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Abstract: The creation of junctions between 0D and 2D materials can be an efficient strategy to
enhance charge separation for solar hydrogen production. In this study, a simple in situ growth
method has been used to synthesize a series of 0D/2D Zn-Ag-In-S quantum dots/reduced graphene
oxide (ZAIS QDs/RGO) heterojunctions. The developed heterojunctions were characterized for
structural characteristics, morphology, and photocatalytic performance, while varying the content of
RGO. We observed that photocatalytic hydrogen production reached a maximum at an RGO content
of 30 µL (342.34 µmol g−1 h−1), surpassing that of pure ZAIS QDs (110.38 µmol g−1 h−1) by 3.1 times,
while maintaining excellent stability. To understand this enhancement, we performed time-resolved
fluorescence and electrochemical impedance spectroscopy. The fluorescence lifetime of RGO loaded at
30 µL (417.76 ns) was significantly higher than that of pure ZAIS QDs (294.10 ns) and had the fastest
charge transfer, which can be attributed to the charge transfer and storage capacity of RGO to extend
the lifetime of photogenerated carriers and improve the charge separation efficiency. This study offers
a simple synthesis method for constructing 0D/2D QDs/RGO heterojunction structures and provides
a valuable reference for further enhancing the activity and stability of I-III-VI sulfide QDs.

Keywords: photocatalysis; quantum dots; reduced graphene oxide; 0D/2D heterostructure;
hydrogen production

1. Introduction

Harnessing solar energy for photocatalytic hydrogen production is seen as the ulti-
mate solution to energy shortage as the world faces a growing demand for energy [1,2].
One of the crucial factors in the process of photocatalytic hydrogen production is finding
suitable photocatalysts [3,4]. In this context, there is an increasing focus on designing
photocatalysts with low cost, high activity, and high stability for efficient hydrogen produc-
tion [5–7]. Extensive research into the synthesis, properties, and applications of III-V and
II-VI semiconductors has been carried out over the last few decades [8]. However, tradi-
tional II-VI semiconductor quantum dots (QDs) often contain toxic elements such as Hg,
Cd, and Pb, which have adverse effects on the environment and health. This has resulted
in significant limitations in the use of III-V and II-VI semiconductors [9]. Consequently,
the exploration of nanomaterials with low toxic elements is of paramount importance for
societal progress. The I-III-VI QD has attracted considerable interest among researchers be-
cause of its exceptional optical properties and ability to efficiently absorb solar energy [10].
Specifically, ZAIS QDs have emerged as key players in visible light catalysis within the
realm of photocatalysis [11]. These QDs offer several advantages, including the use of
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non-toxic constituents, straightforward synthesis methods, remarkable optical properties,
tunable emission wavelengths, and a superior quantum size effect [12].

There are some drawbacks associated with the use of ZAIS QDs in photocatalysis that
need to be considered. The efficiency of photocatalytic hydrogen production is reduced
by the rapid recombination of photogenerated carriers in ZAIS QDs and the tendency
of photocatalysts to agglomerate [13,14]. This issue can be addressed by introducing 2D
nanosheets to form 0D/2D heterojunction structures. To this end, reduced graphene oxide
(RGO)—a non-metallic 2D carbon material—is a promising candidate that offers a large
surface area for adsorption, exhibits high chemical stability and transmittance, and has
significant electron-accepting and donating properties [15–17]. Therefore, integrating RGO
into a photocatalytic system can significantly enhance charge separation efficiency and serve
as an electron storage device [18,19]. In a study by Chen et al. a ZnIn2S4/RGO composite
photocatalyst was synthesized using a one-pot hydrothermal method and showed excellent
performance and stability in the photocatalytic degradation of 4-nitrophenol [20]. Similarly,
Lv et al. synthesized a LaNiO3-RGO composite structure through a simple self-assembled
photocatalytic reduction method, demonstrating exceptional photocatalytic activity [21].
Kudo et al. constructed a system combining RGO and CuGaS2 in a Z-shaped configuration.
RGO served as an electronic medium by adsorbing photogenerated charges on its surface,
facilitating effective electron transfer, and enhancing the photocatalytic decomposition
of water [22]. I-III-VI nanocrystals and RGO composites have also been explored. For
instance, Xie et al. utilized a one-step solvothermal method to anchor nano-CuInS2 onto
RGO nanosheets. The results revealed significantly higher photocatalytic activity for
RGO/CuInS2 compared to pure CuInS2. Despite the fact that the photocatalytic activity
of RGO/CuInS2 is twice as high as that of pure CuInS2, detailed mechanistic studies are
still lacking [23].

In this study, we successfully synthesized ZAIS/RGO heterojunctions by combining
0D and 2D materials using an in situ hydrothermal method. The photocatalytic hydrogen
production performance of ZAIS QDs was significantly enhanced by the addition of RGO.
Notably, when we used 30 µL of RGO, the photocatalytic hydrogen production rate reached
an impressive 342.34 µmol g−1 h−1. This was a 3.10-fold increase compared to pure
ZAIS, and this compound also demonstrated exceptional photocatalytic stability. The
improved photocatalytic activity in the 0D/2D heterojunction system can be primarily
attributed to effective carrier separation. The time-resolved fluorescence analysis revealed
a significantly extended surface carrier lifetime, reaching 417.76 ns, compared to pure
ZAIS QDs (294.10 ns). This was possible because RGO acted as an electronic reservoir,
capturing ZAIS excited-state electrons and reducing the electron–hole pair recombination
rate. Additionally, the large surface area of RGO provided an abundance of active sites
for photocatalytic hydrogen production in the composite photocatalytic converters. The in
situ assembly method for synthesizing ZAIS and RGO played a crucial role in the results
achieved. It created strong bonds at the QD surface, enhancing the proximity and stability
of the connection between ZAIS and RGO. This study offers valuable insights and lays the
groundwork for designing and synthesizing highly efficient photocatalysts.

2. Results and Discussion

In Figure 1a, the XRD patterns show three distinct peaks at 27.5◦, 46.4◦, and 54.4◦,
indicating (102), (110), and (022) cubic phase planes of ZAIS (JCPDS No. 25–1329), re-
spectively [24]. It can be seen that there is no significant shifting in the diffraction peaks,
indicating that the incorporation of RGO did not alter the structure in addition to the
composition of the samples. In Figure 1a, we can also see that the intensity of the diffraction
peak is lower than that of pure QDs, which may be due to the uniform distribution of ZAIS
QDs on RGO nanosheets after the introduction of RGO, which reduces the aggregation
of QDs and leads to the weakening of the intensity of the diffraction peak of XRD [25].
Moreover, the composition of the ZAIS QDs, prepared according to the specified procedure,
was examined using energy dispersive X-ray (EDX) analysis. The EDX analysis of the



Catalysts 2023, 13, 1471 3 of 12

QD, as depicted in Figure 1b, revealed the presence of Ag, In, Zn, C, and S elements. This
outcome signifies the successful incorporation of these elements, corroborating the effective
in situ incorporation of RGO within the heterojunction structure. The presence of these
elements, as evidenced by the EDX results, further supports the integrity of the composite
structure, and underscores the successful synthesis of the ZAIS/RGO composite material
with the desired elemental composition.
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Figure 1. (a) XRD patterns of ZAIS QDs with varying amounts of RGO; (b) EDX spectrum of ZAIS
QDs with 30 µL of RGO.

As shown in Figure 2a, the TEM analysis of ZAIS QDs reveals a particle size of
approximately 6.51 ± 1.0 nm. In Figure 2b, we can see that RGO nanosheets are almost
transparent under TEM, indicating that RGO nanosheets have a very thin nanostructure.
And in Figure 2c, we can see that ZAIS QDs are uniformly distributed on RGO nanosheets.
It is evident from Figure 2d that the dimensions of ZAIS QDs are several nanometers. The
lattice fringes at 0.38 nm correspond to (220) crystal planes, and the particle distribution is
more uniform. This indicates that the QDs are successfully loaded on RGO nanosheets by
the in situ hydrothermal method, and the synthesis, microstructure, and lattice structure of
the pure QDs are not affected by the incorporation of ZAIS QDs into RGO nanosheets.

FT-IR was carried out to explore the types of chemical bonds within ZAIS/RGO QDs
and to detect ZAIS QDs anchored on graphene nanosheets through functional groups. An
in situ growth method was used. As shown in Figure 3a,b, the infrared absorption band at
3648–3299 cm−1 has been identified as the tensile vibration mode of the hydrogen bonds
in the compounds [26,27]. The absorption peaks at 1610.2, 1388.5, and 1088 (1015.5) cm−1

are assigned to the tensile vibration modes of C=O, O–H, and C–O, respectively [28–30].
From the enlarged figure of Figure 3b, we can see that the two characteristic peaks of C=O
and C–O have obvious enhancement compared with that of ZAIS QDs from the addition of
RGO, and the peak is strong when the RGO content is 20 µL. This indicates that bonding
between ZAIS QDs and RGO surface occurs; thus, the functional groups of C=O and C—O
increase gradually. Bonding gives the composite photocatalyst good stability and good
hydrophilic and dispersive properties. However, with increasing RGO, the intensity of the
two peaks decreases gradually. A possible reason is that excessive RGO is wrapped on the
surface of QDs, which reduces the contact area between the two photocatalysts and hinders
the bonding reaction. The broadband region of 3400–3800 cm−1 and 2368 cm−1 may be due
to the physical adsorption of H2O and CO2 in air [31,32]. This indicates that the surface of
RGO and ZAIS QDs have a strong interaction, which makes the combination of RGO and
ZAIS QDs more closely spaced, thus reducing the distance of charge transfer, improving
the rate of charge transfer between them, and enhancing the photocatalytic performance.
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XPS measurements were carried out for further analysis of the electronic state and
chemical composition of the prepared photocatalysts. From Figure 4a, the XPS survey
spectra contain Zn, In, Ag, C, and S elements, and the results indicate the ZAIS QDs were
successfully deposited on the surface of RGO. In Figure 4b, two peaks at 368.0 and 374.1 eV
are observed for ZAIS QDs and ZAIS QDs-30 µL RGO, which can be attributed to the
binding energies of Ag 3d5/2 and 3d3/2, and neither show any blue shifts [33]. In Figure 4c,
the peaks at 452.7 and 445.2 eV (30 µL) and the peaks at 452.5 and 445.0 eV (ZAIS QDs)
are attributed to In 3d3/2 and In 3d5/2, respectively, indicating the presence of In3+ species
in the sample [34,35]. In Figure 4d, the peaks at 1022.2 and 1045.3 eV in pure ZAIS QDs
correspond to Zn 2p1/2 and Zn 2p3/2, while the peaks in ZAIS QDs-30 µL RGO are shifted
to 1022.4 and 1045.5 eV, respectively, compared to pure QDs [36,37]. A significant shift in
ZAIS QDs-30 µL corresponding to In 3d and Zn 2p was observed, whereas a slight shift cor-
responding to S-elements was also observed in comparison with pure QDs. The two peaks
appearing at 161.6 and 162.8 eV in Figure 4e could be attributed to both pure QDs and ZAIS
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QDs-30 µL RGO, as both of them correspond to S 2p3/2 and S 2p1/2. These two peaks show
a slight blue shift of 0.2 eV in the case of ZAIS QDs-30 µL RGO, appearing at 161.8 and
163.0 eV, respectively [38,39]. The change in the XPS peak is mainly due to the decrease
in the electron cloud density on the surface of the composite photocatalysts, indicating
that charge transfer occurs between the ZAIS QDs and the RGO interface in the composite
photocatalysts. The surface electron concentration of RGO decreases and that of ZAIS QDs
increases, which indicates that RGO can be used as a charge storage device in composite
photocatalysts. As shown in Figure 4f, composite photocatalysts can be fitted into three
peaks, which are located at 288.7 eV, 286.0 eV, and 284.7 eV, respectively, corresponding
to the extensional oscillation of C=O, C–O, and C–C functional groups [40,41]. The re-
sults of infrared measurements can also further prove that ZAIS QDs and RGO have a
strong interaction, which also promotes photogenerated charge transfer and photocatalytic
hydrogen production.
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Figure 4. XPS spectra of ZAIS QDs and ZAIS QDs modified with 30 µL RGO: (a) survey, and
high-resolution spectra of (b) Ag 3d, (c) In 3d, (d) Zn 2p, (e) S 2p and (f) C 1s.

To evaluate the photocatalytic performance of the QDs with Na2S (0.35 M) and Na2SO3
(0.25 M) as sacrificial reagents, photocatalytic hydrogen production was performed. Photo-
catalytic hydrogen production experiments using composite photocatalysts loaded with
different amounts of RGO were carried out. As shown in Figure 5a, the photocatalytic H2
production of ZAIS QDs composite photocatalysts increased linearly with the illumination
time. For the pure QDs, the hydrogen content reached 110.38 µmol g−1 h−1 within 6.5 h
under visible light exposure (Figure 5a, Table 1). It is quite evident from Figure 5b that
H2 evolution (342.34 µmol g−1 h−1) of ZAIS/RGO composite is 3.1 times higher than that
of pure QDs, indicating that RGO can be used as a co-catalyst to enhance hydrogen gas
evolution. Under visible light, the photocatalyst was stimulated to generate electrons and
holes, and the electrons were transferred to the RGO surface for photocatalytic hydrogen
production, which will reduce the recombination of electrons/holes and increase the re-
combination rate of electron holes. However, when the amount of RGO was above 30 µL,
photocatalytic H2 production showed a downward trend, which may be due to excessive
RGO concealing the active sites on the surface of ZAIS QDs, which reduces the active sites
for photocatalytic hydrogen production. On the other hand, loading excessive RGO weak-
ened the interaction between RGO and ZAIS QDs. Our results also show that electron–hole
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separation efficiency is an important factor affecting photocatalytic activity. Therefore, it is
very important to choose a suitable loading level in the photocatalytic system.
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Table 1. Comparison of hydrogen production of the related photocatalysts.

Catalysts Light Source Reaction Conditions H2 Evolution Rate
(µmol g−1 h−1) Ref.

ZAIS/RGO λ ≥ 400 nm 0.35 M Na2S + 0.25 M Na2SO3 342.34 This work
CdS-rGO/HI λ ≥ 400 nm 0.35 M Na2S + 0.25 M Na2SO3 76.6 [42]

Cs2AgBiBr6/RGO λ ≥ 400 nm saturated HBr and H3PO2 solution 48.9 [33]
h-BN/rGO 15 vol% TEOA 157.63 [43]
MoS2/RGO λ ≥ 400 nm 0.1 M Na2S + 0.6 M Na2SO3 4.86 [40]

Ru(dcbpy)3/TiO2/RGO/Pt λ ≥ 400 nm EDTA 191.8 [44]
BiPO4/RGO 5 vol% ethanol 306 [45]

TiO2-rGO λ ≥ 400 nm 25 vol% methanol 35 [46]

For the practical application of photocatalysis, the stability of the photocatalyst is of
great importance. Therefore, the stability of ZAIS QDs and 30 µL RGO photocatalyst was
tested. As shown in Figure 6a, the photocatalytic activity of the ZAIS QDs decreased by
12.72% after three reaction cycles when exposed to visible light irradiation (λ > 420 nm). In
Figure 6b, we can see that the photocatalytic hydrogen production rate of ZAIS-30 µL RGO
QDs was reduced by a 4% ratio after three runs of photocatalytic hydrogen production
reaction. In conclusion, the composite photocatalyst has high photocatalytic stability, which
can be attributed to the interaction between ZAIS QDs and RGO, and which makes the
photocatalyst have high stability in photocatalytic hydrogen production experiments.

To elucidate the intricate mechanisms underpinning the variations in photocatalytic
activity of the composite photocatalysts, an in-depth analysis was undertaken employing
UV-vis absorption spectra, Tauc plots, and XPS valence band methodologies. The UV-
vis absorption spectra, as illustrated in Figure 7a, reveal notable visible light absorption
characteristics for ZAIS QDs with varying amounts of RGO. The Tauc plots (Figure 7b)
and XPS valence band plots provided clear insights, indicating an energy bandgap (Eg) of
1.93 eV and a valence band (VB) of 0.96 eV for ZAIS, respectively. Utilizing the formula
Eg = VB − CB, we determined the conduction band (CB) of ZAIS to be −0.97 eV. Further-
more, Figure 7c presents the corresponding bandgap of ZAIS alongside our hypothesized
response mechanism. To elucidate the proposed reaction mechanism of the ZAIS/RGO
composite photocatalysts, we explored time-resolved photoluminescence (TRPL) spectra
under 485 nm laser excitation and employed electrochemical impedance spectroscopy
(EIS) to validate our conjectures. In Figure 7d, ZAIS/RGO photocatalysts exhibit obvious
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photoluminescence (PL) quenching in contrast to ZAIS QDs at the emission peak of 635 nm.
The fluorescence lifetime can reflect photogenerated charge carrier recombination and
transfer. As shown in Figure 7e, A biexponential function was fitted to the TRPL decay
curves of the QDs by I(t) = A1 ∗ exp

(
−t
τ1

)
+ A2 ∗ exp

(
−t
τ2

)
and the average lifetime is

estimated by τave =
(
A1τ1

2 + A2τ2
2)/(A1τ1 + A2τ2). The delay strength is represented by

I(t) in TRPL. τ1 and τ2 express the composite lifetimes and can be represented by A1 and
A2, giving the relative weight of the decay components at t = 0. A shorter fluorescence
lifetime due to the surface defects of semiconductors, and intrinsic defects, will lead to
a longer fluorescence lifetime of semiconductors. As shown in Table 2 the fluorescence
lifetime of 30 µL RGO-loaded ZAIS QDs is significantly longer than that of pure ZAIS
QD, 417.76 ns versus 294.10 ns, respectively, and that of 100 µL RGO-loaded ZAIS QDs
(330.78 ns) is higher than that of pure ZAIS QDs (294.10 ns). This observation indicates that
introducing RGO into ZAIS QDs can reduce the surface defects of QDs. At the same time,
metal ions in ZAIS QDs transfer to the surface of RGO, which will increase the internal
defects of QDs and increase fluorescence lifetime. However, excessive RGO will cover up
the reactive sites of ZAIS QDs and affect the internal metal ions of ZAIS QDs transfer to the
RGO surface, leading to a decrease in the lifetime of the sample. Therefore, it is necessary
to introduce a suitable amount of RGO to improve photocatalytic performance. In order
to further investigate the electron-hole transport efficiency and the separation efficiency
of photocatalysts, electrochemical impedance measurements were performed. EIS is also
an effective technique for studying the charge separation process at the semiconducting
electrolytic interface. The arc is smaller and the resistance of the photocatalyst carriers
is weaker in the transport process, which will better show the electron-hole separation
efficiency. As shown in Figure 7f, the impedance of the ZAIS-30 µL RGO QDs with the
highest hydrogen precipitation rate is smaller than that of the other two samples. This
indicates that the RGO photocatalyst with a loading of 30 µL has the fastest charge transfer,
and this result demonstrates that the composite catalyst has the highest electron–hole
separation efficiency.
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Table 2. TRPL decay data for ZAIS QDs and ZAIS QDs loaded with 30 and 100 µL RGO.

Samples A1/% τ1/ns A2/% τ2/ns τave/ns

ZAIS 2.90 8.93 97.10 294.36 294.10
30 µL 10.17 39.78 89.83 421.79 417.76
100 µL 2.67 9.01 97.33 331.02 330.78

Drawing upon the aforementioned results and discussion, a plausible mechanism
for photocatalytic hydrogen production by the ZAIS/RGO composite photocatalyst is
proposed. As illustrated in Figure 8, the ZAIS QDs are effectively stimulated under
visible light, initiating the generation of electron–hole pairs. Subsequently, the electrons
generated by the light absorption jump from the valence band to the conduction band. The
photogenerated electrons are then efficiently transferred from the semiconductor to the
surface of RGO through the interface formed by ZAIS QDs and RGO. This orchestrated
process facilitates the reaction of these electrons with water, leading to the photocatalytic
production of hydrogen. Concurrently, RGO exhibits the capacity to store and transport
electrons originating from ZAIS QDs. This dual role of RGO contributes to the effective
separation of photogenerated electrons and holes. Following the migration of electrons,
the photogenerated holes are sacrificed by reacting with the hole sacrificial agent situated
on the valence band. This intricate interplay of processes enhances the photocatalytic
activity of the ZAIS/RGO composite photocatalyst. In essence, the proposed mechanism
underscores the synergy between ZAIS QDs and RGO, elucidating their complementary
roles in promoting efficient charge transfer and utilization, ultimately leading to improved
photocatalytic performance for hydrogen production.
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3. Experimental
3.1. Materials

Thiourea, zinc acetate (Zn(OAc)2·2H2O), sodium hydroxide (NaOH), Mercaptopropi-
onic acid (MPA), L-cysteine (Cys, HSCH2CH(NH2)CO2H), indium nitrate (In(NO3)3·4.5H2O),
sodium sulfide (Na2S), silver nitrate (AgNO3), sodium sulfite (Na2SO3), and thioacetamide
(TAA) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Guangzhou, China)
and were of analytical grade.

3.2. Preparation of Photocatalysts

The previously reported method was used to prepare the RGO nanosheets [47].
ZAIS/RGO QDs with a ratio of MPA/Cys = 4:6 was prepared by an in situ hydrothermal
method with the following modifications [48]. After adjusting the pH, varying quantities
of RGO (1 mmol/mL) were introduced and sonicated for 30 min. Subsequently, they
were moved to a 50 mL Teflon-lined stainless-steel autoclave (Xi’an Hongchen Instrument
Equipment Co., Ltd., Xi’an, China), sealed, and maintained at 110 ◦C for 4 h. After gradual
cooling to room temperature in an autoclave, the initial solution was washed three times
with water/ethanol and dispersed in an aqueous solution for further experimentation
and characterization.

3.3. Characterizations

The prepared samples were subjected to phase composition analysis by X-ray diffrac-
tion (XRD, D8 ADVANCE, Bruker, Rheinstetten, Germany) using a Cu-Kα radiation source
(λ = 1.54056 Å) at a scan rate of 4.0◦ min−1. The sample was analyzed by transmission elec-
tron microscopy (TEM) using a Tecnai G2 F30 S-Twin (FEI Company, Hillsboro, OR, USA)
at 200 kV accelerating voltage. Functionalities were determined using the standard KBr
disc method on a Nicolet NEXUS 470 (Thermo Nicolet Corporation, Madison, WI, USA)
for FTIR analysis. The surface and chemical composition of the samples were determined
by XPS using a Thermo ESCALAB 250 X spectrometer (Waltham, MA, USA) equipped
with a 150 W Al source. The UV-vis spectrophotometric analysis was performed using
a Cary 8454 spectrophotometer (Agilent Technologies Inc., Shanghai, China); however,
the PL of the sample was analyzed at an excitation wavelength of 485 nm using a Cary
Eclipse fluorescence spectrophotometer (Agilent Technologies Inc., Shanghai, China). EIS
was performed at room temperature using a 760B electrochemical workstation (CH Instru-
ments, Inc., Shanghai, China), with the samples uniformly distributed on FTO glass and a
platinum–carbon electrode.
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3.4. Photocatalytic Performance Evaluation

A multi-channel photochemical reaction device (white LED monochromatic light
source, λ > 420 nm, PCX-50B Discover, Beijing Perfect Light Co., Ltd., Beijing, China) was
used to evaluate photocatalytic hydrogen production. Typically, sacrificial reagents of
0.35 M Na2S and 0.25 M Na2SO3 were dispersed in 20 mg of photocatalysts in a 20 mL
solution. The glass bottle containing the solution mixture was placed in an ultrasonic bath
until the complete dissolution of the sacrificial agent. Next, the samples were sealed, and
N2 gas was introduced to this solution for 15 min before placement inside the photoreactor
(white LED monochromatic light source, λ > 420 nm, PCX-50B Discover, Beijing Perfect
Light Co., Ltd., Beijing, China). The hydrogen production rate was analyzed using a
gas chromatograph GC-7900 (Education Au-light Co., Ltd., Beijing, China), TCD detector
(Nuoyi Instrument Co., Ltd., Shanghai, China). To determine the rate of hydrogen pro-
duction, 1 mL of the gas produced is withdrawn and injected into the gas chromatograph
every hour.

4. Conclusions

In summary, we synthesized a series of ZAIS/RGO composite photocatalysts loaded
with varying amounts of RGO through a simple in situ growth method. Then, the photo-
catalytic hydrogen production performance and its potential mechanism were extensively
studied. Through a hydrothermal reaction, ZAIS QDs and RGO were tightly bonded,
enhancing the fluorescence lifetime, photocatalytic activity, and stability of the ZAIS/RGO
composite photocatalyst. The optimum amount of RGO was adjusted in order to study
the structural, optical, and photocatalytic properties of the composite photocatalyst. The
study showed that the composite photocatalyst achieved a maximum photocatalytic hy-
drogen production rate of 342.34 µmol g−1 h−1 when the RGO content was 30 µL. This
value was 3.1 times higher than that of pure ZAIS QDs, demonstrating excellent stability.
Additionally, the composite exhibited a fluorescence lifetime of 417.76 ns, longer than
that of pure QDs. In comparison, after three cycles of photocatalytic hydrogen produc-
tion experiments, the hydrogen production rate of pure ZAIS QDs decreased by 12.72%,
whereas ZAIS-30 µL RGO QDs only decreased by 4%. The mechanism of photocatalytic
hydrogen production by the ZAIS/RGO composite photocatalyst was also proposed by
studying the fluorescence lifetime and electrochemical impedance measurements. The
study found that RGO served as an electric medium, storing electrons from ZAIS QDs,
and facilitating their transportation. By efficiently separating the photogenerated electrons
and holes, this process significantly improved the photocatalytic performance. The results
of this investigation offer important perspectives for the improvement of the efficiency
of the splitting of photogenerated electron–hole pairs and for the construction of efficient
composite photocatalysts.
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