 0.27 0.60 0.87 2.0
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XPS is thus employed to investigate the interaction between NiO and the supports.
Figure S2A shows that the peaks at 855.0 eV and 860.8 eV are attributed to Ni 2p3/2 and
Ni 2p1/2 of Ni2+ [33], respectively, in line with the H2-TPR results. Figure S2B shows that
the signals around 157.9 eV and 159.9 eV can be indexed to Y 3d5/2 and Y 3d3/2 of Y2O3,
respectively [34]. With the modification by Ce, Zr, and Al, the Ni 2p peak is shifted to lower
binding energies, suggesting the increase in Ni electron density. Considering the charge
conservation law, other elements must show a decrease in electron density. As proved in
Figure S2B, the binding energies of the two Y 3d peaks shift to a higher value. This finding
is consistent with the H2-TPR results, suggesting that the NiO–support interaction can be
regulated and strengthened by the modification of Ce, Zr, and Al cations.

2.7. H2 Adsorption–Desorption Analysis of the Freshly Reduced Catalysts

H2 sorption is employed to investigate the Ni dispersion and active Ni surface area
with the reduced catalysts. The dispersion of Ni has an important influence on the DRM
reactivity, which will affect the activity, stability, and anti-coking ability of a catalyst [35,36].
The Ni contents of the four catalysts are determined by ICP-OES (Table 5), which is the
same as the original formulation calculation. The H2 desorption amount, Ni active surface
areas, and Ni dispersion of all reduced catalysts are listed in Table 5, which follow the order
of 5Ni/Al0.1Y0.9Ox > 5Ni/Zr0.1Y0.9Ox > 5Ni/Ce0.1Y0.9Ox > 5Ni/Y2O3. Apparently, being
consistent with the Ni crystallite sizes measured by XRD, the active metallic Ni surface
areas of the modified catalysts are obviously improved by the doping of Ce, Zr, and Al
cations to form solid solutions. This explains how all the modified catalysts show better
reactivity than the unmodified 5Ni/Y2O3.

Table 5. Ni dispersion and metallic Ni surface areas of the reduced catalysts.

Catalysts Ni Content
(wt.%) [a]

H2 Desorption
(µmol·g−1)

Ni Surface Area
(m2·gcat−1)

Ni Surface Area
(m2·gNi

−1) [b]
Ni Dispersion

(%)

5Ni/Y2O3 4.98 31.2 1.5 30.9 3.6
5Ni/Ce0.1Y0.9Ox 4.97 42.9 2.0 42.3 5.0
5Ni/Zr0.1Y0.9Ox 4.97 43.2 2.1 42.8 5.1
5Ni/Al0.1Y0.9Ox 4.98 46.8 2.3 46.4 5.5

[a] Ni loading determined by ICP. [b] Based on the cross-sectional area of one surface Ni atom, 8.24 × 10−20 m2,
0.5% Pt/Al2O3(D = 34.5%) as the standard.

2.8. Surface Oxygen Properties of the Catalysts Investigated with XPS and O2-TPD

The surface oxygen species are investigated by XPS for the catalysts, with the O 1s
signals illustrated in Figure 8. By deconvolution, three kinds of oxygen species in different
chemical states are obtained for all the catalysts. In detail, the bands around 528.8, 531.0,
and 532.8 eV can be assigned to the surface lattice oxygen (Olatt), oxygen species related to
CO3

2− (Ocarb), and adsorbed oxygen (Oads), respectively [37]. It is worth noting that a large
amount of surface carbonate has been formed on all the catalysts due to the alkalinity of the
Y2O3 surface. The in situ DRIFTS results in Figure 9 also confirm this, which is discussed
further in the related places.

The Oads species is usually considered as an active oxygen species, which can activate
the carbon deposition on the catalyst surface during the DRM reaction [38], and eliminate
the carbon depositions. Therefore, the relative percentage of Oads is calculated in Table 6.
In comparison with the unmodified 5Ni/Y2O3, all the modified catalysts possess obviously
increased Oads proportion. This explains the TGA-DSC and Raman results, that all the
modified catalysts have better anti-coking ability than the un-modified 5Ni/Y2O3. Among
all the modified catalysts, 5Ni/Ce0.1Y0.9Ox owns the highest Oads percentage, suggesting
that it has a larger quantity of oxygen vacancies than the other two modified catalysts, thus
resulting in the best stability and coking-resistance ability [39]. The oxygen adsorption
process could be divided into the following three steps, O2(ad)→ O2−(ad)→ O−(ad)→
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O2−(lattice). The presence of more surface vacancies generally favors the dissociation of
gaseous O2 to generate adsorbed oxygen species (O2− and O−) [40].
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The oxygen species and their states on the catalysts are further investigated by O2-TPD,
with the profiles shown in Figure S3. In O2-TPD curves, the desorption peaks below 300 ◦C,
at 300–550 ◦C, and above 500 ◦C could, respectively, be classified as weakly adsorbed
oxygen, strongly adsorbed oxygen, and surface lattice oxygen [41]. According to the tem-
perature, the desorption peaks are divided into α and β regions, which are quantitatively
analyzed in Table 6. Similar to the XPS results, all the modified catalysts possess a larger
amount of total active oxygen species than the unmodified 5Ni/Y2O3. Again, the catalyst
modified by Ce owns the largest amount of active oxygen species, which is well consistent
with its best reaction stability and anti-coking ability. Indeed, this proves further that the
amount of active oxygen species has a tight relationship with the stability and anti-coking
performance of a DRM catalyst.

Table 6. Surface oxygen characteristics of the catalysts identified by XPS and O2-TPD.

Catalysts
O 1s, B.E./FWHM (eV) Oads/(Oads + Olatt + Ocarb)

(%)
O2 Desorption Amount (µmol·g−1)

Oads Ocarb Olatt α Peak β Peak Total

5Ni/Y2O3 532.6/1.8 530.9/2.0 528.6/1.9 6.6 10.0 10.4 20.4
5Ni/Ce0.1Y0.9Ox 532.7/2.0 530.9/2.1 528.7/1.8 12.0 7.3 20.0 27.3
5Ni/Zr0.1Y0.9Ox 532.8/2.0 531.0/2.0 528.6/1.8 10.1 10.7 14.2 24.9
5Ni/Al0.1Y0.9Ox 532.8/1.9 531.1/2.0 528.8/1.8 7.7 10.3 11.8 22.1

2.9. Identifying the Surface Oxygen Species with In Situ DRIFTS

To distinguish the surface oxygen species, 5Ni/Ce0.1Y0.9Ox with the best stability and
anti-coking performance is subjected to in situ DRIFTS tests after reduction. First, the
sample is pretreated with 99.99% Ar at a flow rate of 30 mL·min−1 at 500 ◦C for 1 h to
eliminate surface impurities and physically adsorbed oxygen species. Subsequently, the
temperature is lowered to 300 ◦C and 10% O2/Ar is introduced. As shown in Figure 9A, the
intensity of the peaks at 1270 cm−1 and 1030 cm−1 gradually increases with time extension,
which are attributed to the vibrational peaks of the active oxygen species O2

δ− (0<δ<1) and
O2
−, respectively [42,43]. This indicates that gaseous O2 can be adsorbed on the surface

oxygen vacancies to form active oxygen species.
Afterward, the atmosphere is switched to 10% H2/Ar. Figure 9B shows that the peaks

of the active oxygen species gradually weaken, and disappear after 5 min. Then, the gas
atmosphere is switched back to 10% O2/Ar flow, and it is found that those active oxygen
species recover.

After the oxygen adsorption is saturated, the gas atmosphere is changed to 10%
CO2/Ar flow. Figure 9C shows that the peaks of the active oxygen species gradually
weaken and vanish, accompanying the generation of surface CO3

2− species. This has
demonstrated that the active oxygen species can react with CO2 to produce carbonate.
Therefore, it is postulated that O2

δ− (0<δ<1) and O2
− are the active oxygen sites on catalysts,

which could be important for the DRM reaction.

2.10. CO2-TPD of the Reduced Catalysts

The amount of surface alkaline centers also plays a crucial role in DRM reaction.
According to the previous literatures, the surface alkaline sites can adsorb and activate CO2
molecules to generate reactive intermediates and surface oxygen species [44]. The adsorbed
oxygen species is active to remove the initially formed carbon-deposition in time, which
is favorable for DRM reaction. Therefore, CO2-TPD is used to characterize the surface
alkalinity of the pre-reduced catalysts. Figure 10 shows that all the catalysts have three
alkaline peaks with different intensities. It was reported that the peak below 250 ◦C is
attributed to the desorption of CO2 on the weak alkaline sites. Due to its easy desorption,
this part of adsorbed CO2 could have limited contribution to the reaction [45]. The peak
between 250 and 500 ◦C is attributed to the desorption of CO2 on the moderate alkaline
sites, which could contribute significantly to the reaction [46]. In fact, the CO2 in the DRM
reaction could mainly adsorb on this part of moderate alkaline sites. However, the peak
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above 500 ◦C is attributed to the desorption of CO2 on the strong alkaline sites, possibly
due to the decomposition of carbonate. Due to its difficulty to be desorbed, this part of
adsorbed CO2 could also have little contribution to the reaction. The quantified results in
Table 7 have testified that all the modified catalysts possess more moderate alkaline sites
than the unmodified 5Ni/Y2O3, which is consistent with their improved DRM performance.
Notably, 5Ni/Ce0.1Y0.9Ox has the largest amount of CO2 desorption, especially the largest
amount of CO2 on the moderate alkaline sites, proving that it has the best ability to adsorb
and activate CO2 molecules.
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Table 7. CO2 desorption amount of the reduced catalysts. 

Catalysts 
CO2 Desorption (µmol·g−1) 

Weak Moderate Strong Total 
5Ni/Y2O3 17.1 14.8 5.0 36.9 

5Ni/Ce0.1Y0.9Ox 16.2 18.7 4.8 39.7 
5Ni/Zr0.1Y0.9Ox 16.0 15.1 4.6 35.7 
5Ni/Al0.1Y0.9Ox 15.1 15.0 4.8 34.9 

2.11. Probing the Reaction Intermediates with In Situ DRIFTS 
To explore the possible intermediate species in the DRM reaction, in situ DRIFTS 

experiments are performed on the reduced 5Ni/Ce0.1Y0.9Ox catalyst in a CH4/CO2 feed, 
which simulates the kinetic reaction atmosphere. In Figure 11A, at lower temperatures, 
the typical adsorbed species on the catalyst surface are bicarbonate (1649 cm−1, 1438 cm−1) 
[47]. With the reaction temperature increase, the bicarbonate peak gradually weakens. 
When the temperature rises to 200 °C, the bicarbonate species almost disappears. At the 
same time, new peaks appear at 1376 cm−1 and 1603 cm−1, which are assigned to formate 
(HCOO*) species [48,49]. This implies that bicarbonate is gradually consumed during the 
reaction and could be an active intermediate species in the DRM reaction. The CO peak is 
clearly observed when the temperature is increased to 400 °C, and the peak of formate 
species reaches maximum intensity. Subsequently, as the temperature increases, the 
formate and CO peaks weaken at the same time, and the changes in the two with tem-
perature are the same [50,51]. Hence, formate could be an active intermediate species that 
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Table 7. CO2 desorption amount of the reduced catalysts.

Catalysts
CO2 Desorption (µmol·g−1)

Weak Moderate Strong Total

5Ni/Y2O3 17.1 14.8 5.0 36.9
5Ni/Ce0.1Y0.9Ox 16.2 18.7 4.8 39.7
5Ni/Zr0.1Y0.9Ox 16.0 15.1 4.6 35.7
5Ni/Al0.1Y0.9Ox 15.1 15.0 4.8 34.9

2.11. Probing the Reaction Intermediates with In Situ DRIFTS

To explore the possible intermediate species in the DRM reaction, in situ DRIFTS
experiments are performed on the reduced 5Ni/Ce0.1Y0.9Ox catalyst in a CH4/CO2 feed,
which simulates the kinetic reaction atmosphere. In Figure 11A, at lower temperatures, the
typical adsorbed species on the catalyst surface are bicarbonate (1649 cm−1, 1438 cm−1) [47].
With the reaction temperature increase, the bicarbonate peak gradually weakens. When the
temperature rises to 200 ◦C, the bicarbonate species almost disappears. At the same time,
new peaks appear at 1376 cm−1 and 1603 cm−1, which are assigned to formate (HCOO*)
species [48,49]. This implies that bicarbonate is gradually consumed during the reaction
and could be an active intermediate species in the DRM reaction. The CO peak is clearly
observed when the temperature is increased to 400 ◦C, and the peak of formate species
reaches maximum intensity. Subsequently, as the temperature increases, the formate and
CO peaks weaken at the same time, and the changes in the two with temperature are the
same [50,51]. Hence, formate could be an active intermediate species that can be converted
into CO. For the bidentate carbonate species at 1458 cm−1, although its peak also gradually
increases at the higher-temperature region (200–500 ◦C), the variation trend of this species
with temperature is inconsistent with that of CO species. This testifies that the bidentate
carbonate species does not participate in the reaction.
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In order to illustrate more intuitively that the bidentate carbonate is not the active
intermediates, another series of experiments are conducted by introducing only CO2 gas
onto the reduced 5Ni/Ce0.1Y0.9Ox catalyst. As shown in Figure 11B, under the same
conditions with only CO2 gas, the peak of bidentate carbonate species gradually increases
in the higher-temperature range, but the bicarbonate species is converted into formate
species gradually, until it disappears. This affirms that the bidentate carbonates are easily
formed at higher temperatures and might not be active intermediate species.
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Figure S4 compares the in situ DRIFTS spectra of 5Ni/Y2O3, 5Ni/Ce0.1Y0.9Ox,
5Ni/Zr0.1Y0.9Ox, and 5Ni/Al0.1Y0.9Ox catalysts recorded under the same condition of
experiments in Figure 11A. By increasing the temperature, it is observed that the evolution
of the intermediate species in the DRM reaction is basically the same, and the bicarbonate
gradually converts into formate, indicating that the same DRM mechanism occurs on all
the catalysts either unmodified or modified. However, the consumption rates of formate on
the three modified catalysts are faster than that on the unmodified 5Ni/Y2O3, especially on
the Ce- and Al-promoted catalysts. This indicates that the doping of the secondary metal
cations can improve the DRM activity of the modified catalysts, through accelerating the
conversion of formate species.

3. Materials and Methods
3.1. Catalyst Preparation

The Y2O3 supports unmodified or modified with Ce, Zr, and Al were prepared by a co-
precipitation method. Taking the preparation of the Ce0.1Y0.9Ox support as an example here,
the calculated amounts of Y(NO3)3·5H2O (AR) and Ce(NO3)3·6H2O (AR) were dissolved in
10 mL of DDI water at the molar ratio of Y/Ce = 9:1, and stirred at room temperature until
the solution was clear. A certain amount of aqueous ammonia (25–28%) was slowly dripped
into the solution to adjust its pH around 9.5. After aging for 3–5 h, the solution turned into
a white turbid liquid, which was then centrifuged, vacuum-filtered, and washed with DDI
water until the TDS of the filtrate was below 20. The filtered solid was dried overnight at
110 ◦C, then grounded and calcined at 750 ◦C in a muffle furnace in air for 3 h to obtain the
final white product. The synthesis of Zr- or Al-modified Y2O3 supports was similar to that
of Ce0.1Y0.9Ox except that the solution mixture of Zr(NO3)4·5H2O (AR) or Al(NO3)3·9H2O
(AR) with Y(NO3)3·5H2O was used. The prepared supports were denoted as Ce0.1Y0.9Ox,
Zr0.1Y0.9Ox, and Al0.1Y0.9Ox, respectively.
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The unmodified or modified 5 wt% Ni/Y2O3 catalysts were prepared by the impregna-
tion method. First, a certain amount of a desired support was added into a suitable amount
of Ni(NO3)2·6H2O (>98.0%). After stirring at room temperature for 3 h, the catalyst was
dried in a water bath at 80 ◦C and further dried overnight at 110 ◦C, which was finally
calcined in an air atmosphere for 4 h at 650 ◦C. The unmodified catalyst was labeled as
5Ni/Y2O3, and the modified samples were labeled as 5Ni/Ce0.1Y0.9Ox, 5Ni/Zr0.1Y0.9Ox,
and 5Ni/Al0.1Y0.9Ox, accordingly.

3.2. Activity Evaluation

The DRM reaction performance was evaluated in a quartz tube fix bed reactor having
a 6 mm diameter at 1 atm. The average sizes of the used catalysts were 0.3–0.4 mm. The
catalysts were first reduced in a 30 mL·min−1 10% H2/Ar flow at 600 ◦C for 2 h, then
switched to a gas with a CH4 and CO2 ratio of 1:1 (the total flow rate of the mixed gas
was 30 mL·min−1). The activity tests of the catalysts were carried out in the tempera-
ture range of 600–800 ◦C under the condition of a gas hour space velocity (GHSV) of
18,000 mL·g−1·h−1. The products were analyzed by an online GC7900 with a TDX-01
column and a TCD in a 99.999% Ar carrier gas flow to monitor the concentrations of H2,
CO, CO2, and CH4.

The CH4 conversion is calculated by:

XCH4 =
nCH4,in − nCH4,out

nCH4,in
×100%

The CO2 conversion is calculated by:

XCO2 =
nCO2,in − nCO2,out

nCO2,in
×100%

The H2 selectivity is calculated by:

SH2 =
nH2,out

2× (nCH4,in − nCH4,out)
×100%

The H2 yield is calculated by:

YH2 = XCH4 × SH2 =
nH2,out

2× nCH4,in
×100%

H2/CO ratio is calculated by:

H2

CO
=

nH2,out

nCO,out

It is noted that nCH4 , nCO2 , nH2 , and nCO in the equations represent the quantity of a
corresponding component calculated from multiplying its integrated area with its response
factor on the basis of carbon balance.

By varying the catalyst dosage, the CH4 conversion below 10% on all catalysts was
collected over the temperature range of 450–500 ◦C to obtain differential reaction rates in
the kinetic system.

Rw is the CH4 conversion rate (mol·g−1·s−1) and the formula is as follows:

Rw =
RF × V% × XCH4

mcat × 22.4

(
mmol·g−1·s−1

)
The RF is the gas flow rate (mL·min−1), V% is the volume fraction of CH4 in the

reaction gas, XCH4 is the CH4 conversion rate, and mcat is the catalyst mass.
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The dispersion of Ni on the reduced catalyst was determined by H2-sorption exper-
iment. The turnover frequency (TOF) based on exposed Ni surface active sites for CH4
conversion was calculated.

TOF =
Rw × MNi

DNi × XNi

MNi is the molar mass of Ni atoms, XNi is the content of Ni, and DNi is the degree of
dispersion of Ni.

3.3. Catalyst Characterization

The detailed techniques, methods, and procedures for catalyst characterization are
listed in the Supplementary Materials.

4. Conclusions

With the purpose to fabricate more efficient catalysts for DRM reaction, Ce-, Zr-,
and Al-modified Y2O3 supports were prepared by the co-precipitation method to support
Ni/NiO. XRD and Raman results have testified that all the three cations can be doped into
the lattice of cubic Y2O3 to form solid solutions, thus resulting in modified supports with
decreased crystallinity and improved surface areas. As a result, the modified catalysts dis-
play evidently improved DRM rection performance, including enhanced activity, stability,
and coking resistance. To elucidate the reasons leading to the performance improvement,
the catalysts were characterized with different techniques.

1. H2-TPR results have indicated that with the secondary metal doping, the Ni–support
interaction is enhanced in comparison with the unmodified 5Ni/Y2O3 catalyst. As
a result, the modified catalysts have decreased Ni crystallite sizes with improved
Ni dispersion, as demonstrated by XRD, TEM, and H2 adsorption results, which is
important to enhance the activity, stability, and anti-coking ability in the DRM reaction.
In addition, all the modified catalysts have improved alkalinity, which is beneficial to
activate CO2 and enhance the activity.

2. O2-TPD and XPS O 1s analyses have testified that all the modified catalysts possess a
richer amount of surface active oxygen species (O2

δ− and O2
−) than the unmodified

5Ni/Y2O3 catalyst, which obeys the order of 5Ni/Ce0.1Y0.9Ox > 5Ni/Zr0.1Y0.9Ox
> 5Ni/Al0.1Y0.9Ox > 5Ni/Y2O3, and is well consistent with the coking-resistance
sequence. This indicates that the surface active oxygen species is critical to eliminate
carbon depositions.

3. In situ DRIFTS results have confirmed that the addition of the secondary metals can
improve the DRM activity of the Ni/Y2O3 catalyst by accelerating the conversion of
formate intermediate species.

4. Among all the catalysts, 5Ni/Al0.1Y0.9Ox owns the highest active Ni surface area, thus
showing the best activity. In contrast, 5Ni/Ce0.1Y0.9Ox possesses the largest amount of
surface alkaline sites and active oxygen species, hence displaying the highest stability
and the best anti-coking ability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13020430/s1. Table S1: Physical-chemical properties of
the supports. Figure S1: H2-TPR profiles of the supports. Figure S2: XPS spectra of the catalysts.
(A) Ni 2p; (B) Y 3d. Figure S3: O2-TPD profiles of the freshly calcined catalysts. Figure S4: In-situ
DRIFTS spectra on the reduced catalysts in a reaction feed (CH4 + CO2) at different temperatures.
(A) 5Ni/Y2O3, (B) 5Ni/Ce0.1Y0.9Ox, (C) 5Ni/Zr0.1Y0.9Ox, (D) 5Ni/Al0.1Y0.9Ox catalysts.
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