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Abstract: The novel ternary composites BiOBr-TiO2-attapulgite (BTA) were synthesized using a
simple hydrothermal and water-bath method, exhibiting excellent photocatalytic performance to mul-
tiple xanthates. For the BTA photocatalyst, TiO2 and BiOBr were uniformly loaded onto the surface
of acid-activated attapulgite. As a widely used collector in mining processes, sodium ethyl-xanthate
(SEX) was selected as the target pollutant due to its high toxicity. The BTA ternary photocatalyst
demonstrated significantly higher adsorption and photocatalytic degradation performance compared
to TiO2 nanoparticles, BiOBr nanosheets, and BiOBr-TiO2 heterojunction. Structural characterization
and experimental results indicated that the exceptional photocatalytic degradation efficiency of BTA
was mainly attributed to the formation of a heterojunction between BiOBr and TiO2, as well as
the presence of additional active adsorption sites provided by attapulgite. Free radical scavenging
experiments and EPR results confirmed that the photogenerated holes were the predominant active
species in photodegrading SEX throughout the entire experiment. The LC-MS results provided
insight into potential degradation pathways of SEX. This research demonstrates that BTA, as a novel
triple composite material, achieves rapid and complete degradation to 20 mg/L SEX within 20 min.
This work presents a novel approach to synthesize mineral-based photocatalysts, which have broad
prospects for application in flotation wastewater treatment.

Keywords: BiOBr-TiO2-attapulgite; ternary composites; photocatalysis; visible light; xanthates

1. Introduction

With the advancement of mining operations, flotation has become an indispensable
process in ore dressing, resulting in the production of a significant volume of flotation
wastewater that has the potential to contaminate the natural environment [1,2]. Xanthate,
due to its cost-effectiveness and outstanding flotation capabilities, has emerged as a crucial
collector for sulfide minerals and gold ores [3]. Although a substantial amount of xanthate
is consumed during the flotation process, there is still a considerable presence of xanthate
in the wastewater, ranging from 5 to 40 mg/L [4]. Such a high concentration of xanthate
can result in the rapid mortality of nearly all fish in a few days, leading to significant
environmental issues [5,6]. It also threatens the local economy and the food security of
the region. Furthermore, Xanthate poses significant dangers to human livers, blood, and
nervous systems [7]. Especially, the decomposition of xanthate will generate CS2 gas, which
irreversibly damages the respiratory system [8]. In order to highly reduce the hazards
released by xanthate-containing wastewater, some proactive and effective measures should
be implemented.

Photocatalysis, as one of the advanced oxidation processes (AOPs), is popular owing
to its high efficiency, environmental friendliness, and sustainability [9]. Up to now, the
extensive research of photocatalytic degradation technology for the treatment of xanthate-
containing wastewater has been carried out to mitigate pollution [10]. The utilization of
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light energy for catalyzing the degradation of xanthate-containing wastewater enables the
achievement of water management and purification objectives [10,11].

Titanium dioxide (TiO2) is a commonly employed semiconductor material in photo-
catalysis, renowned for its responsiveness to ultraviolet light, stability, cost-effectiveness,
and environmental friendliness [12]. Nonetheless, the photocatalytic performance of sin-
gle TiO2 (T) faces some limitations, such as agglomeration by high surface energy, wide
bandgap, low response to visible light, and a rapid recombination of e−/h+ pairs [13].
To address these challenges, the effective strategies involve the use of appropriate car-
riers and the creation of heterostructures with other semiconductors. These strategies
aid in mitigating TiO2 agglomeration, suppressing the recombination of electron–hole
pairs, improving the efficiency of visible light utilization, and ultimately enhancing the
photocatalytic efficiency under visible light [14,15].

Coupling TiO2 on the surface of a carrier can effectively improve the dispersibility of
TiO2 [16,17]. So far, significant attention has been given to employing clay minerals as a
catalytic substrate to reduce production costs and to disperse catalysts [18]. Attapulgite (A)
is a layered silicate mineral with a nanoporous structure, which can effectively inhibit parti-
cle aggregation and increase active sites [17,19]. Due to its chemical inertness, resistance
to deterioration, and cost-effectiveness for large-scale commercialization, attapulgite is
widely used in various industrial, catalytic, and environmental applications [20]. Therefore,
attapulgite-supported TiO2 can form composite catalysts with a large number of active
sites, raising the contact frequency between the catalyst and pollutants, and thus enhancing
photocatalytic activity [20–22].

To address the wide bandgap of TiO2 (~3.0 eV), the formation of a heterojunction can
further effectively reduce the bandgap width, prevent the recombination of electron–hole
pairs, and thus generate more active species for enhancing the photocatalytic activity [23].
Due to its narrower bandgap compared with TiO2, BiOBr (B) can absorb visible light and
enhance the visible light activity of photocatalyst. As a typical two-dimensional semi-
conductor material, BiOBr has a tetragonal matlockite structure comprising alternating
layers of [Bi2O2]2+ and Br−, exhibiting excellent crystallinity, forming highly crystalline
nanosheets that maintain their integrity throughout the photocatalytic process [24,25]. The
electric field generated within the structure facilitates the separation of photo-generated
charge carriers, consequently enhancing the photocatalytic activity. Additionally, it has
been observed that tight coupling heterojunctions through chemical bonding can establish
efficient charge transfer pathways, thus greatly reducing photo-induced carrier recombina-
tion [26]. The construction of a BiOBr/TiO2 (BT) type II heterojunction, with TiO2 acting as
the primary catalyst and BiOBr as the co-catalyst, can prolong the transfer distance and
separation time of e−/h+ pairs, enable the utilization of the visible light spectrum, and
considerably enhance the efficiency of visible light utilization [27–29].

The BiOBr-TiO2-attapulgite (BTA) composites were synthesized through a hydrother-
mal and water-bath method in this study. Xanthates were selected as the target pollutants
because they are highly toxic and their release into ecosystems poses a severe threat to
human health and significant environmental problems. The application parameters of the
photocatalyst were investigated to determine the optimal conditions for xanthate degrada-
tion. The characterization results and experimental data were used to propose potential
photocatalytic degradation pathways and mechanisms.

2. Results and Discussion
2.1. Characterization of Materials
2.1.1. Phase Analysis

X-ray diffraction (XRD) analysis can determine the crystalline structure of materials
by identifying their corresponding diffraction peaks. In Figure 1a, it can be seen that the
diffraction peaks located at 25.28◦, 36.95◦, and 48.05◦ are well matched with the crystal
planes (101), (103), and (200) of anatase TiO2 (JCPDS No. 21-1272) [30]. The XRD patterns
also exhibit peaks at 10.90◦, 21.93◦, and 31.69◦, which correspond to the crystal planes (001),
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(002), and (102) of BiOBr (JCPDS No. 09-0393) [31]. Moreover, the presence of attapulgite
(JCPDS No. 00-021-0550) is confirmed by the peaks at 13.90◦, 19.85◦, 26.7◦, and 35.32◦,
which can be attributed to its crystal planes [32]. Furthermore, the distinct peaks observed
at 10.90◦ and 31.69◦ in the BT composites (Figure 1b) are in good agreement with the crystal
planes of BiOBr, while the remaining diffraction peaks are consistent with the crystal planes
of anatase TiO2. Compared to BT, the diffraction peaks of BTA remain largely unchanged,
with weak peaks observed at 26.7◦ and 35.32◦. This suggests that the attapulgite has no
significant impact on the interaction between BiOBr and TiO2. Moreover, the presence of
these two additional weak peaks indicates the successful loading of BiOBr and TiO2 onto
attapulgite.

Catalysts 2023, 13, x FOR PEER REVIEW 3 of 18 
 

 

also exhibit peaks at 10.90°, 21.93°, and 31.69°, which correspond to the crystal planes 
(001), (002), and (102) of BiOBr (JCPDS No. 09-0393) [31]. Moreover, the presence of atta-
pulgite (JCPDS No. 00-021-0550) is confirmed by the peaks at 13.90°, 19.85°, 26.7°, and 
35.32°, which can be attributed to its crystal planes [32]. Furthermore, the distinct peaks 
observed at 10.90° and 31.69° in the BT composites (Figure 1b) are in good agreement with 
the crystal planes of BiOBr, while the remaining diffraction peaks are consistent with the 
crystal planes of anatase TiO2. Compared to BT, the diffraction peaks of BTA remain 
largely unchanged, with weak peaks observed at 26.7° and 35.32°. This suggests that the 
attapulgite has no significant impact on the interaction between BiOBr and TiO2. Moreo-
ver, the presence of these two additional weak peaks indicates the successful loading of 
BiOBr and TiO2 onto attapulgite. 

 
Figure 1. XRD patterns of (a) B, T, A and (b) BT, BTA samples. 

2.1.2. Morphology Analysis 
The morphology, microstructure and element distribution of samples are observed 

through scanning electron microscopy (SEM), transmission electron microscopy (TEM), 
and energy dispersive spectrum (EDS). Figure 2a,b show severe aggregation of nanostruc-
tured TiO2 and BiOBr particles, which can be attributed to their high surface energy. Indi-
vidual TiO2 particles are approximately 20~25 nm in size (Figure 2a). BiOBr is a repre-
sentative two-dimensional material with dimensions ranging from approximately 200 to 
400 nm in length and 6 nm in thickness (Figure 2b). The attapulgite presents a distinctive 
layered chain with fibrous aggregation morphology, facilitating the assembly of TiO2 and 
BiOBr (Figure 2c). In Figure 2d, BiOBr firmly adheres to the surface of TiO2 to form BT 
binary composites, which can promote electron transfer through an increased contact area 
and thus improve catalytic reaction efficiency. Figure 2e demonstrates that the dispersion 
of TiO2 and BiOBr in the BTA ternary heterogeneous system is notably improved when 
attapulgite is employed as a carrier. Combined with BET results (Table S1), the incorpora-
tion of attapulgite markedly enhances the specific surface area of BT composites, exceed-
ing the dispersion achieved by BT binary materials. BTA effectively weakens the aggrega-
tion of BiOBr and TiO2, resulting in the formation of ternary composites characterized by 
intimate contact and prominently exposed edges. This expands the contact area of photo-
catalysts with the target degradation substance and thus greatly enhances photocatalytic 
activity. Figure 2f presents a TEM image of BTA, exhibiting a close combination of atta-
pulgite, TiO2, and BiOBr, which is in good agreement with the SEM image. The SAED 
pattern (Figure 2g) displays the concentric rings of BTA, and this can be indexed to the 
planes of anatase TiO2 [3,33]. In the HRTEM image (Figure 2h), the lattice fringe spacings 
of BiOBr and TiO2 are determined to be approximately 0.19 and 0.35 nm, corresponding 
to the (201) and (101) crystal planes of BiOBr and anatase TiO2, respectively [3,34]. An EDS 
analysis (Figure S1) identifies the primary elements in BTA as Bi, O, Br, Ti, and Si. The 
elemental mappings from Figure 2i–m demonstrate the uniform distribution of all ele-
ments within the composites. The results indicate a uniform coexistence and distribution 

Figure 1. XRD patterns of (a) B, T, A and (b) BT, BTA samples.

2.1.2. Morphology Analysis

The morphology, microstructure and element distribution of samples are observed
through scanning electron microscopy (SEM), transmission electron microscopy (TEM), and
energy dispersive spectrum (EDS). Figure 2a,b show severe aggregation of nanostructured
TiO2 and BiOBr particles, which can be attributed to their high surface energy. Individual
TiO2 particles are approximately 20~25 nm in size (Figure 2a). BiOBr is a representative two-
dimensional material with dimensions ranging from approximately 200 to 400 nm in length
and 6 nm in thickness (Figure 2b). The attapulgite presents a distinctive layered chain with
fibrous aggregation morphology, facilitating the assembly of TiO2 and BiOBr (Figure 2c). In
Figure 2d, BiOBr firmly adheres to the surface of TiO2 to form BT binary composites, which
can promote electron transfer through an increased contact area and thus improve catalytic
reaction efficiency. Figure 2e demonstrates that the dispersion of TiO2 and BiOBr in the
BTA ternary heterogeneous system is notably improved when attapulgite is employed as a
carrier. Combined with BET results (Table S1), the incorporation of attapulgite markedly
enhances the specific surface area of BT composites, exceeding the dispersion achieved by
BT binary materials. BTA effectively weakens the aggregation of BiOBr and TiO2, resulting
in the formation of ternary composites characterized by intimate contact and prominently
exposed edges. This expands the contact area of photocatalysts with the target degradation
substance and thus greatly enhances photocatalytic activity. Figure 2f presents a TEM
image of BTA, exhibiting a close combination of attapulgite, TiO2, and BiOBr, which is in
good agreement with the SEM image. The SAED pattern (Figure 2g) displays the concentric
rings of BTA, and this can be indexed to the planes of anatase TiO2 [3,33]. In the HRTEM
image (Figure 2h), the lattice fringe spacings of BiOBr and TiO2 are determined to be
approximately 0.19 and 0.35 nm, corresponding to the (201) and (101) crystal planes of
BiOBr and anatase TiO2, respectively [3,34]. An EDS analysis (Figure S1) identifies the
primary elements in BTA as Bi, O, Br, Ti, and Si. The elemental mappings from Figure 2i–m
demonstrate the uniform distribution of all elements within the composites. The results
indicate a uniform coexistence and distribution of BiOBr, anatase TiO2, and attapulgite.
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The analysis further verifies the even distribution of anatase TiO2 nanoparticles and BiOBr
nanosheets on the surface of attapulgite.
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2.1.3. Surface Chemical State Analysis

Figure 3 illustrates the elemental composition and binding states of BTA ternary
composites using an XPS analysis.
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Based on the complete spectrum displayed in Figure 3a, the BTA ternary composites
predominantly consist of five elements, namely Bi, Br, O, Ti, and Si. This shows that
the main components of BTA are BiOBr, TiO2, and attapulgite. The peaks positioned
at 159.11 and 163.42 eV in Figure 3b correspond to Bi 4f7/2 and Bi 4f5/2, respectively,
indicating the presence of characteristic peaks associated with Bi3+ in BiOBr [35]. It is
worth noting that two weak peaks appear at Bi 4f, approximately 157.5 and 62.8 eV, which
may be due to the formation of a small amount of Bi24O31Br10 during high-temperature
calcination [36]. In Figure 3c, the XPS spectra of Ti 2p exhibit peaks at 458.84 and 464.64 eV,
which correspond to the normal state of Ti 2p3/2 and Ti 2p1/2 of Ti4+ in TiO2 [2]. The XPS
spectrum of O 1s is presented in Figure 3d, revealing the presence of O in four distinct
binding modes. The four peaks at 528.98, 530.06, 530.98, and 532.47 eV represent [Bi2O2]2+,
Ti-O-Ti, surface -OH groups, and Si-O-Si, respectively [3]. In Figure 3e, two peaks are
observed at 68.21 and 69.27 eV, corresponding to Br 3d5/2 and Br 3d3/2, respectively,
suggesting the presence of Br−1 in BiOBr [37]. The Si 2p spectrum shown in Figure 3f
is observed at 103.16 eV, indicating the presence of SiO2 in attapulgite [38]. The XPS
results provide additional evidence for the strong incorporation of BiOBr and TiO2 into the
attapulgite carrier, indicating a more comprehensive integration rather than mere mixing.

2.1.4. TG-DSC Analysis

Thermogravimetric and differential scanning calorimetry (TG-DSC) curves in Figure 4
are used to describe the mass change in BTA composites with increasing temperature [39,40].
Evaporation, phase transition, and chemical reactions are the primary factors contributing
to the decrease in sample mass. Below 270.3 ◦C, the 3.94% decrease in mass of BTA
composites is primarily attributed to the loss of water adsorbed on its surface. With a
further increase in temperature up to 477.6 ◦C, there is an approximate 1.29% in mass
loss, resulting from the evaporation of structural water in attapulgite. The increase in
progressive temperature leads to an approximately 11.27% loss in mass with an exothermic
process, signifying the formation of new substances. Herein, this process is likely to involve
the decomposition of BiOBr under high-temperature conditions, yielding Bi24O31Br10 and
Br2 gas, resulting in heat release and mass loss [41]. The analysis of TG-DSC curves
highlights the significance of selecting an optimal calcination temperature to achieve a
good photocatalytic performance in BTA ternary materials.
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2.2. Photocatalytic Activity

The synthesis conditions have important influence on the performance of the photocat-
alyst. In our previous study, we optimized the ratio of BiOBr and TiO2 [42]. Additionally,
the comparison of photocatalytic performance of various doses of attapulgite with BT
significantly influences the photocatalyst, as illustrated in Figure 5a,b. As the quantity of
attapulgite increased gradually, the degradation efficiencies of BTA-1, BTA-2, and BTA-3
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reached 84.1%, 94.8%, and 51.31%, respectively, after a 20 min photocatalytic degradation
reaction. The performance of the photocatalyst initially increases and then decreases, with
BTA-2 achieving the maximum catalytic efficiency. Furthermore, in the comparison of
the first-order kinetic reaction constant, BTA-2 is higher than both BTA-1 and BTA-3, at
0.11699 min−1. Therefore, BTA-2 is utilized as the optimal condition for the application test.
For simplicity, BTA will represent BTA-2 in the rest of the section.
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Figure 5c,d compare the degradation efficiency curves and kinetic curves of different
samples of TiO2, BiOBr, BT, and BTA to SEX, aiming to demonstrate the robust photocat-
alytic performance of BTA. The experiment employed a visible light intensity of 400 W, an
SEX initial concentration of 20 mg/L, and a catalyst dosage of 0.2 g/L. Based on Figure 5c,
the adsorption of SEX by photocatalysts reaches dynamic equilibrium within 30 min of the
dark reaction. Compared to the other samples, BTA ternary composites exhibit significantly
enhanced adsorption performance to SEX. This improvement can be ascribed to the addi-
tion of attapulgite weakening the aggregation of TiO2 and BiOBr, significantly increasing
the availability of active sites for SEX attachment. In contrast, TiO2 demonstrates negligible
photodegradation efficiency to SEX under visible light, indicating limited utilization of
visible light and capability to degrade SEX, while BiOBr and BT exhibit more pronounced
degradation performance to SEX and BT demonstrates higher degradation efficiency com-
pared to BiOBr. This observation suggests that the formation of heterogeneous structures
between TiO2 and BiOBr can effectively improve the overall photocatalytic performance.
BTA ternary composites exhibit a remarkable enhancement in photocatalytic degradation
efficiency, with a first-order reaction rate constant of 0.11699 min−1, which is approximately
3.1 times higher than that of BT. Such a finding suggests that the generation of more active
sites on the surface of BTA composites promotes not only increased adsorption of SEX
molecules but also rapid progress in the photocatalytic degradation reaction.

To effectively serve future industrial applications, it is imperative to carefully select
suitable conditions and parameters for photocatalytic applications. The applicability of
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BTA composites was thoroughly evaluated by examining the dosage of photocatalysts,
concentration of xanthate, applicable pH range of wastewater, feasibility of degradation of
various xanthates, and stability of photocatalysts.

Figure 6 shows that there was no significant change in the adsorption of SEX by any
of the samples at 15 and 30 min of dark adsorption, suggesting that all samples achieved
adsorption equilibrium within 30 min. Figure 6a,b illustrate the degradation efficiency
curves and kinetic curves of BTA composites with different dosages to 20 mg/L SEX. In
the experiment, a 50 mL solution of SEX was served as the reaction medium. The dosage
of BTA composites was the only variable, systematically set at 0.10, 0.15, 0.20, 0.25, and
0.30 g/L. With the increase in photocatalyst dosage, the adsorption performance gradually
increases and reaches adsorption–desorption dynamic equilibrium within 30 min. Over the
course of the photocatalytic stage, the degradation effect of SEX intensifies with time, while
the photocatalytic rate initially increases and then subsequently decreases with increasing
photocatalyst dosage. As the dosage of the photocatalyst is raised from 0.10 to 0.20 g/L,
the degradation rate of SEX increases due to the augmented number of catalytic sites in the
ternary materials. Nonetheless, when the photocatalyst dosage further increases from 0.20
to 0.30 g/L, the catalytic rate begins to decelerate, possibly as a result of the excessive BTA
photocatalyst obstructing visible light and diminishing its intensity. Consequently, for the
treatment of xanthate-containing wastewater with a concentration of 20 mg/L, the BTA
dosage ranging from 0.15 to 0.30 g/L can attain a photocatalytic degradation efficiency
exceeding 90%. Obviously, the BTA dosage of 0.20 g/L exhibits the highest reaction rate
in the degradation of SEX. Hence, such a photocatalyst dosage is selected as the optimal
condition for subsequent optimization.
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The concentration of xanthate in discharged wastewater is typically around 10–30 mg/L [4].
Therefore, in this section, simulative mineral wastewater with a xanthate concentration of
10–30 mg/L was used for the investigation, and the corresponding results of the photocat-
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alytic degradation of BTA composites are presented in Figure 6c,d. As the SEX concentration
increases from 10 to 25 mg/L, the photocatalyst exhibits a decreasing trend in adsorption
performance and the first-order reaction kinetic constant representing the photocatalytic
performance. However, it is worth noting that when the SEX concentration increases to
30 mg/L, there is a slight enhancement observed in the adsorption performance of BTA
composites. The main reason for this phenomenon is that, under the condition of keeping
the active adsorption sites of BTA unchanged, the excess of SEX molecules enhances the
likelihood of attaching to the surface of BTA composites. Within the SEX concentration
ranging from 10 to 30 mg/L, all of the degradation efficiencies are around 90%, indicat-
ing that 0.20 g/L of BTA demonstrates outstanding degradation performance in practical
applications. With increasing SEX concentration, the rate of photocatalytic degradation
initially increases and subsequently decreases. The fastest photocatalytic degradation rate,
achieving a degradation efficiency of 94.8%, is observed at a SEX concentration of 20 mg/L.
Taking into account the subsequent experimental conditions, 20 mg/L of xanthate is chosen
as the optimal condition to achieve the best degradation rate of SEX.

It is widely acknowledged that pH plays a crucial role in determining the surface
charge of photocatalysts and the composition of pollutants, thereby exerting a profound
influence on their photodegradation efficiency. Figure 7 demonstrates the degradation
performance of 20 mg/L SEX under different pH conditions with and without 0.20 g/L
of BTA composites. With the pH changes from 5 to 11, minimal SEX self-decomposition
occurs in the wastewater system without photocatalysts. However, when BTA composites
are introduced, an impressive degradation efficiency of approximately 90% is achieved
within a narrower pH ranging from 5 to 9 (around 7.45 without any pH adjustment). Never-
theless, it should be noted that once the pH value exceeds 11, the catalytic activity towards
wastewater degradation by this photocatalyst diminishes significantly. This phenomenon
could potentially arise from either a decline in active oxygen groups generated by BTA
composites under alkaline conditions. Consequently, in practical wastewater treatment
processes, BTA composites could rapidly and effectively degrade SEX molecules within a
pH range of 5 to 9.
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Due to the widespread mixed usage of different types of xanthates in mining plants,
Figure 8 illustrates the degradation efficiencies of various xanthates with a concentration of
20 mg/L under visible light conditions using 0.20 g/L of BTA composites. The adsorption
capacity of BTA composites for different types of xanthates is correlated with the length
of their side chains. This phenomenon can be attributed to the fact that longer-chain
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xanthate molecules exhibit a stronger adhesion characteristic because of their relatively
complex spatial structure, thus increasing their likelihood of adhering to the surface sites
of BTA composites. Twenty minutes later, the degradation rates of SEX, SBX, SIPX, and
SIAX reach 94.8%, 95.2%, 89.4%, and 97.3%, respectively. Therefore, it can be inferred that
BTA composites universally degrade xanthates, confirming the compatibility of BTA with
complex xanthate compositions in mining wastewater.
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In practical applications, the stability of photocatalysts is of great importance. Figure 9
demonstrates the microstructure changes in the BTA ternary photocatalyst by presenting
XRD patterns and SEM images before and after the photocatalytic degradation process,
along with an assessment of its long-term stability and reusability. From the XRD patterns
shown in Figure 9a, it is found that BTA composites exhibit minimal changes before and
after the reaction, indicating that the catalytic process does not disrupt the original lattice
parameters. The SEM images in Figure 9b,c clearly illustrate that the post-reaction BTA
composites maintain a distinct outline, in which TiO2 nanoparticles are visibly presented,
while BiOBr nanosheets remain a supporter on TiO2. Consequently, the morphology of
attapulgite is not revealed due to encapsulation by TiO2. This implies that the morphology
of BTA composites does not undergo significant alterations. In the long-term stability
test, as shown in Figure 9d, the freshly prepared composites exhibit a photocatalytic
degradation efficiency of 94.9%. Over a 30-day period, the degradation efficiency shows no
significant change and remains above 90%, suggesting that BTA composites are suitable
for long-term storage and practical applications. Additionally, Figure 9e illustrates the
reusability of the BTA photocatalyst. A single photocatalytic process involves 30 min of
dark adsorption followed by 20 min of photocatalytic reaction. As the number of cycles
increases, the adsorption of SEX molecules by BTA composites decreases. A possible
reason is that a small quantity of SEX molecules and intermediate products persist on the
surface of the BTA photocatalyst after the completion of the reaction, thus reducing the
adsorption sites of photocatalyst. After three cycles, the degradation rate of xanthate by BTA
composites still exceeds 90%, showing that an excellent degradation efficiency is maintained.
This observation highlights the ability of the multi-photocatalytic process to maintain the
structure and heterojunction of BTA without disruption. Overall, it provides a valuable
guideline for the long-term stability and efficient recycling ability of BTA photocatalysts in
practical applications.
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To demonstrate the superior performance of BTA, Table 1 provides a comparison
with previous works. BTA accomplishes complete degradation of xanthate within 20 min
using an Xe lamp, while the degradation rate of other catalysts exceeds 100 min using
the same light sources. Compared to catalyst utilizing a higher-energy mercury lamp,
BTA achieves a quicker and more efficient complete degradation of SEX, thus confirming
efficient photocatalytic degradation of BTA.

Table 1. Comparison of the degradation efficiency of previously reported photocatalysts used for
photocatalytic degradation of xanthates.

Photocatalyst Light Sources Pollutants Dosage (mg/L) Degradation
Rate

Irradiation
Time (min) Ref.

TiO2/clinoptilolite Mercury lamp SIPX 20 Over 90% 30 [6]
BiOBr/g-C3N4 Xe lamp SEX 30 96.1% 120 [8]

Ag/TiO2/clinoptilolite Xe lamp SIPX 20 Approx. 60% 180 [11]
BiOCl/TiO2/clinoptilolite Xe lamp SIPX 20 91.2% 180 [3]

BTA Xe lamp SEX 20 94.8% 40 This work

2.3. Possible Degradation Mechanism

In order to further explore the possible photodegradation pathway of SEX molecules,
liquid chromatography–mass spectrometry (LC-MS) was used to analyze the content
of simulated wastewater after photocatalysis for 5 min, and the results are shown in
Figure S2. Based on the value of m/z, four possible intermediates are assumed: CH3O2S−2
(m/z = 112.1), C2H5O2S−2 (m/z = 126.2), C2H5O2S−2 (m/z = 141.1), and C4H5OS−4 (m/z = 198.1
and 199.1). The specific chemical structures of the intermediates are presented in Table S2.
By analyzing real-time absorbance changes, conducting free radical activity tests, and
examining the LC-MS results, the potential degradation pathways of SEX are provided
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in Figure 10. The BTA photocatalyst generates a significant number of photogenerated
holes, thereby leading to the strong oxidation of SEX molecules to CH3O2S−2 , C2H5O2S−2 ,
C2H5O2S−2 , and C4H5OS−4 , etc. This indicates that SEX and the intermediate products are
eventually decomposed into smaller inorganic molecules, including CO2, H2O, and SO4

2−,
through continuous oxidation by free radicals.
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To investigate the synergistic degradation effect of xanthate by different free radicals,
a free radical trapping experiment was conducted. AgNO3 solution (1 mL, 0.02 mol/L),
p-benzoquinone (BQ, 5 mg), isopropyl alcohol (IPA, 1 mL) and EDTA-2Na (5 mg) are
selected to trap e−, ·OH, ·O−

2 , and h+ radicals, respectively. As shown in Figure 11a,
the addition of EDTA-2Na leads to a significant decrease in the degradation efficiency
of SEX, reducing it to 7.9%. BQ addition also exhibits a certain effect with a reduction
in degradation efficiency by 19.1%. However, the presence of IPA and AgNO3 solution
minimally impact the catalytic efficiency. These experiments highlight the dominant role
of h+ radicals as active species in the oxidative decomposition of xanthate molecules. In
order to elucidate the predominant role of photogenerated holes in the reaction process and
the mechanism of electron–hole pair separation, TEMPO is employed for the qualitative
detection of h+ production, as shown in Figure 11b. TEMPO exhibits a 1:1:1 signal in
analysis and possesses stable chemical properties. The TEMPO molecules combine with the
holes to form TEMPOH, which weakens the EPR response, leading to an attenuation of the
EPR peak. Thus, the reduction in EPR signal intensity is an indicator for hole generation.
Under dark conditions, a more pronounced characteristic peak corresponding to TEMPO-
h+ is observed, whereas under visible light irradiation, a diminished characteristic signal
peak indicates participation and consumption of photogenerated holes. This observation
confirms the crucial involvement of photogenerated holes in the overall photocatalytic
reaction.

During the experiment, real-time absorption spectra of the simulated wastewater
containing SEX were measured at various time intervals in order to demonstrate the
degradation process of SEX by BTA composites (Figure 11c). Initially, two absorption peaks
are clearly observed at 226 and 301 nm, respectively, corresponding to the absorption
peak of SEX. After a 20 min period of photocatalytic degradation, the intensity of both
peaks decreases, indicating the gradual decomposition and disappearance of SEX during
the reaction. As the reaction progresses further, no new absorption peak emerges in the
simulated wastewater from mineral processing, and the original peak intensity diminishes.
This suggests that both SEX and its intermediate products are broken down into smaller
molecules over time.

The absorption peak strength of PL was utilized to characterize the recombination
rate of electron–hole pairs. As depicted in Figure 11d, the absorption peak intensity of PL
for BTA composites exhibits a tendency to decrease in comparison to BT. This observation
suggests that the presence of attapulgite in conjunction with BT leads to a further reduc-
tion in the recombination rate of electron–hole pairs. Consequently, a larger number of
photogenerated electrons and holes are available to engage in the degradation reaction of
xanthate, consequently enhancing the rate of photocatalytic degradation.
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The photochemical capacity and bandgap energy (Eg) of the as-prepared samples
were determined using UV-vis DRS. As shown in Figure 11e,f, it reveals that TiO2 and
BiOBr exhibit absorption edges at 396 and 435 nm, respectively. When the photocatalyst
is combined with attapulgite carrier, the optical absorption band edge of BTA composites
undergoes a redshift towards longer wavelengths, indicating that the obtained ternary
materials significantly enhance their response to visible light, thereby improving the pho-
tocatalytic activity. The bandgap widths of different materials were calculated using the
Tauc-plot method, as shown in Figure 11f. The bandgap widths for T, B, BT, and BTA are
determined to be 2.98, 2.69, 2.65, and 2.34 eV, respectively. BT has a narrower bandgap
width compared to TiO2 and BiOBr due to the generation of a heterojunction. Furthermore,
upon loading BT onto attapulgite carrier, BTA exhibits a further decrease in its bandgap
to 2.34 eV, implying that the formed composites promote electron–hole pair separation,
leading to an increased generation of radical and accelerated degradation reaction rates
under visible light irradiation conditions. The valence band potentials (EVB) of TiO2 and
BiOBr are 2.69 and 3.12 eV, respectively [3,43]. Combined with the bandgap width of the
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material and the formula of ECB = EVB − Eg, the conduction band potentials (ECB) for TiO2
and BiOBr can be estimated to be −0.29 and 0.43 eV, respectively.

Figure 12 illustrates that the smallest radius of the Nyquist circle is from the BTA sam-
ple, suggesting that the BTA ternary composite exhibits reduced charge transfer resistance
at the interface, consequently accelerating the photogenerated carrier transfer rate and
significantly enhancing the photocatalytic efficiency of BTA.
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Based on the microstructural characterization and the photodegradation performance
efficiency of the photocatalyst, the corresponding improvement in BTA’s ability to harness
visible light can be attributed to the heterojunction formation and dispersion of the atta-
pulgite carrier. The enhancement of photocatalytic performance can be attributed to three
main reasons: (1) Attapulgite, acting as a carrier, effectively alleviates the agglomeration of
TiO2 and BiOBr and reduces grain size. (2) Attapulgite provides more active adsorption
sites and photocatalytic reaction sites for BTA composites, thereby improving the adsorp-
tion and catalytic performance of SEX molecules on photocatalysts. (3) The construction of
a “type II” heterojunction increases the separation time of photogenerated electron–hole
pairs by extending the transport distance of photogenerated carriers, thereby enhancing
the photocatalytic reaction activity.

Figure 13 illustrates the degradation mechanism of SEX molecules on the surface of
the BTA ternary photocatalyst. After the introduction of attapulgite, SEX is more likely
to attach to the reactive active site of BTA composites. Under visible light irradiation, the
photogenerated electrons of the TiO2 conduction band (CB) migrate to the CB of BiOBr due
to the lower reduction point of TiO2. Simultaneously, the photogenerated holes produced by
the valence band (VB) in BiOBr transfer to the VB of TiO2. The migration of photogenerated
carriers effectively prevents the recombination of electron–hole pairs, leading to prolonged
contact time with SEX molecules and improved photocatalytic efficiency. SEX molecules
are initially decomposed into CH3O2S−2 , C2H5O2S−2 , C2H5O2S−2 and C4H5OS−4 under the
action of ROS groups dominated by h+ and supplemented by e−, ·OH, and ·O−

2 . Over time,
these intermediate products further are decomposed into smaller compounds until they
are converted into CO2, H2O, SO4

2−, etc.
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3. Materials and Methods
3.1. Materials and Chemicals

Attapulgite was purchased from Changzhou Dingbang mineral products technology
Co., Ltd. (Changzhou, China) Sulfuric acid (H2SO4, Analytical Reagent, AR), bismuth
nitrate pentahydrate (Bi(NO3)3·5H2O, AR), hydrogen peroxide (H2O2, 30%), ammonium
hydroxide (NH3·H2O, 25–28%), and potassium bromide (KBr, AR) were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) In addition, Shanghai Macklin
Biochemical Co., Ltd. (Shanghai, China) provided the ammonium hexafluorotitanate
((NH4)2TiF6, AR). Wuhan Huaxiang Kejie Biotechnology Co., Ltd. (Wuhan, China) and
Tieling Flotation Reagents Co., Ltd. (Tieling, China) provided the sodium ethyl xanthate
(SEX), sodium butyl xanthate (SBX), sodium isoamyl xanthate (SIAX), and sodium isopropyl
xanthate (SIPX). The purity of all xanthates was higher than 85%

3.2. Microstructure Characterization

The crystal phase structure of the samples was observed with X-ray diffraction (XRD,
XRD-7000). The morphology of the samples was confirmed by using a scanning electron
microscope (SEM, Hitachi S-4800, Tokyo, Japan) and a transmission electron microscope
(TEM, JEM-F200, Tokyo, Japan). The surface area of the samples was investigated using
the Brunauer–Emmett–Teller method (BET, Quadrasorb SI, Fremont, CA, USA). The ther-
mogravimetric and differential scanning calorimetry (TG-DSC) analysis was investigated
by using an analyzer (STA-8000, Waltham, MA, USA). An X-ray photoelectron spectro-
scope (XPS, NexsaG2, thermo scientific, Waltham, MA, USA) was used to investigate
the compositions and valence state of the elements of the obtained composites. Liquid
chromatography-mass spectrometry (LC-MS, Agilent 1290 Infinity & Agilent G6125B, Santa
Clara, CA, USA) was applied to measure the mass/charge ratio (m/z) to determine the
intermediate products.

3.3. Preparation of BiOBr-TiO2-Attapulgite Composites

This study aimed to synthesize BTA composites using hydrothermal and water-bath
methods. Firstly, a 5 wt% H2SO4 solution was employed to activate the attapulgite and
eliminate impurities. And then, TiO2-attapulgite (TA) was synthesized through a hydrother-
mal method, where a mixture of 50 mL of deionized water, 1.5 g of (NH4)2TiF6, 4.8 mL
of H2O2, and some acid-treated attapulgite was stirred at room temperature for 30 min
after adjusting the pH to 8 with an ammonia solution. The resulting precursor solution
was treated with a hydrothermal reaction at 160 ◦C for 12 h. Subsequently, the obtained
powders underwent repeated washing and drying before being sintered at 400 ◦C to obtain
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TA samples. The samples of acid-treated attapulgite, weighing 0.01 g, 0.1 g, and 1 g, are
denoted as TA-1, TA-2, and TA-3, respectively.

Next, BiOBr-TiO2-attapulgite (BTA) was synthesized using the water-bath method. A
mixture of TiO2-attapulgite and Bi(NO3)3·5H2O was stirred and ultrasonicated briefly, and
the molar ratio of Ti: Bi was 1:0.05. Then, a KBr solution was dropwise added to maintain a
Br:Bi molar ratio of 1:1. After allowing the mixture to react for 2 h at 50 ◦C, it was washed,
dried, and finally subjected to heat treatment at 300 ◦C to obtain the BiOBr-TiO2-attapulgite
composites. The ternary composites BTA-1, BTA-2 (BTA), and BTA-3 are defined based on
the varying inputs of TA-1, TA-2, and TA-3. Similar methods were utilized to synthesize
the B, T, and BT samples.

3.4. Measurement of Photocatalytic Activity

The photocatalytic instrument used in this study was a PL-03 infrastructure provided
by Beijing Precise Technology Co., Ltd. (Beijing, China) It consists of a circulating cooling
system, eight 50 mL quartz tubes, a 400 W xenon lamp, and optical filters. To ensure
that the catalytic reaction was not affected by thermal catalysis, the cooling water system
maintained a reaction temperature below 20 ◦C. The xenon lamp served as the visible light
source, while the optical filter was used to eliminate ultraviolet light, ensuring that only
visible light was emitted. The quartz tubes were used to load different concentrations of the
xanthate solution and photocatalysts. Prior to the initiation of the photocatalytic reaction,
a 30 min period of dark adsorption was conducted to achieve an adsorption–desorption
dynamic equilibrium between the xanthate solution and the photocatalyst using agitation
and magnetic stirring. During the dark adsorption and photocatalytic reaction stages,
5 mL of solution was rapidly sampled, and the photocatalyst was filtered to obtain a clear
solution using a filter head. Subsequently, the clear solution was analyzed for characteristic
peaks using a UV-visible spectrophotometer. The maximum peak of the SEX solution was
observed at 301 nm. The relationship between absorbance (A) and mass concentration (C)
is shown in Figure S3. As can be observed from the figure, the equation of the standard
curve is A = 0.0103 + 0.10032C, R2 = 0.9988. Therefore, based on the measured absorbance
values, the residual concentration of SEX can be determined. The degradation rate (D) can
be calculated using the Lambert–Beer law as follows:

D =
C0 − Ct

C0
× 100% (1)

First-order kinetics can be employed to determine the degradation rate of SEX, which
can be calculated utilizing the following formula:

ln
(

C0

Ct

)
= kt (2)

Here, C0 and Ct are the concentrations of SEX solutions at reaction times of 0 and t,
respectively. k is the degradation rate constant.

4. Conclusions

The BTA ternary composite photocatalyst was synthesized using a two-step method
involving hydrothermal and water-bath routes. Within BTA composites, TiO2 and BiOBr
were uniformly grown, distributed, and coated onto the surface of acid-treated attapulgite,
displaying excellent dispersibility and binding properties. The synthesized BTA compos-
ites exhibited highly efficient degradation of SEX molecules under visible light conditions
within 20 min. The remarkable degradation efficiency of BTA composites could be at-
tributed to the abundant active adsorption and photocatalytic reaction sites provided by
attapulgite, as well as the formation of heterojunctions between BiOBr and TiO2. Through
the mechanism of primarily photogenerated holes, the SEX molecules could be converted
into CO2, H2O, and SO4

2− via possible degradation pathways. BTA composites offer the
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advantages of a low production cost, the ability to degrade various xanthates, and ex-
cellent recycling performance, thereby demonstrating its potential for treating flotation
wastewater. The optimal BTA composites present an efficient, low-energy-consumption,
and cost-effective solution for flotation wastewater treatment.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/catal13121504/s1, Figure S1. EDS spectra of BTA composites;
Figure S2. LC-MS pattern of SEX after a 5 min photocatalytic reaction; Figure S3. Absorbance standard
curve of SEX solution; Table S1. BET specific surface area of different composites; Table S2. Chemical
structures and m/z values of possible degradation intermediates of SEX.
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