
Citation: Guan, Z.; Zhang, J.; Zhou,

W.; Zhu, Y.; Liu, Z.; Zhang, Y.; Zhang,

Y. Mechanistic Details of the

Titanium-Mediated

Polycondensation Reaction of

Polyesters: A DFT Study. Catalysts

2023, 13, 1388. https://doi.org/

10.3390/catal13101388

Academic Editor: Aleksander

Filarowski

Received: 24 September 2023

Revised: 17 October 2023

Accepted: 21 October 2023

Published: 23 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Communication

Mechanistic Details of the Titanium-Mediated
Polycondensation Reaction of Polyesters: A DFT Study
Zhenyu Guan 1,2,3 , Jialong Zhang 3, Wenle Zhou 3, Youcai Zhu 4, Zhen Liu 4,* , Yumei Zhang 1,2,*
and Yue Zhang 1,2

1 State Key Laboratory for Modification of Chemical Fibbers and Polymer Materials, Donghua University,
Shanghai 201620, China; guanzhy.sshy@sinopec.com (Z.G.); zhangyue@dhu.edu.cn (Y.Z.)

2 College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
3 Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China;

zhangjialong.sshy@sinopec.com (J.Z.); zhouwl.sshy@sinopec.com (W.Z.)
4 School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;

y30200074@mail.ecust.edu.cn
* Correspondence: liuzhen@ecust.edu.cn (Z.L.); zhangym@dhu.edu.cn (Y.Z.)

Abstract: In this work, the mechanism of polyester polycondensation catalysed by titanium catalysts
was investigated using density functional theory (DFT). Three polyester polycondensation reaction
mechanisms, including the Lewis acid mechanism (M1), the coordination of the ester alkoxy oxygen
mechanism (M2) and the coordination of the carboxy oxygen mechanism (M3), were investigated.
Three reaction mechanisms for the polycondensation reaction of diethyl terephthalate (DET) were
investigated using Ti(OEt)4 and cationic Ti(OEt)3

+ as the catalyst. The results show that the polycon-
densation reaction of the Lewis acid mechanism exhibits similar energy barriers to the catalyst-free
condition (42.6 kcal/mol vs. 47.6 kcal/mol). Mechanism M3 gives the lowest energy barrier of
17.5 kcal/mol, indicating that Ti(OEt)4 is the active centre for the polycondensation reaction. The
catalytic efficiency of Ti(OEt)3

+ is lower than that of Ti(OEt)4 catalysts due to its higher DET distortion
energy (67.6 kcal/mol vs. 37.4 kcal/mol) by distortion–interaction analysis.

Keywords: polyester polycondensation; titanium catalysts; DFT; reaction mechanism; distortion–
interaction analysis

1. Introduction

Polyethylene terephthalate (PET) is one of the most common types of polyester poly-
mer material [1]. PET is widely used in fibres, containers, films, bottles, sheets, plastics
and other fields due to its excellent physical, chemical and mechanical properties [2–6].
PET is synthesized by esterification of purified terephthalic acid (PTA) and ethylene gly-
col (EG), followed by pre-polycondensation and final polycondensation under vacuum
conditions [7].

In the synthesis of PET, the catalyst not only influences the reaction rate of the ester-
ification and polycondensation, but also the side reactions during the synthesis process,
the reaction selectivity and the properties of the products [8,9]. The catalysts for the poly-
condensation reaction are of many types [10,11], mainly including antimony, germanium,
titanium and aluminium, etc. Antimony catalysts, known for their moderate activity, mini-
mal side reactions and relatively lower thermal degradation efficiency for PET, are the more
commonly used than Ge4+, Ti4+ and Sn4+ catalysts [12]. However, antimony catalysts can be
a source of environmental pollution due to their heavy metal content. Therefore, the focus
of modern polyester synthesis has been on the development of new polyester catalysts
that are efficient, non-toxic and non-polluting [13]. Some degradable co-polyesters, such
as poly(butylene succinate) (PBS) and poly(isosorbide-co-ethylene terephthalate) (PEIT),
have used titanium catalysts [14,15]. Although Ti-based catalysts are very active relative
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to antimony, the first generation of Ti-based catalysts were prone to hydrolysis, reducing
activity, and yielded polymers of poor colour. Therefore, a deeper understanding of the
mechanism undoubtedly provides a powerful aid for catalyst design.

In recent decades, a very large number of semi-empirical and non-empirical density
functionals (DFs) have been developed. This significant progress can be attributed to the
fact that DFT achieves a favourable equilibrium between precision and computational
expenditure. In light of our previous work [16], the zinc(II) catalyst plays a privileged
role in the transesterification reaction of acetoxyaryl and carboxylic acid, by DFT calcu-
lation. Meanwhile, the reaction mechanisms of polyester polycondensation and thermal
degradation have been widely investigated [11,17,18]. Three polyester polycondensation
mechanisms have been proposed (Figure 1). In one, the metal centre of the catalyst acts as
a Lewis acid and activates the carbonyl group, causing it to undergo nucleophilic attack
in the presence of the alcohol-based oxygen (M1 mechanism, Figure 1a). The exchange
reaction of the metal ligand with the OR end group of the oligomer is involved in the other
two mechanisms. The alkoxy oxygen atom of the ester is coordinated to the metal centre of
the catalyst (M2 mechanism, Figure 1b), or the carbonyl oxygen atom is coordinated to the
metal centre (M3 mechanism, Figure 1c). Similar to the Lewis acid polycondensation mecha-
nism, the carbonyl carbon atom is attacked by the alkoxy oxygen atom in the oligomer. The
Ti(OEt)4 catalysed mechanism of the PET polycondensation reaction has been investigated
by Shigemoto, and the transesterification reaction of DET with ethanol was used as a model
system [11]. The results show that the coordination mechanism of carboxy oxygen exhibits
an activation energy of 15.5 kcal/mol, by DFT calculations. The structure and energy of
the species in the PET polycondensation reaction can be identified by DFT, and it is con-
firmed that the high catalytic activity of titanium is not due to the Lewis acid mechanism.
Wang reported that a Ti4+ tetrahedrally coordinated MOF-catalytic Zr/Ti material can be
obtained with an activity close to that of Sb-based polyesters, and also verified by DFT that
the reaction obeys the coordination of the carboxy oxygen mechanism [19].
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Ti(OBu)4 titanate catalysts are the most commonly used catalysts in practical production. 
In light of our previous work [21], Ti(OEt)3+ cationic catalyst was found to be present in 
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(a) Lewis acid mechanism (M1); (b) coordination of the alkoxy oxygen mechanism (M2); (c) coordina-
tion of the carboxy oxygen mechanism (M3).

In addition, some novel titanium catalysts were designed and developed by DFT
methods, such as the catalytic synthesis of PEIT from organic acid–base compounds and
the catalytic mechanism of titanate esterification of amino-triphenol [20]. The Ti(OEt)4 and
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Ti(OBu)4 titanate catalysts are the most commonly used catalysts in practical production.
In light of our previous work [21], Ti(OEt)3

+ cationic catalyst was found to be present in
the polyester degradation process. However, the effect of Ti(OEt)3

+ cationic catalyst on the
polycondensation reaction has not been the subject of further investigation. Furthermore,
the possible deactivation of the titanium catalyst during polycondensation is an open
question and not fully understood because it was reported that the polymeric form of
titanium compounds as products of hydrolysis are still catalytically active [22,23]. There are
good reasons to suspect that the interconversion between Ti(OEt)4 and Ti(OEt)3

+ cationic
catalysts affects the polycondensation and thermal degradation reactions. Therefore, the
role of two titanium catalyst models in the polyester polycondensation reaction was theo-
retically investigated by using the DFT calculation. The mechanism of catalytic action was
elucidated by analysing the structure and energy of the substances involved in the reaction.

2. Results and Discussion
2.1. Polyester Polycondensation Reactions without Catalysts

First, the transesterification reaction of DET with ethanol was investigated as a
model system for the catalyst-free polycondensation reaction (Figure 2a). The molec-
ular electrostatic potential (MESP) analysis on the DET molecule shows that the car-
bonyl oxygen is most likely to be attacked by an electrophile in the polycondensation
of polyesters (Figure S1). Frontier orbital theory suggests that a chemical reaction occurs at
the location where the highest occupied molecular orbital (HOMO) of one reactant and the
lowest unoccupied molecular orbital (LUMO) of the other reactant can produce the greatest
overlap. Closer the energies of the HOMO and LUMO involved in the reaction indicate a
stronger interaction and a greater stabilization of the system. As shown in Figure 2b, it can
be seen that the LUMO of the reactant DET is mainly located in the π bonding orbitals of
the benzene ring, while the HOMO of the reactant ethanol is mainly located in the πC–O
antibonding orbitals. The HOMO energy of ethanol is –7.6 eV and is –2.1 eV for the LUMO
energy in DET, resulting in a HOMO–LUMO energy gap of 5.5 eV.
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energy gap.

In this reaction, the O1 atom of ethanol acts as a nucleophilic reagent to attack the car-
bonyl carbon (C1) atom of DET, resulting in the formation of a cyclic four-centre transition
state (Figure 3). The H1 atom of ethanol is simultaneously transferred to the O2 atom of the
ester group, and the corresponding product is formed as the C1–O2 bond is cleaved. The
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C1–O2 bond extends from 1.35 Å in Int1 to 1.73 Å in TS1, and the bond length of H1–O1
was extended from 0.97 Å to 1.21 Å. In the absence of a catalyst, the energy barrier of the
transesterification reaction between DET and ethanol is 47.6 kcal/mol.
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2.2. Molecular Modelling of Catalysts

The effects of two catalysts on the polyester polycondensation reaction were first
investigated, including titanium ethoxylate complex Ti(OEt)4 and its cationic Ti(OEt)3

+

(Figure 4). Ti(OEt)4 is a four-coordinated octahedral structure, whereas Ti(OEt)3
+ catalyst

with a cationic centre is a three-coordinated tetrahedral configuration. There are similar
C–O and C–C bond lengths for both catalysts. The Ti–O bond lengths are 1.80 Å and 1.75 Å
for Ti(OEt)4 and Ti(OEt)3

+ catalysts, respectively.
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2.3. Mechanism of Polyester Polycondensation Reaction Catalysed by Ti(OEt)4

In the M1 mechanism of polyester polycondensation, the product is formed in two
steps: (i) the carbonyl oxygen of the reactant DET is coordinated to the metal centre; (ii) the
oxygen atom of ethanol acts as a nucleophilic reagent to attack the carbonyl carbon atom
of DET, resulting in the formation of a cyclic four-centre transition state (Figure 5). The
hydrogen atom of ethanol is simultaneously transferred to the oxygen atom of the ester
group, and the corresponding product is formed as the C–O bond is cleaved. The energy
barrier of 42.6 kcal/mol must be overcome; this is slightly lower than that in the catalyst-
free reaction (47.6 kcal/mol), indicating a slight facilitating effect of the polycondensation
reaction in the M1 mechanism using Ti(OEt)4 as the catalyst.
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Since the M1 mechanism of Ti(OEt)4 could not effectively reduce the reaction energy
barrier for the polyester polycondensation, the M2 and M3 mechanisms were further
investigated. As shown in Figure 6, DET weakly coordinates to the Ti(OEt)4 catalyst with a
Ti–O bond length of 3.95 Å. Unlike the catalyst-free reaction, the corresponding product
is settled 13.9 kcal/mol below the reference structure Int3, indicating that the formation
of Int4 is thermodynamically favourable. The Ti–O1 bond extends from 1.79 Å in Int3 to
2.10 Å in TS3, while the bond length of Ti–O2 has been shortened to 2.04 Å. The energy
barrier for the polyester polycondensation reaction of DET catalysed by Ti(OEt)4 was only
26.8 kcal/mol, which was significantly lower than that of the polyester polycondensation
reaction without catalyst (47.6 kcal/mol), indicating that the Ti(OEt)4 centre promotes the
polyester polycondensation reaction following the M2 mechanism.
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to the metal centre. Subsequently, the oxygen atom of the Ti-centred ethoxylate acts
as a nucleophilic reagent to attack the carbonyl carbon atom of DET, resulting in the
formation of a cyclic four-centre transition state. This step requires overcoming an energy
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To understand the potential advantages of the M3 mechanism over the Ti(OEt)4
catalyst, frontier molecular orbital analysis was performed to analyse the stability of
the reactants. Figure 8 shows the HOMO, LUMO, and HOMO–LUMO energy gap of
intermediates 2 and 3. The HOMO–LUMO energy gap follows the order Int3 > Int2,
indicating that Int3 has higher chemical stability than Int2. Therefore, the energy barrier
of the M3 mechanism is more favourable than that of the M2 mechanism due to the
unstable reactant.
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+ cationic catalyst was found to be

present in the polyester degradation process when Ti(OEt)4 was added. The Ti(OEt)3
+

catalyst may be the active centre of the thermal degradation of polyester and obeys
the alkoxide coordination mechanism with a required overcoming energy barrier of
37.3 kcal/mol. To understand the effect of Ti(OEt)3

+ on the polyester polycondensation
reaction, the effect of Ti(OEt)3

+ on the activation energies of the reaction in the three mecha-
nisms was also investigated. Since the catalyst in the M1 mechanism only acts as a ligand
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As shown in Figure 10a, the energy barrier of the M2 mechanism catalysed by Ti(OEt)3
+

was calculated to be 24.1 kcal/mol, which is significantly lower than that of the polyester
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polycondensation reaction without catalyst in Figure 4 (47.6 kcal/mol), indicating that the
Ti(OEt)3

+ centre promotes the polyester polycondensation reaction in the M2 mechanism.
The change in bond lengths along the intrinsic reaction coordinate (IRC) is depicted in
Figure 10b. The corresponding optimized structures of the reactant, transition state and
product are summarized in Figure S2, where the cleavage of the C1–O1 bond in DET and
the formation of the C1–O2 bond were selected as the scanned coordinates. The C1–O1
(1.45 Å) on the DET is first broken, and then the C1 atom is bonded with the O2 atom at
a distance of 2.11 Å, where the energy barrier reaches the maximum. Subsequently, the
energy profile gradually decreases and the corresponding product is formed.
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The molecular structure of Ti(OEt)4 showed that the reactant EDB could not interact
effectively with the titanium centre due to the stable octahedral structure. As shown in
Figure 11, the bond length of the Ti–O bond in the three-coordinated Ti(OEt)3

+ catalyst
is 1.98 Å, which exhibits a strong interaction of DET with the catalyst. Subsequently,
the oxygen atom of the Ti-centred ethoxylate acts as a nucleophilic reagent to attack the
carbonyl carbon atom of DET, resulting in the formation of a cyclic four-centre transition
state. This step requires overcoming an energy barrier of 29.4 kcal/mol, and then the
Ti-centred ethoxylate is transferred into the DET molecule. Finally, the ethoxy group of the
DET molecule transfers to the metal centre to complete the catalytic cycle. Similarly, the
corresponding product is settled 0.3 kcal/mol below the reference structure Int6, indicating
that the formation of Int9 is thermodynamically favourable.
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2.5. Comparative Analysis of Reaction Mechanism

The turnover frequency (TOF) determines the efficiency of the catalyst. Sebastian [24]
proposed that the corresponding TOF values can be calculated from the Gibbs free energy
transitions in the catalytic reaction path with the following expression:

TOF =
kBT

h
e−∆G0

r /RT − 1

∑N
a,b=1 e(Ta−Ib−δG′a,b)/RT

(1)

δG′a,b = ∆G0
r i f a > b (2)

δG′a,b = 0 i f a ≤ b (3)

where Ta and Ib correspond to the Gibbs free energies of the transition states and interme-
diates in the reaction path, respectively; ∆Gr

0 is the Gibbs free energy difference between
reactants and products in the reaction path. The TOF is determined in most cases by one
transition state—the TOF determining transition state (TDTS), one intermediate—the TOF
determining intermediate (TDI), and by the reaction energy.

As shown in Table 1, both Ti(OEt)4 and Ti(OEt)3
+ catalysts exhibited significant promo-

tion of the polyester polycondensation reaction, with the reaction energy barriers decreasing
from 47.6 kcal/mol (Figure 3) under catalyst-free conditions to 19.9 and 24.1 kcal/mol, re-
spectively. The corresponding TOF values based on the calculated energies of each reaction
pathway were calculated and the results are listed in Table 1. It is clear that Ti(OEt)4 has
the largest TOF value of 3.5 × 104 s−1 in the M3 mechanism.

Table 1. Polycondensation reactions and their corresponding Gibbs free energies with different
titanium catalysts.

Ti(OEt)4 Ti(OEt)3
+

M1 Mechanism M2 Mechanism M3 Mechanism M1 Mechanism M2 Mechanism M3 Mechanism

TDI (kcal/mol) 0.0 0.0 0.0 0.0 0.0 0.0
TDTS (kcal/mol) 42.6 26.8 19.9 44.9 24.1 31.0

TOF(s−1) 1.3 × 10−5 47 3.5 × 104 1.4 × 10−6 630 0.85

In order to understand the differences in the reaction properties of the Ti(OEt)4 catalyst
and the cationic Ti(OEt)3

+ catalyst, the energy decomposition analyses for the transition
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states TS5 and TS7 were performed, as shown in Table 2. The Gibbs free energy is divided
into four components, namely the electronic energy E, the thermodynamic correction
Gthermo, the solvation correction ∆Gsol and the contribution to the change from the standard
state Ggas to Gsol. Since the contribution of the electronic energy accounts for more than
80% of the relative Gibbs free energy ∆G, the distortion–interaction model was used
to systematically analyse the electronic energy and investigate how the transition state
distortions and interactions control the activity of the reaction [25,26].

Table 2. Gibbs free energy decomposition analysis.

∆E (kcal/mol) ∆Gthermo (kcal/mol) ∆Gsol (kcal/mol) ∆Gstd (kcal/mol) ∆G (kcal/mol)

TS5 21.3 –1.0 3.8 0.0 24.1
TS7 16.1 3.9 –0.1 0.0 19.9

In this model, the potential energy surface ∆E(ζ) can be decomposed into two com-
ponents along the reaction coordinate ζ: the distortion energy ∆Edist (ζ), which depends
on the structural distortion experienced by the reactants, and the interactions between the
reactants ∆Eint (ζ) that result from the distortion:

∆E(ζ) = ∆Edist(ζ) + ∆Eint(ζ) (4)

The transition state is divided into two parts, namely the DET molecule with Ti(OEt)4
or the cationic Ti(OEt)3

+ catalyst. The main reason for the higher energy of TS5 than TS7 is
the high distortion energy of the DET; the C–O bond of DET extends from 1.33 Å in reactant
to 2.11 Å in transition state, resulting in higher electron energy (Figure 12). The catalyst of
TS5 has a greater interaction with the DET molecule compared to TS7 due to the shortened
Ti-O bond, but it is unable to counteract its excessively high distortion energy.
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3. Computational Details

All DFT calculations were performed using the Gaussian 09 program package [27].
The structures were fully optimized using the B3LYP-D3 function in combination with the
def2-SVP basis set and the polarizable continuum model (PCM) solvation model, using
1,2-ethanediol (ε = 40.2) as the model solvent [28–30]. The vibrational frequencies of each
geometry were calculated at the same level to confirm the nature of the optimized structure.
All minima on the potential energy surface showed no imaginary frequency, while the
transition state only showed one imaginary frequency representing the vibrational mode in
line with the corresponding reaction. To refine the electron energies (E), the large triple-zeta
def2-TZVP basis set was used to perform high-level single-point energy calculations for
all structures [31]. IRC calculations were performed to verify the connections between the
transition state and the corresponding reactant and the product [32].

Thermochemical analysis was performed at 1 atm and 523.15 K to obtain the thermal
correction of free energy (Gtherm) [33,34]. The contribution (Gstd) resulting from the change
in the standard state from Ggas to Gsol was also included. Therefore, the relative Gibbs free
energy (∆G) is given by ∆G = ∆E + ∆Gtherm + ∆Gsol + ∆Gstd. The HOMO and LUMO were
calculated in the Multiwfn package and plotted using the VMD 1.9.3 program [35,36].

4. Conclusions

In order to investigate the mechanism of catalysis in the PET polycondensation reac-
tion, DFT studies on DET molecule and Ti-based model catalysts were carried out. The
possibility of cationic catalysts as catalytic active centres for polyester polycondensation
reactions was examined.

In the absence of a catalyst, the transition state is a cyclic four-centred compound with
an energy barrier for the transesterification reaction of DET with ethanol of 47.6 kcal/mol.
Based on DFT calculations, both Ti(OEt)4 and cationic Ti(OEt)3

+ catalysts favoured the
polyester polycondensation reaction, and the lowest energy barrier was found in the M3
mechanism of the Ti(OEt)4 catalyst (19.9 kcal/mol). Based on the distortion–interaction
analysis, the Ti(OEt)4 catalyst was found to be superior to the Ti(OEt)3

+ catalyst due to
the lower DET distortion energy, resulting in the largest TOF value of 3.5 × 104 s−1 in the
M3 mechanism. However, this study was focused on investigating the performance of
two commonly used titanium catalysts. Our forthcoming research endeavours will encom-
pass an extensive high-throughput screening of alternative catalysts with the objective of
identifying superior and more efficient options.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13101388/s1, Figure S1: Molecular electrostatic potential
(MESP) on the 0.001 a.u. electron density isosurface for the DET molecule.; Figure S2: Optimized
structure of the reactant, transition state and product in M2 mechanism over Ti(OEt)3

+ catalyst.
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