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Abstract: Oxygen atom incorporation into organic molecules is one of the most powerful strategies
to increase their pharmacological activity and to obtain valuable intermediates in organic synthe-
sis. Traditional oxidizing agents perform very well, but their environmental impact and their low
selectivity constitute significant limitations. On the contrary, visible-light-promoted oxygenations
represent a sustainable method for oxidizing organic compounds, since only molecular oxygen and a
photocatalyst are required. Therefore, photocatalytic oxygenation reactions exhibit very high atom-
economy and eco-compatibility. This mini-review collects and analyzes the most recent literature on
organo-photocatalysis applications to promote the selective oxygenation of organic substrates. In
particular, acridinium salts, Eosin Y, Rose Bengal, cyano-arenes, flavinium salts, and quinone-based
dyes are widely used as photocatalysts in several organic transformations as the oxygenations of
alkanes, alkenes, alkynes, aromatic compounds, amines, phosphines, silanes, and thioethers. In this
context, organo-photocatalysts proved to be highly efficient in catalytic terms, showing similar or
even superior performances with respect to their metal-based counterparts, while maintaining a
low environmental impact. In addition, given the mild reaction conditions, visible-light-promoted
photo-oxygenation processes often display remarkable selectivity, which is a striking feature for the
late-stage functionalization of complex organic molecules.

Keywords: organic dyes; photocatalysis; photooxygenation; metal-free photocatalysts; acridinium;
Eosin Y; Rose Bengal; 4CzIPN; quinones; flavinium

1. Introduction

Considering the climate emergency and, recently, the surge in oil prices, the research
of alternative sources of renewable energy is becoming an increasingly urgent issue to
be addressed [1]. At the beginning of the 20th century, Giacomo Ciamician, one of the
pioneers of photochemistry, with shrewd foresight, noticed that modern societies needed
an energy transition from fossil fuels to solar energy [2]. The Italian chemist claimed
this concept as a possibility for his time and a necessity for the future. Later, in 1998,
Anastas and Warner coined the 12 principles of green chemistry, based on the concept of
minimizing the environmental footprint of chemical processes by reducing or eliminating
the use or formation of hazardous substances [3]. Photocatalysis, given the capability to
convert visible light to chemical energy, thoroughly embraces green chemistry culture [4].
In particular, photoredox catalysis ranks as an effective sustainable choice in organic
synthesis, also allowing the formation of challenging carbon–heteroatom bonds in mild
conditions [5]. Metal-based photocatalysts, mainly Ru(II) and Ir(III) bipyridyls complexes,
have been extensively studied and described in several reviews [5–8]. However, due to the
environmental issues related to rare metals applications, in recent years, the consideration
of organic dyes as metal-free photocatalysts has grown rapidly, and, in some cases, even
better photocatalytic performances with respect to their metal counterparts have been
observed (Scheme 1) [9–13].
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Scheme 1. Organic dyes applied as metal-free photocatalysts in oxygenation reactions.

In particular, 9-mesityl-10-methylacridinium perchlorate (Acr+-Mes) and cyanoare-
nes [14,15], Eosin-Y [16], Rose Bengal [17], flavins [18], anthraquinones [19], and thioxan-
thones [20] have shown very high efficiency.

In the framework of metal-free photocatalysts, graphitic carbon nitride (g-C3N4) is
emerging as an innovative alternative in heterogeneous catalysis [21,22]. However, the
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engineering of such photoresponsive metal-free materials needs multiple time-consuming
modifications. In fact, pure g-C3N4 exhibits poor photocatalytic efficiency because of its low
specific surface area and its high charge carrier recombination [23]. Therefore, morphology
control, metal/metal-free doping, or dye sensitization are usually required to enhance
g-C3N4 performances in visible-light-driven catalytic processes [24]. On the contrary, the
advantage in using organic dyes as photocatalysts lies in the variegated heterogeneity of the
photochemical and photophysical catalytic pathways that can be investigated. Moreover,
the possibility to tailor their structure through specific functionalizations is an advantageous
opportunity to further implement catalytic efficiency [25]. In this context, photocatalytic
oxygenations represent a vivid example of the potential of merging sustainable chemistry
and photochemistry, revealing a green, effective alternative compared to the traditional
oxidative methods [26]. In biological systems, mono- or di-oxygenase metalloenzymes are
essential to promote molecular oxygen activation leading to oxygen atom incorporation
into organic substrates [27,28]. Following a bio-mimetic approach, oxygenations play
an important role in chemistry for the synthesis of valuable synthons in mild and green
conditions, using O2 as a bio-available and bio-compatible oxidizing agent [29]. In fact,
the development of sustainable oxidative processes arises primarily from the choice of the
oxidizing agent: reactivity, cost, and eco-friendliness are the main parameters to consider.
Obviously, molecular oxygen represents the greenest choice in oxygenation reactions given
its excellent atom economy and its low environmental impact [30]. However, O2, owing to
the spin-forbidden reaction [31], needs to be activated to a reactive oxygen species (ROS),
such as singlet oxygen, superoxide anion, hydroxyl radical, or hydrogen peroxide, in order
to be used as an oxidant [32]. Such activated species can be generated through biological,
physical, or chemical traditional methods, with low efficiency and energy consuming
procedures [33–35]. On the other hand, visible light photocatalysis has been affirmed as
one of the most promising and best performing tools for molecular oxygen activation in
order to carry out sustainable oxygenation processes.

The aim of this mini-review is to provide a critical analysis of recent applications
of organic dyes as photocatalysts to promote light-driven oxygenation reactions in an
aerobic environment.

2. Organic-Dye-Promoted Photooxygenation Processes

2.1. C(sp3) and Alkyl Arene (Benzyl) Oxygenation

Selective C(sp3-H) oxygenation in the benzylic position is one of the most interesting
tools to synthesize carbonyl intermediates, which are relevant molecules for biomedical
or agrochemical applications [36–38]. Several organic photocatalysts have been recently
examined to perform such a reaction. To this purpose, the 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ)/tert-butyl nitrite couple proved to be a powerful organo-photocata-
lytic system for aerobic visible-light-enabled C-H oxygenation [39]. Fukuzumi et al. in 2011
reported for the first time the use of the Acr+-Mes photocatalyst to perform the selective
oxygenation of p-xylene in acetonitrile, using molecular oxygen as an oxidant under visible
light irradiation (Scheme 2) [40].
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Scheme 2. p-xylene photooxygenation promoted by Acr+-Mes. Scheme 2. p-xylene photooxygenation promoted by Acr+-Mes.

p-methyl benzaldehyde and p-methylbenzyl alcohol were obtained in mild conditions
in only 80 min with satisfactory yields. The photocatalytic efficiency of such systems was
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then enhanced with the addition of aqueous sulfuric acid that allowed the reaching of
good benzaldehyde yields (>70%). Remarkably, no over-oxidation to benzoic acid occurred,
demonstrating the high selectivity of the reaction. A further improvement was achieved us-
ing the 9-mesityl-2,7,10-trimethylacridinium derivative (Me2Acr+–Mes) as a photocatalyst
that accomplished the quantitative p-xylene conversion to p-methylbenzaldehyde in 80 min.
Mechanistic studies proved a radical pathway, in which the alkyl arene was oxidized by the
excited photocatalyst, and then it reacted with molecular oxygen to generate an activated
alkyl peroxyradical, which collapsed into the oxidation products (Scheme 3).
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Scheme 3. Mechanistic insights of p-xylene photooxygenation promoted by Acr+-Mes.

The authors demonstrated that photooxygenation simultaneously occurred with
molecular oxygen reduction to hydrogen peroxide to restore the catalytic cycle. Drawbacks
of such procedures are related to the substrate scope. In fact, reaction efficiently occurred
for only three similar substrates, and no photooxidation of complex compounds was ac-
complished. Similarly, the water-soluble sodium anthraquinone sulfonate (SAS) proved to
be a promising photocatalyst for the oxygenation of alkyl arenes in biphasic systems [41,42].
Hollmann et al. studied the neat photooxygenation of benzylic and allylic C-H bonds in
alkane:water (3:7 v/v) (Scheme 4a) [43].

SAS displayed good catalytic efficiency, reaching in 24 h a TON of 37 in the toluene-
selective oxygenation to benzaldehyde. However, long reaction times and photocata-
lyst deactivation were the resulting major drawbacks of such a system. Later, Eosin Y
metal-free photocatalyst was investigated for aerobic benzylic C-H oxygenation in water
(Scheme 4b) [44]. Such a sustainable protocol exhibited good photocatalytic efficiency
in 24 h (32–89% yields) and a broad substrate scope (26 derivatives). However, 365 nm
of UV irradiation and tetrabutylammonium borohydride (TBABH) as a phase-transfer
catalyst were required to promote such a biphasic oxygenation reaction. Sing et al. re-
cently developed an oxidative system, made up of 4CzIPN organic photocatalyst (2%),
tetrabutylammonium azide (TBAN3 40%), and air/oxygen for the selective oxygenation of
alkylarenes to the corresponding carbonyl compounds (Scheme 4c) [45]. The use of TBAN3
was necessary to trigger the hydrogen atom transfer (HAT) mechanism, as no oxygenation
occurred in the absence of the azido radical precursor. This technique efficiently accom-
plished the oxygenation of 23 structurally different substrates, exhibiting high functional
group tolerance.
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(c) 4CzIPN [45] organic photocatalysts.

In recent years, Cibulka’s group has been involved in the study of ethylene-bridged
flavinium salts (FI+), which demonstrated enhanced photostability and improved catalytic
properties compared with other flavinium derivatives in the oxidation of electron-deficient
benzylic substrates to carboxylic acids (Scheme 5) [46,47].
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Scheme 5. Photo/organocatalytic oxygenation of alkyl arenes promoted by the FI+ photocatalyst.

FI+ acts with a tandem photo-organo catalytic mechanism. Indeed, upon excitation,
FI+ oxidizes the substrate to the corresponding aldehyde in the presence of O2. Then,
the reduced photocatalyst is restored by O2, generating H2O2 as a byproduct. However,
FI+ can react with H2O2 to generate the corresponding flavin hydroperoxides with a
monooxygenase-like behavior. The broad substate scope was examined, affording satisfac-
tory to good yields in 16 h.

The direct oxygenation of saturated hydrocarbons to synthesize fine materials in the
chemical industry is a challenging process and it generally requires harsh conditions [48,49].
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In 2011, Fukuzumi et al. reported the first example of the aerobic metal-free-promoted
oxygenation of cyclohexane with visible light irradiation, using Acr+-Mes in acetonitrile
amongst a sub-stoichiometric amount of HCl (Scheme 6a) [50].
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Cyclohexanol and cyclohexanone were obtained with good selectivity in 3 h with a 7%
quantum yield. More recently, the same authors performed the reaction solventless and
with no inorganic acid, using 0.02% of p-xyloquinone (PXQ) photocatalyst (Scheme 6b) [51].
In these conditions, 22% of the cyclohexane was converted in 26 h, and cyclohexyl hy-
droperoxide, cyclohexanol, and cyclohexanone were obtained with a 4.5:1.4:1 ratio. A
high quantum yield and good photocatalytic performances were obtained for the linear
and branched alkanes. Although long reaction times were needed and unsatisfactory
conversions and selectivity were achieved, this method is surely promising in terms of
sustainability, since it requires only the use of cyclohexane, dioxygen, visible light, and
photocatalyst to afford valuable oxygenated products in mild conditions.

2.2. Alkene Oxygenation

The dihydroxylation of alkenes is one of the classical methods to achieve 1,2-diols,
biologically active molecules with pharmaceutical interest [52,53]. Acr+-Mes proved to be a
powerful photocatalyst to promote the selective aerobic oxygenation of alkenes to 1,2-diols
(Scheme 7) [54].
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Scheme 7. Visible-light-induced alkene dihydroxylation, catalyzed by Acr+-Mes.

Reactions carried out under visible light irradiation in acetonitrile in the presence
of water and a weakly basic medium led to good yields (46–90%) in 6 h with a broad
substrate scope. Scavenging experiments indicated an electron-transfer radical mechanism,
and studies performed with H2

18O suggested that one hydroxy group comes from water
and the other from molecular oxygen. Similarly, Chen’s group proposed Rose Bengal as a
photocatalyst for alkene oxidation in the presence of pyridine and N-hydroxyphthalimide
(Scheme 8) [55].
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Despite the good efficiency (53–83% yield), such a method requires an additional
hydrolysis step to obtain 1,2-diol; moreover, it is not suitable for the dioxygenation of
inactivated alkenes or in the presence of an ester group. In 2018, Oliveira’s group studied
the continuous aerobic endoperoxidation of conjugated dienes, promoted by tetraphenyl-
porphyrin (TPP) (Scheme 9) [56].
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Scheme 9. Photocatalytic aerobic endoperoxidation of conjugated dienes, promoted by TPP, followed
by Kornblum–DeLaMare (KDM) rearrangement to afford essential synthons.

Reactions were carried out in flow by irradiating the reaction mixture with a white
LED under an oxygen atmosphere. In this process, TPP in its triplet excited state inter-
acted with O2 through an energy transfer process, generating singlet oxygen as an active
oxidizing species. The latter reacted with the conjugated diene to form the corresponding
endoperoxides. Photooxygenation showed good yields (ca. 60%) with 0.4% mol of TPP
loading and a throughput of 7.7 g/day. Endoperoxidation was followed by the Kornblum–
DeLaMare (KDM) rearrangement in the presence of 1,8-diazabiciclo[5.4.0]undec-7-ene
(DBU) or triethylamine to synthesize C-H-oxidized relevant synthons, such as furans, dike-
tones, enones, and tropones. The efficiency of the 1,6-pyrenedione (1,6-PYD) metal-free
photocatalyst for the selective oxygenation of 1,1-dicyanoalkenes to epoxides was recently
explored (Scheme 10) [57].
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Scheme 10. Electron-deficient alkene epoxidation promoted by the 1,6-PYD photocatalyst.

Reactions carried out in 2-propanol with 5% of 1,6-PYD and O2, under blue LED
irradiation proceeded with good to excellent yields (51–98%) and high functional group
tolerance. Scavenging experiments proved the presence of superoxide anion as an oxidizing
active species. However, only electron-deficient alkenes were examined, and no examples
of unsubstituted or activated alkenes were provided. Alkene oxidation to allylic alcohols or
α,β-unsaturated carbonyl compounds is a remarkable synthetic organic transformation [58].
Recently, Rose Bengal was exploited as a metal-free photocatalyst to perform allylic C-H
bond photooxygenation (Scheme 11).
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excellent yields (45–91%) were achieved in 4–8 h on differently substituted substrates,
including pharmaceutically relevant compounds.

2.3. Alkyne Oxygenation to 1,2-Diketones

The synthons 1,2-diketones are essential precursors in the synthesis of azacyclic
molecules [59,60] and bioactive compounds [61]. Alkyne oxygenation is considered one of
the best performing strategies to afford 1,2-diketones. In the context of metal-free visible-
light-promoted oxygenations, in 2016, Sun’s group reported the aerobic photooxygenation
of alkynes to 1,2-diketones, catalyzed by Eosin Y (Scheme 12) [62].
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Reactions were carried out in acetonitrile for 8 h in the presence of two equivalents
of 4-chlorobenzenethiol. Good to excellent yields were achieved on a series of different
substrates; interestingly, the photocatalytic efficiency of such a system was higher than
the traditional metal-based Ru(bpy)3Cl-6H2O photocatalyst. Mechanistic studies pointed
out the presence of a radical-type pathway, in which superoxide anion was involved. The
only limitation of such an oxidative protocol is related to the use of 4-chlorobenzenethiol
as an additive, which has an essential role in triggering the radical chain. More recently,
dicyanoanthracene (DCA) was investigated as a photocatalyst for the alkyne photooxy-
genation to 1,2-diketones [63]. The reactions were performed in DCM:DMF (2:1 v/v) in
presence of 0.5 equivalents of trifluoroacetic acid (TFA) as an additive, and two equivalents
of biphenyl redox mediator as a co-sensitizer (BP). TFA proved to be essential in increasing
product yield, while BP was useful in reducing reaction time. However, very long reaction
times were required to afford low to moderate yields.

2.4. Aromatic Oxygenation

Fukuzumi et al. in 2004 reported anthracene selective oxidation to anthraquinone, pro-
moted by visible light under O2, using metal-free Acr+-Mes photocatalyst (Scheme 13) [64].

Mechanistic studies proved the presence of an electron transfer mechanism, in which
the photocatalyst in the excited state oxidized anthracene, generating anthracene radi-
cal cations. Consequently, the reduced photocatalyst interacted with molecular oxygen,
generating superoxide anion and restoring the catalytic cycle. A direct reaction between su-
peroxide anion and anthracene radical cation caused the generation of epidioxyanthracene
intermediate, which was further oxidized to quinone by the excited photocatalyst, produc-
ing hydrogen peroxide. The reactions were performed for three anthracene derivatives in
acetonitrile with 10% of the photocatalyst, and 75–99% yields of epidioxyanthracene were
achieved in 10 min. Thus, with this interesting approach, by using light, oxygen, and an
organic catalyst, it was possible to obtain valuable anthraquinones.
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Later, the same group investigated the selective oxidation of benzene to phenol,
promoted by 3-cyano-1-methyl quinolinium (QuCN+) (Scheme 14) [65].
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Scheme 14. Benzene oxidation to phenol promoted by QuCN+ in an oxygen atmosphere.

Photooxidation was carried out on a gram-scale with benzene (2.3 g, 29 mmol),
3% QuCN+, and water (0.2 mmol) in O2-saturated acetonitrile under visible light irra-
diation. In these conditions, 1.1 g of phenol (a 41% yield) was obtained after 48 h, an
appreciable result considering the mild reaction conditions applied and the absence of over-
oxidation products. Importantly, mechanistic investigations pointed out that the hydroxyl
group comes from water, while molecular oxygen re-oxidizes the reduced photocatalyst to
restore the catalytic cycle. TPP was also used as a photocatalyst for the aerobic endoper-
oxidations of α-naphthols to yield naphthoquinones through singlet oxygen generation
(Scheme 15) [66].

Importantly, this procedure can be used also to produce valuable compounds on a gram-
scale. Reactions were performed on 11 derivatives in batch (a 7–20% yield) and continuous-
flow conditions (an up to 82% yield). Continuous-flow reactions showed improved selectivity
since minor by-products were obtained, thus simplifying product isolation.
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oxygen atmosphere.

2.5. Oxidative C-C and C=C Cleavage

The selective cleavage and late-stage functionalization of C–C bonds have a substantial
impact in the organic synthesis for the production of complex molecules [67], as well as in
medicinal chemistry [68]. However, the high dissociation bond energy and the stability of
C-C bonds make this process challenging, and, in general, the use of a metal-based catalyst
is needed [69]. 4CzIPN was recently studied as an organic photocatalyst for the selective
C-C bond oxidative cleavage (Scheme 16) [70].
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Scheme 16. N-aryl morpholine aerobic C(sp3)-C(sp3) oxidative cleavage promoted by 4CzIPN.

In this study, 29 N-aryl morpholine derivatives were tested, showing low to good
yields (13–83%) but significant functional group tolerance. Nevertheless, this protocol was
not successful for N-alkyl morpholine derivatives because Calkyl–N bond cleavage was
obtained instead of the ring opening product. Olefin C=C bond oxidative cleavage is a hot
topic in photochemistry. In fact, recently, several visible-light-promoted systems for alkene
C=C cleavage have been developed, using riboflavin tetraacetate, Eosin Y, disulfide charge
transfer, sodium benzene sulfinate, or nitroarene [71–75]. In 2021, Zhang et al. reported
a mild and efficient procedure for the aerobic oxidative cleavage of olefines to ketones
using Rose Bengal metal-free photocatalyst under visible light irradiation in the presence
of 0.5 equivalents of acetic acid (Scheme 17) [76].
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Scheme 17. Alkene aerobic oxidative cleavage to ketones promoted by Rose Bengal photocatalyst.

Reactions were carried out in water, and added-value carbonyl products were obtained
with good to excellent yields (40–95%) in 48 h. In addition, reactions could be efficiently
scaled up on a gram-scale; 1,1-diphenylethylene was converted to benzophenone with
a 64% yield after 48 h, thus demonstrating the potential industrial applicability of such
a protocol.

2.6. Amine Oxygenation

Amine α-oxygenation products are valuable building blocks in organic synthesis and
interesting molecules for pharmaceutical, agrochemical, and photovoltaic applications [77–81].
In recent years, several metal-free photocatalysts have been evaluated for the aerobic
photooxygenation of tertiary amines to amides. In 2019, Singh’s group described the use
of Eosin Y to promote the aerobic oxidation of tertiary amines conjugated with pyridine
functionality through a single-electron-transfer mechanism (Scheme 18a) [82].
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Scheme 18. Aerobic photooxygenation of tertiary amines to amides promoted by (a) Eosin Y [82]
and (b) Rose Bengal [83,84].

This procedure showed good catalytic efficiency (16 substrates, 70–95% yields, in
1–4 h). The use of atmospheric oxygen as an oxidant, Eosin Y as a metal-free photocatalyst,
and visible light irradiation outlined the sustainability of such an approach. Later, in 2020,
Das and co-workers reported the use of Rose Bengal photocatalyst in the α-oxygenation
of differently substituted 1-benzylpiperidines [83,84], showing a broad substrate scope
(Scheme 18b). This methodology was suitable for the synthesis of natural products and
for the late-stage selective oxygenation of drugs. Additionally, the oxygenation of N-
substituted piperidines, 1-benzylpyrrolidine, N,N-dimethylbenzylamine, N-substituted
tetrahydroquinoline, and N-substituted tetrahydroisoquinoline was investigated, obtaining
the corresponding amides in good to excellent yields (51–99%). This protocol, despite its
versatility, required the use of 1,5-diazabicyclo(4.3.0)non-5-ene (DBN) as a base and longer
reaction times (16–48 h) if compared with the Eosin-Y-catalyzed protocol [82]. Recently,
Anandhan’s group reported, for the first time, the direct α-oxygenation of amines to imides
using the Acr+-Mes organic photocatalyst (Scheme 19) [85].
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Scheme 19. Acr+-Mes-photocatalyzed aerobic photooxygenation of N,N-dibenzylanilines to imides.

The photooxygenation of more than 20 N,N-dibenzylanilines was carried out in ace-
tone in the presence of five equivalents of acetic acid and 5% of the photocatalyst under
blue LED irradiation in just 1 h with satisfactory to good yields (30–92%). Mechanistic
studies pointed out the presence of an electron transfer mechanism, which is typical for
acridinium-promoted oxygenation processes. Despite its potential practical applicability,
such a method is not effective for the oxygenation of heteroaryl and aliphatic amines and
electron-deficient N,N-dibenzylamines.

9,10-dicyanoanthracene-2,6-disulfonamide (DCAS) was recently investigated as a
metal-free photocatalyst to perform the late-stage photooxygenation of trialkylamines to
N-formamides in continuous flow under blue LED irradiation (Scheme 20) [86].

Indeed, the direct C–H oxidation of the N–CH3 group of trialkylamines to the N-formyl
group is an interesting process, since these products are relevant in biomedical applications
and valuable intermediates in organic synthesis [87–89]. Generally, metal-based catalysts
are required in such transformations [90,91]. However, in this procedure, the direct N–CH3
oxygenation to N-formyl was accomplished using a metal-free photocatalyst. The reaction
could be performed on several substrates in continuous-flow conditions in acetonitrile
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with 5% of the photocatalyst, affording high selectivity and good yields (15–68%). This
protocol is unsuitable for the oxygenation of benzylic amines and trialkylamines containing
benzylic alcohols or free carboxylic acids. Mechanistic studies proved an energy transfer
mechanism, in which singlet oxygen was the active oxidizing species. Lu et al. in 2016
described the visible-light-driven oxygenation of primary amines to carboxylic acids and
lactones, promoted by Rose Bengal (Scheme 21) [92].
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Scheme 21. Primary amine photooxygenation to carboxylic acids or lactones, catalyzed by
Rose Bengal.

This process occurred via an electron transfer and energy transfer cooperative mecha-
nism, through an oxidative ring opening followed by C=C oxidation. The reactions were
performed with 2% of the photocatalyst, obtaining satisfactory yields in 24–48 h and an
interesting tunability. In fact, the aerobic oxidation of primary amines led to the corre-
sponding carboxylic acids working with an 18 W compact fluorescent light bulb (CFL) in
dioxane, while lactones were obtained using an 8 W green LED in DMF at 47 ◦C.

2.7. Indole Oxygenation

The oxidative de-aromatization of N-heteroaromatic compounds is a smart tool for
the synthesis of added-value bio-active products [93]. A dicyanopyrazine photocatalyst
(DPZ) was recently investigated for the aerobic oxygenation of indoles to afford interesting
bio-active compounds (Scheme 22) [94].
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The authors demonstrated that the electrochemical properties of DPZ could be tuned
by switching the reaction pH and using diverse inorganic salts as additives. Reactions
proceeded through an electron transfer mechanism, with the generation of superoxide
anion or through an energy transfer oxidative pathway via singlet oxygen. This protocol
showed high photocatalytic performances, converting indoles and double-substituted
indoles to added-value N-heterocyclic products, including isatins, tryptanthrin, 2-methoxy-
3-oxoindoles, and benzo-oxazinones. Similar performances were obtained by Das and
co-workers using Rose Bengal (Scheme 23) [95].
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Scheme 23. Indole and pyrrole light-driven oxygenation catalyzed by Rose Bengal.

Reactions were carried out in an oxygen atmosphere in DMF:H2O (9:1 v/v) in 16–48 h
with 3% of the photocatalyst. Such a procedure was suitable for pyrrole oxidative de-
aromatization to afford cyclic imides in a one-pot reaction. A broad substrate scope
was reported (38 derivatives), obtaining pharmaceutically relevant compounds, such as
7-azaisatin, an anticancer drug, which was synthetized on a gram-scale in 45 h. More
recently, Singh et al. investigated the light-driven aerobic oxidative coupling of indole
and activated methylene compounds (e.g., malononitrile, ethyl acetoacetate, dimedone,
and barbituric acid) to afford valuable building blocks for the synthesis of spiro-oxindoles,
biologically active compounds (Scheme 24) [96].
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Scheme 24. Eosin-Y-promoted photooxidative coupling of indoles with activated methylene compounds.

Reactions performed with 3% Eosin Y in DMF:H2O (4:1 v/v) displayed remarkable
selectivity and good yields in mild conditions.

2.8. Triaryl Phosphine Oxygenation

Phosphine oxides are relevant intermediates in organic synthesis and valuable building
blocks for the synthesis of drugs [97–99]. In 2017, Guo and co-workers described the visible-
light-enabled photooxidation of triaryl phosphines to phosphine oxides, promoted by
Eosin Y (Scheme 25) [100].

Reactions were performed in DCM:MeOH (5:1 v/v) using 1% of the photocatalyst.
Scavenging experiments proved the presence of an energy transfer mechanism, where
singlet oxygen was the active oxidizing species. More recently, the same group investigated
such reactions by using 4-phenylthioxanthone (4-PhTXT) as a photocatalyst in methanol,
obtaining a quantitative conversion to the oxygenated product in a shorter reaction time
(e.g., triphenylphosphine oxide was achieved in 40 min compared with 3.5 h required for
Eosin Y) [101]. Mechanistic investigations pointed out the presence of a merged energy-
and electron-transfer mechanism. Remarkably, the 4-PhTXT photocatalyst was suitable
in the oxidation of different mono-, di- and tri-alkyl phosphines, and the reactions were
accomplished on a gram-scale in 9 h. Agou et al. recently studied the triaryl phosphine
aerobic photooxygenation promoted by a dibenzo-fused 1,4-azaborine (DBAB) photocat-
alyst, which occurred through singlet oxygen formation [102]. Compared with Eosin Y
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and 4-PhTXT, the reactions catalyzed by DBAB required longer reaction times (8–10 h);
in addition, such a catalyst was unsuitable for the oxidation of alkyl phosphine deriva-
tives, but it was effective in the oxidation of 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl
(BINAP) substrates.
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2.9. Silane Oxygenation

Silanols are essential synthons in organic synthesis [103–105] and potential bioac-
tive fragments in pharmaceutical applications [106,107]. The direct oxidation of silanes
is the most effective and sophisticated strategy to produce silanols with high selectiv-
ity [108,109]. However, traditional methods require the use of stoichiometric oxidizing
agents [110]. Recently, metal-based photocatalysts have been explored to perform aer-
obic silane oxygenation in sustainable conditions [111–113]. However, only two exam-
ples of the organo-photocatalyst-enabling silane oxidation to silanols have been reported
(Scheme 26) [114,115].
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In that respect, He et al. developed for the first time a metal-free protocol using a
2% Rose Bengal photocatalyst (Scheme 26a) [114]. Silane oxygenation was performed in
THF using water as an additive via an energy-transfer- and electron-transfer-combined
mechanism. A wide substrate scope was analyzed, showing appreciable functional group
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tolerance with excellent yields (92–99%) in 12 h. Additionally, triphenylsilane was quan-
titatively converted to the corresponding silanol on a gram-scale in 12 h. Later, Gui and
co-workers developed a mild and fast procedure to oxygenate silanes to silanols using 1%
Eosin Y (Scheme 26b) [115]. Photooxygenation was performed under an air atmosphere
in a chlorinated solvent, obtaining excellent yields (71–99%) in just 30 min. Moreover,
triphenylsilane oxygenation was performed on a gram-scale, obtaining the corresponding
silanol with a 92% yield, just prolonging the reaction time to 1 h. The promising photocat-
alytic efficiency together with the mild reaction conditions make this protocol also suitable
for industrial application.

2.10. Thioether Oxygenation to Sulfoxides

Sulfoxides are bioactive molecules of pharmaceutical interest [116–118] and valuable
intermediates in organic synthesis [119,120]. Thioether oxidation using the traditional
oxidants in a stoichiometric amount is the most straightforward method to synthetize
sulfoxides [121–123]. Recently, several metal-free photocatalysts have been explored to
promote thioether oxygenation [124–134]; among them, good performances were achieved
using thioxanthone derivatives as organic photocatalysts [132,133]. In particular, in 2018,
Guo and co-workers described the selective oxidation of thioethers to sulfoxides promoted
by 4-PhTXT in methanol, obtaining good yields in 5–40 h (Scheme 27a) [132].
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More recently, Xu et al. reported the 2-chlorothioxanthone (2-ClTXT)-catalyzed
thioether photooxygenation (Scheme 27b) [133]. Here, reactions performed in 1,1,1-3,3,3-
hexafluoro-2-propanol (HFIP) selectively led to the corresponding sulfoxides, while sul-
fones were obtained using acetonitrile as the solvent. Notwithstanding the wide substrate
scope and the good yields obtained, such methods still present significant limitations, such
as long reaction times [132,133]. Our group recently proposed the use of KuQuinone (KuQ)
as a homogeneous photocatalyst for the oxidation of thioethers selectively to sulfoxides in
HFIP (Scheme 27c) [134]. Molecular oxygen and visible light were the required reagents to
afford aliphatic, cyclic, diaryl, and heteroaromatic sulfoxides with high yields (91->99%) in
short reaction times (1–2 h) using a 0.5% KuQ photocatalyst. High functional group toler-
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ance was observed, also in the presence of redox-labile substituents, and no over-oxidation
products were detected. Remarkably, the KuQ photocatalyst could be recycled and reused
for at least 20 runs, reaching a TON > 4000, showing unique robustness, which is a rare
feature for organic photocatalysts.

3. Conclusions

Photooxygenation reactions represent a clear example of the effective applicability of
sustainable methods in organic synthesis. In this context, organo-photocatalysis is turning
out to be an effective alternative to metal catalysis, showing in some cases even better
efficiency. Moreover, with respect to their metal counterparts, organic photocatalysts do
not require controlled pressure or temperature conditions, and they are not sensitive to
moisture. Indeed, Acr+-Mes, Eosin Y, 4CzIPN, and Rose Bengal are frequently adopted
for the oxygenation of alkanes, alkenes, alkynes, aromatic compounds, amines, phosphines,
silanes, and thioethers, leading to valuable organic compounds in mild reaction conditions.

However, research is still ongoing in this field, and future perspectives point towards:

- The heterogenization of organic photocatalysts on inert solid supports or their encapsulation
into nano-porous systems. Heterogenization ensures efficient catalyst recovery, thus im-
proving process efficiency and sustainability. In particular, catalyst recovery and reuse
are aimed to enhance TONs, likely allowing for organic photocatalyst applications at
the industrial level.

- The development of additive-free photocatalytic systems. Photocatalytic reactions often
require the use of electron/hole sacrificial additives in order to trigger or boost redox
pathways. Considering the high versatility of organic photocatalysts, future challenges
are intended to avoid the use of additives through appropriate organic photocatalyst
structural modifications.

- The design of tandem oxidative-reductive processes. Following the oxidation of an organic
substrate, the reduced photocatalyst participates in a subsequent redox process to
restore the native photocatalyst.

Such features undoubtedly highlight the organo-photocatalysis potential future for
sustainable chemistry synthetic applications, even feasibly with direct solar light irradiation.
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