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Abstract: In this paper, we explore the catalytic CO2 reduction process on 13-atom bimetallic nan-
oclusters with icosahedron geometry. As copper and nickel atoms may be positioned in different
locations and either separated into groups or uniformly distributed, the possible permutations lead
to many unnecessary simulations. Thus, we have developed a machine learning model aimed at
predicting the energy of a specific group of bimetallic (CuNi) clusters and their interactions with
CO2 reduction intermediates. The training data for the algorithm have been provided from DFT
simulations and consist only of the coordinates and types of atoms, together with the related potential
energy of the system. While the algorithm is not able to predict the exact energy of the given complex,
it is able to select the candidates for further optimization with reasonably good certainty. We have
also found that the stability of the complex depends on the type of central atom in the nanoparticle,
despite it not directly interacting with the intermediates.

Keywords: nanoparticle; CO2 reduction; machine learning; interactions

1. Introduction

One of the most urgent issues facing human civilization is greenhouse gas emissions
and the rise in the planet’s average temperature [1]. According to The Global Monitoring
Laboratory of the National Oceanic and Atmospheric Administration, the average con-
centration of CO2 in the atmosphere in 2021 was 415 ppm, with an annual increase of
2.5 ppm [2]. CO2 is not the most potent greenhouse gas, but it is the one that is found in the
atmosphere in the greatest quantity. This has led to the investigation of several scenarios
aiming to limit the warming of the planet to 1.5 ◦C, relative to the preindustrial period, or
the reduction in long-term average temperature [3].

The direct capture of CO2 from the air (Carbon Dioxide Removal (CDR)) followed
by its chemical conversion to fuels or other energy carriers is often considered to be the
most important solution, as it is able to close the carbon cycle and effectively make the
branches of industry that rely on the fossil fuels zero-emission [4]. In order to carry out
such a conversion, two components are necessary: highly active catalysts to increase the
reaction rate and renewable energy source(s) to overcome the thermodynamic stability of
CO2 [5]. Electrocatalytic processes are often considered the most promising solutions, as
they are able to satisfy both these requirements [6].

The main characteristics of a catalyst are its interactions with reactants, which is es-
pecially evident for Cu in electrocatalytic CO2 conversion [7]. While other metals either
deactivate rapidly due to a strong interaction with CO formed in the process or prefer-
entially catalyze the proton/electron recombination without involving CO2 [8], copper
catalyzes the reduction of carbon dioxide to methane, ethylene [9–11] or even formic
acid [7].

The main factor that determines selectivity towards a particular product is the reaction
potential: with minimal potential, CO2 does not react, and the end product is hydrogen.
As the reaction potential increases, carbon monoxide or HCOOH can be obtained. The
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highest reaction potential leads to the formation of hydrocarbons—mostly CH4 and C2H4.
The possibility of increasing the efficiency of this process upon designing a better catalyst
makes the search for catalysts with more attractive parameters especially important.

Various forms of copper catalyst have been investigated, such as electrodes [9,11],
foil electrodes [12], and copper nanotubes [10]; however, it is nanostructuring that offers
an improvement in both activity and selectivity [13,14]. In the area of zeolite catalysis,
the properties of copper nanoclusters have been investigated experimentally and com-
putationally by Petranovskii et al. [15], with the conclusion that nanoclusters’ geometry
plays an important role. Often, the most stable structure for Me13 clusters is icosahedral,
although, of course, this is not the universal rule. Thirteen-atom clusters with different
stable geometries have been reported, e.g., for Ru13, Rh13, Os13, or Ir13 [16].

As the number of atoms in the cluster increases, the average binding energy of these
structures—and consequently their stability—also increases [17]. However, their activity in
catalytic reactions decreases at the same time [18]. It is therefore desirable to find clusters
of optimal size that are sufficiently stable and active. In the case of Cun clusters, the most
stable structures are those where n = 13, 19, 23 (results common to many works) but also
where n = e.g., 26, 55, 73, 92, 101, 115, 147 [17,19–21]. However, Grigoryan et al. found that
the clusters with the Mackay icosahedra structure (n = 13, 55, 147) showed the greatest
potential in terms of stability [19].

Conversely, the properties of metallic clusters are going to change when alloying them
with other metals. For instance, Fe–Ni clusters with the icosahedral structure are more
stable than pure, monometallic clusters, especially when iron occupies the central position
in the structure and nickel atoms are located on the surface of the nanoparticle [22]. In
addition, a small amount of Pd added to the copper catalyst increases the selectivity of the
partial acetylene hydrogenation reaction catalyzed by this system [23], or PtnAgn clusters
are the most stable when most of the Pd is in the core and most of the Ag is on the shell
of the cluster [24]. In such situations, both cluster composition and metal distribution
can play a pivotal role, which complicates the issue of finding optimal clusters. In most
cases, however, this is an effort that is worthwhile due to the better properties of bimetallic
structures compared with monometallic alternatives.

2. Aim and Scope

In this work, we present a protocol for predicting the energy of bimetallic nanoparticle
complexes with reactants. Shim et al. [25] showed that Cu13 shows the highest catalytic
activity, as it has the lowest activation barrier for the reduction of CO2 to CH4 among Cu13,
Cu55, and the Cu111 surface. Thus, we decided to focus on the CunNi13 – n nanocluster
interacting with CO2 and the intermediates and products of its conversion. We present a
comparison of the efficiency of simple and fast machine learning training methods. Our aim
is to reduce as much as possible the time required to perform the optimization of individual
structures, and therefore, we focus primarily on the geometries of the nanoclusters. This
is a fairly rare approach, and it has not been used frequently so far, with only a few
exceptions [26–28]. Predicting the energy of complexes based on their physicochemical
properties is used more often, as the prediction accuracy of such models is essentially
higher [29–36]. This approach, however, requires either careful optimization of each
individual structure to obtain input data or to retrieve such data from external, already
prepared databases, which excludes determining the predicted parameter for structures
never studied before.

On top of that, the vast majority of the work we have examined focuses on predicting
the properties of organic molecules, having distinct functional groups [34,36–41]. Signifi-
cantly fewer reports predicting the properties of systems containing transition metals are
available, likely due to the much greater complexity needed to describe the nature of the
interactions in such systems [26–30,33,42].

In this work, we propose a procedure that predicts the catalytic activity of the systems
containing Cu and Ni, using only geometric properties as descriptors, together with simple
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and fast learning models. Our main goal was to create a tool that at the very least correctly
determines the trends between groups of systems in order to designate the most promising
candidates for a more detailed and time-consuming analysis.

3. Methodology
3.1. Models of the Nanoclusters

Nanoclusters with varying Cu:Ni ratios (CunNi13 – n) were selected for analysis. The
clusters were put in a periodic box (periodic boundary conditions), with the dimensions
24 × 24 × 24 × Å and the angles α = β = γ = 90◦.

For all nanocluster–intermediate complexes, several types of binding modes were
investigated, keeping the same distribution of the Cu and Ni atoms within the cluster,
resulting in a total of 254 configurations.

All calculations were carried out within the DFT (Density Functional Theory) framework,
as implemented in the VASP (Vienna Ab-initio Simulation Package) version 5.4.4 [43,44]. The
exchange–correlation energy was defined by making use of the Perdew–Burke–Ernzerhof
functional [45,46]. The plane wave energy cutoff was established at 450 eV, and the electron–ion
interactions were characterized by the projector-augmented wave method [47].

3.2. Electrocatalytic Process Simulation

The basis for examining the electrocatalytic process is the method which relates the
transfer of a proton/electron pair to the potential of the hydrogen electrode at equilibrium
in the standard conditions [7]. The free energies for each electroreduction step are described
by the following formula:

∆G = ∆Gproduct − ∆Greactant − eU (1)

where ∆G is the Gibbs free energy, e is elementary charge, and U is the applied potential.
The procedure assumes a linear relation between the applied potential and free ener-

gies. The potential limiting stage of the reaction step was defined as the minimum potential
necessary to make all the consecutive reaction stages preserve the decreasing energy trend.

Importantly, the analysis focuses exclusively on the thermodynamics of the interme-
diate conversion and their interactions with the cathode surface, leaving out phenomena
that do not contribute to the calculation of the potential of the process—such as reactant
adsorption or product desorption.

3.3. Machine Learning

Determining the energy of all clusters, with every statistically possible distribution of
metals, would be an extremely time-consuming task. If we begin to take into account all the
possible ways of distributing Cu and Ni atoms in the studied clusters, the ways of binding
intermediates to them, or rotating these intermediates, even with the simplifying assump-
tions that we made, the number of combinations possible to study exceeds 20 thousand.
Therefore, in this work, we abandoned the optimization of all possible structures and in-
stead developed a procedure aiming at the prediction of the stability of a particular system.
The Procedure to Indicate Clusters Energy (PICle) at the lowest possible computational
cost identifies a subset of the most preferred systems.

The procedure is coded in Python 3 language, and all the scripts associated with it are
available at https://github.com/all2gos/PICle (accessed on 25 November 2023).

We tested several machine learning models, included in the scikit-learn library [48]: Support
Vector Regression Machine [49], Kernel Ridge Regression [50], and Ensemble Methods (Random
Forest [51,52], AdaBoost [53], and Extra Trees Regressor [54]). We selected the most popular
representatives of the kernel and ensemble methods in order to test the accuracy of a large
number of models following the no-free-lunch theorem.

The hyperparameters tested for each method are gathered in Table 1.

https://github.com/all2gos/PICle
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Table 1. Machine learning methods with hyperparameters used in this work.

ML Method Hyperparameters Search Ranges

Support Vector Regressor
(svr)

kernel type linear, polynomial, sigmoidal, rbf
regularization parameter C 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 4, 5, 8, 12, 15, 20

Kernel Ridge Regression
(krr)

kernel type linear, polynomial, sigmoidal, rbf
alpha value C 0.2, 0.4, 0.6, 0.8, 1,1. 5, 2, 3, 4, 5, 8, 12, 15, 20
width of no penalty tube (epsilon) from 0.1 to 1.2 in 0.1 increments

Random Forest ∗

(rf)

max. N of estimators from 25 to 500 in 25 increments
min. N of samples to split a node 2, 3, 4, 5, 6
max. depth of the tree none, 2, 3, 4, 5, 6, 7, 8

Extra Trees Regressor ∗

(etr)

max. N of estimators as in Random Forest
min. N of samples to split a node as in Random Forest
max. depth of the tree as in Random Forest

AdaBoost ∗

(ada)

max. N of estimators as in Random Forest
learning rate 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 4, 5, 8
loss function linear, square, exponential

∗ Random Forrest, Extra Trees Regressor, and AdaBoost belong to Ensemble Methods.

Ideally, the algorithm we developed would be capable of predicting the energies of the
investigated systems; however, achieving this might not be possible for a method relying
only on the geometric factors. The next best thing is to capture the trends, and in order to
achieve this, we use rank correlation, which we call EI, for Entropy Index.

EI is a result of a comparison of a set that contains two subsets of values: prediction and
validation. The values are sorted by increasing order in the predicted and validation subsets.
Ideally, we would expect that for the particular cluster, its position in the prediction and
validation sets would be exactly the same. This method allows for obtaining information
about the order of the particular systems in these subsets with respect to increasing energy.
EI is the average difference between the position of a given system in each sorted subset.
In addition to the average, we also consider the maximum value. Finally, we divide these
values by the length of the given dataset to make it independent of its length and convenient
for comparisons between sets of different lengths.

4. Energy Predictions from Machine Learning
4.1. Training Model

To be able to effectively create test and training sets, we generated all possible com-
binations of the Cu and Ni distribution within the cluster. In order to accomplish this
task, a simplification was made by assuming that each 13-atom CuNi cluster is charac-
terized by ideal icosahedral geometry. This allowed us to represent each cluster using a
one-dimensional representation (details on the notation created for this purpose can be
found in the Supplementary Information).

CO2 reduction can take place in one of three ways (Figure 1), and a previous study by
Peterson and coworkers [7] concluded that these are the pathways requiring the lowest
overpotential on Cu surface. We investigated all three pathways, with the assumption that
regardless of the cluster composition and binding mode of the reactants, it is possible for
all three to occur. In other words, we did not exclude any pathway from the analysis.

Figure 1. Possible conversion reaction paths CO2.
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In order to simplify an already complex analysis, we decided to limit it to only a
few well-defined binding modes of the intermediates to the cluster. We did not take into
account geometric distortions that are possible due to interactions with intermediates. We
distinguished 5 different binding modes for the systems, which are shown in Figure 2. Note
that the binding mode was not directly used as a descriptor; thus, it is possible to determine
the energy of complexes with slightly different geometries without any modification of
the procedure.

(a) (b) (c) (d) (e)

Figure 2. Binding modes of CO2 and other intermediates to the cluster: (a) MO, (b) MOCOM,
(c) MOCM, (d) MOCM_H_n_bond, (e) MC. Letters indicate dominant interaction(s); M stands for
metal, either Cu or Ni.

4.2. Descriptors

There are several descriptors allowing each individual cluster to be represented nu-
merically. As it was mentioned above, all descriptors presented in this work are based on
the geometries of the clusters. Each cluster was described with the following characteristics:

1. The chemical composition of the cluster is represented by the Ni:Cu ratio, which is
equivalent to the number of Ni (or Cu) atoms in the cluster. We used the number of
Ni atoms in further work.

2. The distribution of metal atoms in the cluster can be represented either by a vector
between the geometric center of the cluster and its center of mass or the number of
Ni–Ni, Cu–Cu, and Cu–Ni bonds in the cluster.

3. The shortest paths, which is another way to describe the degree of dispersion of metal
atoms in clusters. This refers to the number of atoms forming a directly connected
chain, such as the path passing through the chain leading through each of its atoms
exactly once.

For the purposes of this project, 4 components were investigated:

(a) The shortest path on outer Ni atoms, not including the central atom.
(b) Th shortest path on outer Cu atoms, not including the central atom.
(c) The shortest path along all Ni atoms, including the central atom if it is Ni, and

its inclusion leads to a shorter path length.
(d) The shortest path along all Cu atoms, including the central atom if it is Cu, and

its inclusion leads to a shorter path length.

These descriptors, however, exhibit a high correlation with each other, and training
the model using all of them would not lead to any improvement in accuracy. Therefore,
for further investigations, we decided to select the descriptor that was the most correlated
with all the values we wanted to predict: the shortest path on outer Cu atoms.

4. The composition of the coordination sphere—the atom(s) of the cluster to which the
intermediate is bound, consisting of several components: 0%Ni, 8%Ni, 16%Ni, 25%Ni,
33%Ni, 41%Ni, 50%Ni. Each of the described parameters takes the value n ∈< 0, 13 >,
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where n ∈ N. For example, the value k for parameter 41%Ni means that in a given
cluster, it is possible to distinguish k atoms of the metal, in which nickel atoms fill 41%
of the first coordination sphere (5 atoms).

4.3. The Relevance of the Descriptors

Obviously, the energy of the system is mostly dependent on the chemical composition
of the system. A system containing more Ni atoms in the cluster, or hydrogen atoms in the
intermediate, will have lower potential energy. These descriptors are used by the machine
learning model as the main determinant in predicting the energy of the system. Such a
model would mostly capture the effect of the cluster composition as the main component of
the final prediction. Other, more subtle effects, such as binding modes for instance, would
be overshadowed, as their contribution to the total energy is smaller; however, they are of
crucial importance in the catalytic effect. In other words, the most important differences
that the model should capture are less dependent on the composition but rather indicate
the relative energy difference between systems.

However, the composition of the system still carries important information, as the
interactions of the intermediates depend on the composition of the cluster. Therefore,
we could not completely disregard the properties of the system that are related to its
composition, i.e., the number of nickel atoms and the presence of hydrogen in the system,
but only reduce their importance in the overall prediction of energy. For this reason, we
decided to test the following solutions:

1. In order to not take into account the effect of the different atomic composition of the
cluster itself, a conversion of energy values was performed according to the following
formula [22]:

Emix =
1

13

(
ECun Ni13−n −

1
13

(
nECu13 + (13− n)ENi13

))
(2)

where:

• ECun Ni13−n , ECu13 , ENi13 is the energy of clusters of corresponding atomic compo-
sitions expressed in eV.

• n is the number of copper atoms in the system.

The resulting parameter is called mixing energy and is denoted in the dataset as
mix_energy.

2. The energy of the hydrogen molecule was determined under the same conditions
under which the energy of all clusters was determined (Section 3.2). Then, half of this
value was subtracted from the systems that contained a hydrogen atom in their com-
position. The energy thus determined is named in the dataset as energy_wth_h2 and in
the rest of the paper is abbreviated as wth or energy_wth. Note that it does not matter
whether the energy_norm or energy_wth is used in Equation (2), as mathematically,
they lead to the same result.

Thus, we identified three values for which we evaluate the predictive ability of the
machine learning model: mixing energy (mix_energy), energy corrected for hydrogen
present (energy_with_h2), and potential energy without any corrections (energy_norm).

4.4. Training and Test Sets

In order for the model to be trained, it is necessary to create datasets containing
numerous cases on the basis of which training can be accomplished. Thus, we determined
the energies of a significant number of complexes as accurately as possible with minimal
computational effort.

The first step was to determine the energy of monometallic complexes with molecules
bound in a specific mode. The DFT energies of these systems were determined as described
in Section 3.2. In order to keep the computational time to a minimum, the energy of each
different system that includes a bimetallic cluster was determined as a weighted average
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of the energies of the monometallic clusters. This essentially assumes equal interaction
between the metal atoms, regardless of metal type.

To check the validity of this assumption, the energy determined in this approximation
was compared with the energy of the clusters that are part of the validation set in Figure 3).
On the tested dataset, the EI of the system is only 0.012, with the maximum difference for a
single case equal to 0.077. Therefore, it can be concluded that the simplifications we made
are acceptable.

Figure 3. Comparison of energies determined by optimization of complexes with those determined
by the proposed approximation techniques.

The set of energies of the complexes, determined using this technique, contained
649 elements. These values were used to train the machine learning model. We used a
70/30 split on the training/testing set for all tested models. To maximize the repeatability
of the results, we set the random state to 42 [55]. We tested different training settings:
firstly, we used a dataset that contained systems of any composition (all possible numbers
of Ni atoms—allni); secondly, we restricted the model to clusters in which nickel did
not account for more than 50% of the atoms (ni7). In addition, we checked the accuracy
of the models depending on whether outliers were deleted (2z) or not (0z), with the
outlier defined as a case whose Z-score in at least one descriptor is more than 2. In
addition, as mentioned in Section 4.3, we tested the ability of the models to predict 3 values:
energy_norm, energy_wth, and mix_energy. The combination of all possible settings of
these parameters results in 12 training settings, which are gathered in Table 2, together with
the calculated EI values.

5. Results and Discussion
5.1. Direct Value Prediction

Initially, we attempted to predict energy values directly. The EI values of the best
model for each training method are gathered in Table 2, and the hyperparameters of the
respective models are shown in Table 3.

The resulting accuracy is not very high, as can be seen from the relatively high EI
values. The best value was observed for total energy corrected for hydrogen, trained for
the set including all Ni:Cu ratios, not disregarding the outliers. The value is still relatively
high and amounts to 0.079, which means the position in the validation set and set with
predicted values differ on average by 7.9% of the total size of the set. The maximum EI
values are in the range of approximately 0.25 to 0.50, which means the position differs by
almost half of the length of the set.
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Table 2. The accuracy of prediction depending on different training settings.

Model Predicted
Value Conditions Outliers EI (max. EI)

Test Set
EI (max. EI)

Validation Set
MAE

Test Set
MAE

Validation Set

allni_0z_mix mix_energy Ni = all no 0.089 (0.482) 0.188 (0.588) 0.015 0.024
allni_2z_mix mix_energy Ni = all Z–score > 2 0.081 (0.390) 0.202 (0.632) 0.023 0.017
ni7_0z_mix mix_energy Ni < 7 no 0.094 (0.376) 0.170 (0.609) 0.012 0.021
ni7_2z_mix mix_energy Ni < 7 Z–score > 2 0.106 (0.483) 0.152 (0.551) 0.016 0.015
allni_0z_wth energy_wth_h2 Ni = all no 0.079 (0.246) 0.025 (0.074) 0.593 0.933
allni_2z_wth energy_wth_h2 Ni = all Z–score > 2 0.128 (0.435) 0.157 (0.441) 0.681 3.788
ni7_0z_wth energy_wth_h2 Ni < 7 no 0.104 (0.398) 0.152 (0.609) 0.797 2.969
ni7_2z_wth energy_wth_h2 Ni < 7 Z–score > 2 0.106 (0.333) 0.113 (0.412) 0.924 3.942
allni_0z_norm energy Ni = all no 0.086 (0.431) 0.108 (0.348) 0.774 0.990
allni_2z_norm energy Ni = all Z–score > 2 0.102 (0.435) 0.179 (0.536) 0.403 2.264
ni7_0z_norm energy Ni < 7 no 0.086 (0.459) 0.088 (0.217) 0.523 8.926
ni7_2z_norm energy Ni < 7 Z–score > 2 0.106 (0.529) 0.136 (0.406) 1.464 3.864

This observation is also visible in the predicted and calculated energy plots (see
Figure 4). The best correspondence can be seen for the energy_norm predicted using all
Ni:Cu ratios, not removing any outliers. This is consistent with a relatively small value of
EI (0.086—see Table 2).

Figure 4. Summary of the accuracy of all models presented in the Table 2. Purple color indicates
values from the validation set and pinkish color indicates values predicted by the model.

For this case, it is already possible to indicate a selection of clusters for further analysis
with satisfactory accuracy. However, in Section 5.2, we present a slightly more complex
approach that leads to much better results.

The results for all trained models are shown in Figure 4. Two main “behaviors” in
predicting the energy of complexes can be distinguished: those that contain continuous or
discrete changes in values. The number of unique values in the set of values predicted by
the model is summarized in Table 3. Interestingly, in most combinations, it was the kernel
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models that proved the most successful in predicting the energy of complexes. In the case
of ensemble models, the number of unique values dropped significantly. We suspect that
this is due to the rather discrete nature of the descriptors—the descriptor characterized by
the greatest continuity of values is the distance of the center of mass from the geometric
center. There were only 150 unique values of this descriptor in the 650-element set that was
used to train the model.

Table 3. Number of unique values predicted by the model; set size = 68.

Model ID Number of Unique Values Method Parameters of Models

allni_0z_norm 55 krr α: 0.2, kernel: linear
allni_2z_mix 55 krr α: 3.0, kernel: linear

allni_2z_norm 55 svr C: 0.2, eps: 0.1, kernel: linear
ni7_0z_mix 55 svr C: 0.2, eps: 0.1, kernel: linear

ni7_0z_norm 55 krr α: 1.0, degree: 2, eps: 0.5,
kernel: poly

ni7_2z_wth 55 krr α: 4.0, kernel: sigmoid
ni7_2z_mix 55 krr α: 3.0, degree: 1, kernel: rbf

ni7_2z_norm 55 krr α: 1.5, kernel: sigmoid
ni7_0z_wth 55 krr α: 2.0, kernel: sigmoid

allni_0z_wth 16 ada est: 25, learning rate: 0.2 loss:
linear

allni_0z_mix 13 etr est: 25, min_sample_split: 2,
max_depth: 2

allni_2z_wth 8 rf
est: 25,

minimum_sample_split: 2,
max_depth: 2

5.2. Conversion from Mixing Energy to Potential Energy

Finally, we decided to test the prediction potential of the trained model to predict
mix_energy and subsequently transform the prediction result back to energy_norm. As
it was described above, we assumed that the energy mixing procedure “denoises” the
information that is more valuable and, as a consequence, it makes it more accessible for
the model. Our assumption turned out to be correct, which can be seen in Table 4 for the
following pairs: mixing energy and predicted mixing energy (mix–mix), potential energy
and predicted potential energy (norm–norm), and potential energy and predicted mixing
energy transformed to potential energy (norm–t(mix)). In addition to EI, we included in
the table the value of the average prediction error, expressed in eV. The relevant plots of
the predicted values are shown in Figure 5.

It can be observed that the EI values for the directly predicted energy values are in almost all
cases an order of magnitude higher than for the mixing energy converted back to potential energy.
The match between the DFT energy and energy predicted using this method is extraordinary
and amounts to 0.2 eV. For example, similar accuracy in the validation set was achieved by
Modee et al. [28], who used neural networks to predict the energies of monometallic gallium
clusters. Also, this is very close to the accuracy of the DFT method itself, which—depending on
the functional used—is on the order of 0.1 eV [56].

Table 4. EI values for mixing energy and predicted mixing energy (mix–mix), potential energy
and predicted potential energy (norm–norm), and potential energy and predicted mixing energy
transformed to potential energy (norm–t(mix)).

Model ID Mix-Mix Norm-Norm Norm-t(mix) Avg Error (eV)

allni_0z 0.188 0.108 0.011 0.44
allni_2z 0.202 0.179 0.016 0.45
ni7_0z 0.203 0.088 0.010 0.28
ni7_2z 0.179 0.136 0.007 0.20
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(a) (b)

(c) (d)

Figure 5. Predicted norm (mix_energy) compared with the validation set on different training settings:
(a) allni_0z, (b) allni_2z, (c) ni7_0z, (d) ni7_2z.

Expectedly, the Mean Absolute Error (MAE) metric, as seen in Table 2, is not well suited
to analyze the quality of the predictions made by our algorithm because of differences in
the predicted absolute values. The variation in the mixing energies is much smaller, because
this descriptor accounts for the differences in the composition of the cluster; therefore, the
MAE for these predictions is much smaller. The MAE for the predicted potential energy
values is one or two orders of magnitude greater than for the predicted mixing energy
values, which makes a comparison extremely difficult. In general, significantly higher
values of MAE for the directly predicted potential energy are in agreement with the more
difficult prediction of these values by our algorithm.

5.3. Importance of the Descriptors

Since information about the importance of descriptors is trivial to read from ensemble
methods, and in kernel methods it is a value that can be interpreted only with a linear kernel,
we decided to only analyze the importance of descriptors in the former group. The results
are presented on the heatmap in Figure 6. Each column contains the average importance
values for all the tested models (overall), trained with the AdaBoost (ada), Random Forest
(rf), and Extra Trees Regressor (etr) algorithms. In the subsequent columns, there are
values for all the models trained to predict mixing energy (mix), energy corrected for
hydrogen (wth), and potential energy (norm). They are followed by all the models trained
appropriately without removing outliers (0z) and with the removal of values exceeding the
condition Z–score > 2 (2z). The last two columns contain the values for all models trained
on sets containing cases with any number of nickel atoms (all Ni) and those restricted to
cases with fewer than 7 nickel atoms (Ni < 7).

It can be seen that the importance of information about the atomic composition of
the cluster is greater for predicting the energy corrected for hydrogen (wth column) and
the potential energy (norm column) than for the mixing energy (mix column). Similarly,
the importance of the information on whether a given complex contains a hydrogen atom
in its structure is far greater for predicting potential energy than for the energies where
corrections for hydrogen were applied (mix and wth columns). Importantly, in no cases are
these features either irrelevant or crucial, which was our main motivation for using different
transformations for predicted values instead of simply removing specific descriptors from
the training set.
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Figure 6. Importance of features for different ensemble methods. Significance values are colored in
the following way: the most relevant descriptor for the training set in a given row is the most red,
and the least is the most blue.

Surprisingly, in the case of mixing energy, the descriptor with the highest relevance
after this transformation was the one about what kind of atom is located in the center of
the metallic cluster. This value is very high (0.67 for the mixing energy), while the second
most significant descriptor (number of Ni atoms) is assigned an importance level of 0.09.
Importantly, the values in the norm and wth columns show that the information about the
central atom is almost ignored by all models. This means that this descriptor is actually
significant only for the prediction of mixing energy. In all other cases, this descriptor does
not exceed 0.02. It should be noted that in other columns, the importance of the information
about the central atom in the cluster is high, but this situation is a consequence of the
unusually high importance of this parameter for predicting mixing energy. We conclude
that the reason for such a significant increase in the relevance of information about the type
of central metal for the mixing energy is the fact that the central metal interacts with every
other metal atom in the cluster, and its type has a significant impact on the behavior of the
whole system.

Another descriptor that proved important for most of the model training approaches
used was the number of Ni–Ni and Cu–Cu bonds in the cluster. Interestingly, information
on the number of Ni–Cu bonds was not specifically used by any model. We conclude that
the reason for this effect is the strong correlation (positive or negative) of Cu–Cu and Ni–Ni
with other parameters (the number of nickel atoms, the composition of the coordination
sphere, or information about the central metal), while the Cu–Ni descriptor shows no such
correlations. Also, the correlation between these parameters (Cu–Cu and Ni–Ni) alone
is R = −0.82, while the correlations of the Cu–Cu and Ni–Ni parameters with Cu–Ni are
R = −0.05 and R = −0.53, respectively. Besides, the Cu–Cu and Ni–Ni descriptors are
strongly correlated with the predicted values, while the Cu–Ni descriptor does not show
similar correlations.

The composition of the coordination sphere may also seem unimportant. However, it
should be noted that this is a descriptor composed of several minor descriptors, in which
the sum of significance ranges from 0.04 to 0.15, with a mean value of 0.11.
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5.4. Predicted Paths of Electrocatalytic CO2 Reduction

Using the model we trained, it is possible to make a prediction of the energy of a
cluster of any geometry and Cu:Ni ratio to which any intermediate considered in Figure 1
is bound. The most accurate model (Table 4) was used to predict potential energies and
construct the electrocatalytic plots.

Figure 7 shows the predicted potential energy profiles for the electrocatalytic conver-
sion of CO2 for formic acid (FA). This process can lead via formate or carboxyl intermediate.
Out of the two, the former is more stable. This is because it interacts with the cluster by
means of two oxygen bridges, while carboxyl only binds via metal–carbon and metal–
oxygen bonds.

Figure 7. Predicted potential energy profiles for the carboxyl (red) and formate (blue) pathways. The
intensity of the color represents the composition of the nanocluster—the darker the color, the greater
the Ni content.

Formate is formally negatively charged, but the metallic cluster is able to donate the
electron. This implies the strength of the metal–oxygen bonds is the dominating effect in
the stabilization of this intermediate. The difference in the potential energy between the
formate and carboxyl amounts to approximately 0.7–0.8 eV, regardless of the composition
of the cluster.

The subsequent step is a conversion of formate or carboxyl to formic acid. Because of
the greater stability of the formate, this step is more difficult and requires greater potential
to occur. Contrary to that, the carboxyl-to-formate conversion is easy, and depending
on the composition of the cluster, requires from 0.2 to 0.5 eV of external potential. This
implies that the external potential can be used to control the selectivity of the process. This
observation is consistent with the literature available for pure Cu systems [57], where the
applied potential has been determined to influence selectivity. In addition, in the work of
Zhao et al. [58], the activation of the formate pathway by alloying Ni with other metals
was reported, which further supports our findings.

Alternatively, carboxyl can be further converted to CO with the release of a water
molecule. This is not possible to achieve in a single step for the conversion of the formate, as
there is already a C-H bond that would have to be cleaved. The carboxyl to CO conversion
is endothermic by approximately 1 eV. This results from the assumption made in the
present work, where the catalytic reduction products are dissociated from the cluster—our
procedure did not involve the prediction of the potential energy of CO bound to the cluster.
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Figure 7 also shows that the main factor contributing to the stability of the formate and
carboxyl intermediates is the composition of the cluster. We observed a continuous increase
in the stability of the intermediate along with an increase in the number of Ni atoms in the
cluster. This is also consistent with the literature reports, which show a stronger interaction
of carbonyl with Ni than Cu surface [59].

6. Conclusions

We presented a procedure for predicting the energies of CunNi13 – n complexes that
allows us to determine the energies of these structures without optimization with an
average error of 0.2–0.4 eV, which we find surprisingly good for the simplicity of the
techniques and the range of simplifications used. We achieved this using only geometric
descriptors and relatively simple machine learning methods, which consequently translates
into significant time savings compared with optimizing all the structures.

Among the investigated procedures, the one involving the training of the model on
the mixing energy and subsequent conversion of the result to potential energy provided
the best results.

What we found most unexpected was that the descriptor relevance analysis showed
that information about how the metals were distributed in the cluster was not significant
in predicting energy; rather, it is the composition of the cluster that is responsible for the
stability of the intermediates. However, we believe that this can be easily explained by
the d-band of the metallic cluster, which is only partially occupied. This implies that the
electron transfer between the particular sites is easy, and it is actually the fundamental
reason for the good electric conductance of metals. In the context of our work, it has been
confirmed that the number of electrons in the system, i.e., the composition of the cluster, is
of much greater importance.

An interesting follow-up study would be to test the transposability of our presented
approach to metallic clusters with different compositions or other geometries. The method
developed by us obviously can be directly ported only to other bimetallic clusters with
icosahedral symmetry. However, in this work, we propose which descriptors are of impor-
tance and could be used in the training of machine learning algorithms for other systems.
Some of them—such as the composition of the cluster—were trivial to identify, while
others—such as the central atom of the cluster— were surprising.
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