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Abstract: CeO2 was prepared using a hydrothermal method, modified by radio-frequency plasma in
the form of glow discharge, and then the solid superacid S2O2−

8 /CeO2 was prepared by the impreg-
nation method. A series of properties such as pore structure was characterized by N2 adsorption–
desorption experiments, surface morphology was characterized by TEM, crystal phase was char-
acterized by XRD, and surface acidity of the catalyst was characterized by Py-IR and Hammett
titration. The methyl esterification reaction of tryptophan was used to evaluate the activity of the
solid superacid. The results showed that the catalyst modified by radio-frequency plasma had a
larger specific surface area, more surface oxygen vacancies, smaller particle size, and higher total
acid content. The yield of tryptophan methyl ester reached a higher level of 94.5% (150 ◦C, 1 MPa,
2 h), catalyzed by the modified S2O2−

8 /CeO2. This work verified the feasibility of plasma technology
in the field of catalytic activity enhancement of solid superacid.

Keywords: CeO2; radio-frequency plasma; solid superacid S2O2−
8 /CeO2; esterification of tryptophan

1. Introduction

Solid superacid refers to an acid that is stronger than 100% H2SO4 with a Hammett
function H0 < −11.93 [1]. Since Hino discovered the SO2−

4 /MxOy-type solid superacid
catalyst and applied it to the isomerization reaction of n-butane [2], many researchers
have investigated modified SO2−

4 /MxOy, using it in diverse reactions. SO2−
4 /MxOy is

composed of active component SO2−
4 and carrier MxOy. Wherein SO2−

4 can usually be
replaced by S2O2−

8 [3], as S2O2−
8 has a higher sulfur content under the same molar mass,

which is beneficial in improving catalyst activity, moreover, S2O2−
8 has stronger electron-

withdrawing capacity [4]. The modification of the carrier usually includes the introduction
of metals [5] (rare-earth elements [6]), metal oxides [7–9], molecular sieves [10] and so on.
However, the introduction of other components into the carrier will not only complicate
the preparation process but also increase the cost. Therefore, it has positive significance to
prepare S2O2−

8 /MxOy catalysts using specific modification technology without introducing
other elements.

Plasma is an ionized gas composed of electrons, ions, and neutral particles, whose
overall state is approximately electrically neutral [11], with positive and negative ions pro-
duced by the ionization of atoms and atomic clusters [12]. According to the temperature of
plasma gas, it can be divided into low-temperature plasma (<103 K) and high-temperature
plasma (>109 K) [13]. Wherein the gas in low-temperature plasma is only partially ion-
ized, which contains thermal equilibrium plasma and non-thermal equilibrium plasma
as well. In non-thermal equilibrium plasma, the electron temperature can be as high as
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103 K, but the temperature of heavy particles (ions, atoms, etc.) is only 300 K, which is
close to room temperature, mainly including glow discharge, corona discharge, dielec-
tric barrier discharge, etc. [14]. The power drive mode mainly warrants high-frequency
pulse, radio frequency, microwave, etc. An electric field on the surface of materials can be
formed by low-temperature plasma, due to its smaller electron mass and faster velocity,
causing mutual repulsion and improving the dispersion of particles [15]. Consequently,
low-temperature plasma can be applied to catalyst modification. To illustrate this, Wang
et al. prepared and modified CeO2 nanorod-loaded Ni catalysts by glow discharge plasma,
and the results showed this treatment can enhance the dispersion of Ni, improving the
interaction of Ni–Ce bonds and inhibiting the formation of carbon deposition in the reaction
process. [16] Li and fellows modified the Pd precursor with non-thermal radio frequency
(RF) plasma. The results showed that the precursor modified by RF plasma not only was
effectively reduced to Pd0, but also improved the dispersion of Pd0 particles [17].

The above research mainly used plasma to enhance chemical bond interactions
between metal oxide in the precursor, but there are few studies on the preparation of
S2O2−

8 /MxOy solid superacid by modifying the carrier MxOy with plasma treatment. As
low-temperature plasma also has the function of etching and creating vacancies, increasing
the number of active sites on the materials surface. For instance, Xu and colleagues [18]
used Ar RF plasma to treat Co3O4 nano-sheets, which can not only create etching phe-
nomenon on nano-sheets, but also produce oxygen vacancies, thus deducing RF plasma can
assist in the preparation of CeO2 with more oxygen vacancies [19]. Hence, RF plasma has
the application potential for the modification of carrier CeO2, applying for the preparation
of solid superacid to some extent.

In recent years, α-Aromatic amino acid esters (AAAE) and their derivatives have
been widely used in intermediates of drug synthesis, food additives, and other indus-
tries [20–22]. Tryptophan methyl ester (TrpOMe, the methyl esterification reaction of
tryptophan is shown in Figure 1), as one compound of the AAAE, is a key platform
compound for the synthesis of sweeteners and the manufacturing of fluorescent sen-
sors [23]. However, owing to amphoteric dissociations, leading to the esterification
reaction of tryptophan (Trp) difficulties under mild conditions, therefore, its reaction
equilibrium needs to be achieved with the assistance of strong acid catalysts.
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Figure 1. The methyl esterification reaction of Trp.

Based on the above background, nano-CeO2 was prepared using the hydrothermal
method. After the modification of RF plasma, S2O2−

8 was loaded onto nano-CeO2 and
then calcined (at 600 ◦C) to manufacture S2O2−

8 /CeO2-RF-600 (SC-RF-600) solid superacid,
which was used for the esterification of Trp. Finally, the properties of SC-RF-600, such
as pore structure, surface morphology, crystal phase, and surface acidity, were evaluated
and showed that RF plasma technology had a positive effect on the esterification ability
of SC-RF-600 over Trp, thus facilitating a successful application of plasma technology in
enhancing the catalytic activity of a solid superacid.
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2. Results and Discussion
2.1. Hammett Titration

In the Hammett titration experiment of SC-RF-600, the results and color change of
the catalyst surface are illustrated in Table 1 and Figure 2, respectively. The plus sign
(+) indicated that the acid strength of the solid superacid was higher than that of the
indicator. From the titration experiment, it was confirmed that the H0 range of SC-RF-600
was H0 ≤ −14.5, as the H0 of concentrated H2SO4 is ~10.44 [24]. SC-RF-600 therefore was a
solid superacid.

Table 1. Acid strengths of SC-RF-600 using the titration of a different Hammett indicator.

Indicator 2,4-DNFB 3-NT

H0 ≤−14.5 ≤−12.0
Result + +

Note: +, The color of the catalyst surface changed from light gray to yellow.
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Figure 2. Hammett titration of SC-RF-600: (a) before titration, (b) after 3-NT titration, (c) after
2,4-DNFB titration.

2.2. XRD

The XRD spectra of these samples are shown in Figure 3. The diffraction peaks
at 2θ of 28.5◦, 33.1◦, 47.5◦, 56.3◦, 59.1◦, 69.4◦, 76.7◦, 79.1◦, and 88.4◦ were assigned to
corresponding (111), (200), (220), (311), (222), (400), (331), (420), and (422) crystal planes
of CeO2, consistent with JCPDS card No. 043-1002. It is widely acknowledged that intact
crystal forms are one of the necessary conditions for the formation of a superacid [25].
As the temperature increased, the characteristic diffraction peaks of CeO2 were thereby
enhanced, and the crystal form tended to be regular, showing a face-centered cubic fluorite
structure. Compared with SC-600, the full width at half maximum (FWHM) of SC-RF-600
was larger. According to the Scherrer equation (Equation (1)) [26], the larger value of
FWHM of SC-RF-600, the smaller the particle size of SC-RF-600.

DC =
0.89λ

Bcosθ
(1)

where, B was FWHM; λ referred to X-ray wavelength; θ was the diffraction angle.
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The average particle size of SC-400, SC-500, SC-600, and SC-RF-600 was 11.6 nm,
12.1 nm, 14.2 nm, and 12.6 nm, respectively, as calculated by Jade 6 6. 5. 26 (Materials
Data Inc., Livermore, CA, USA) using Equation (1) based on others’ work [27,28]. With the
increase in temperature, grain size and crystallinity were increased. When compared with
the unmodified catalyst, the grain size of the catalyst modified by RF plasma was smaller.
This showed that CeO2 modified by RF plasma effectively inhibited grain growth. This may
be related to the fact that electrons were gathered around CeO2 after RF plasma treatment,
which made particles mutually repel, thus improving the dispersion of particles [15].

2.3. HR-TEM

The two type catalysts were tested by HR-TEM, and microscopic morphology images
are shown in Figure 4, with the particle size distribution of SC-400, SC-500, SC-600, and
SC-RF-600 shown in Figure 4a,c,e,g, respectively. It was observed that CeO2 was mainly
distributed in the form of rods, with average transverse diameters (~50 particles were
measured) of 10.05 nm, 11.33 nm, 12.33 nm, and 10.36 nm, respectively, which generated
the same trend and was consistent with XRD result (11.6 nm, 12.1 nm, 14.2 nm, and 12.6 nm,
respectively). The longitudinal length was uneven, which was in the range of 27.7–143.6 nm,
22.5–223.5 nm, 28.9–142.3 nm, and 40.9–269.8 nm, respectively. Undoubtedly, the surface
of CeO2 nanorods modified by RF plasma possessed a larger number of pits compared
with the other three samples, which was caused by the etching effects of high-energy
particles in RF plasma, continuously bombarding the CeO2 surface. Therefore, the specific
surface area of CeO2 was increased, and caused the dislocation of CeO2 lattice defects and
oxygen vacancies. A shown, Figure 4b,d,f,h corresponded to the HR-TEM images of the
four catalysts. Combined with the analysis of Fast Fourier transform (FFT), three lattice
fringes of (111), (200), and (220) were clearly observed, with lattice spacings of 0.31 nm,
0.27 nm, and 0.19 nm, respectively [29]. Wherein CeO2 nanorods mainly exposed the (110)
and (100) planes, showed a one-dimensional growth structure with preferential growth
along the (110) crystal direction, and provided CeO2 nanorods with a higher lattice oxygen
mobility [30].
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2.4. FT-IR

The FT-IR spectra of the catalysts are shown in Figure 5. At 1627 cm−1, we observed
the bending vibration peak of physically adsorbed water on the sample surface [31]. The
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band at 900–1300 cm−1 corresponded to O=S=O and O-S-O anti-symmetric stretching
vibration and symmetric stretching vibration peak. The broad bands at 1030–1080 cm−1,
1120–1150 cm−1, and 1396 cm−1 are indexed to the characteristic peaks of S2O2−

8 /MxOy
solid superacid [10,32]. The absorption peak at 985 cm−1 is related to the symmetrical
tensile vibration of S-O, which is the characteristic peak of sulfate metal oxide [5,33]. The
broad bands at 1280 cm−1 and 1164 cm−1 correspond to the antisymmetric O=S=O tensile
vibration on persulfate ions. From the above analysis, the characteristic vibrational peaks of
S=O and S-O bonds confirmed the existence of a superacid structure in the four samples [34].
In S2O2−

8 /MxOy, the coordination form is distinguished according to the position corre-
sponding to the infrared absorption of S=O stretching vibration. The metal ions of MxOy

and S2O2−
8 were combined in the form of bridging bi-coordination with an absorption peak

above 1200 cm−1 or chelate bi-coordination with an absorption peak below 1200 cm−1 [35].
The three catalysts had absorption peaks above 1200 cm−1 and below 1200 cm−1 in
Figure 5b–d, except for SC-400 in Figure 5a, demonstrating the acid center structure was
formed with the coordination of bridging bi-coordination and chelate bi-coordination. In
comparison, SC-RF-600 in Figure 5d had stronger absorption peaks at 1396 cm−1, 1280 cm−1,
1120 cm−1, and 1048 cm−1. This may be caused by the increase in oxygen vacancies after
RF modification, hence forming more coordination bonds.
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2.5. Py-IR

Py-IR analysis was carried out to evaluate the surface acid density, and the results
are shown in Figure 6. It was found that the trend of acid distributions was consistent
at 150 ◦C and 300 ◦C (Figure S1 and Table S1), hence, we just adopted the test result
at 150 ◦C close to the experimental environment. The bands at about 1550 cm−1 and
1630 cm−1 represent Brönsted acid (BA) sites; the bands at about 1440 cm−1 and
1600 cm−1 belong to Lewis acid (LA) sites; and the band at around 1490 cm−1 corresponds
to BA sites and/or LA sites [36]. The acid density of each catalyst is shown in Table 2: as
the temperature increased, the density of BA was increased, while the density of LA and
total acid were increased firstly and then decreased (Entrys 1–3). This may be due to an
increase in particle size, reduction of specific surface area and oxygen vacancies caused by
calcination at the higher temperature (see Sections 2.2 and 2.3 for detailed analysis), thereby
resulting in a decrease in LA sites, thus reducing LA sites. The BA density/LA density
value of SC-RF-600 was low, but the BA density, LA density, and total acid density were the
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largest (Entry 4). Additionally, the BA and LA density of SC-600 was 14.52 µmol·g−1 and
30.80 µmol·g−1 (Entry 3), respectively. However, the BA density of SC-RF-600 modified
by RF plasma remained basically unchanged at 13.83 µmol·g−1, and the LA density was
increased and almost doubled to 65.66 µmol·g−1 (Entry 4). From the above analysis, RF
had a significant effect on the LA density of the solid superacid.
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Table 2. Summary of acid density of the catalysts.

Entry Cat. BA Density
(µmol·g−1)

LA Density
(µmol·g−1)

Total Acid Density
(µmol·g−1)

BA Density/LA
Density

1 SC-400 7.33 36.56 43.89 0.20
2 SC-500 9.81 38.84 48.65 0.25
3 SC-600 14.52 30.80 45.32 0.47
4 SC-RF-600 13.83 65.66 79.49 0.21

2.6. N2 Adsorption–Desorption Experiments

The N2 adsorption–desorption isotherms of the samples tested twice are depicted
in Figure 7. In Figure 7a,b, according to the classification of the IUPAC, these samples
presented atypical type IV isotherms, along with the hysteresis loop isotherm which had
no obvious saturated adsorption platform and belonged to the H3 type [5], indicating that
the stacking of nanorods led to irregular pore structures. The pore size distributions of the
catalyst are displayed in Figure 7c,d; the average pore size of SC-RF-600 was ~36.01 nm
and was ascribed to mesoporous structure. The pore structure properties of the catalyst are
illustrated in Table 3. As the temperature increased, the pore volume increased (Entrys 1–3).
As the crystallinity of SC-400 and SC-500 was low, and they possessed more amorphous
CeO2 when calcined at 400 ◦C and 500 ◦C, hence the specific surface area was increased
accordingly (Entrys 1 and 2). However, part of the micropores over CeO2 collapsed into
large pores at 600 ◦C, as a higher temperature can cause grain growth and reduce the
specific surface area [37]. Noticeably, SC-RF-600 had the largest specific surface area
(37.60 m2/g, Entry 4), the pore volume of SC-RF-600 (0.33 cm3/g, Entry 4) was larger,
but the pore size was smaller (36.01 nm, Entry 4) when compared with those of SC-600
(36.08 nm, Entry 3). In summary, RF modification could effectively avoid the agglomeration
of CeO2 caused by high temperatures, improving the dispersion of CeO2 and increasing
the specific surface area accordingly.
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Table 3. Structural parameters of the catalysts.

Entry Sample
SBET

Average
Value (m2/g)

SBET
Standard
Error (%)

Pore Volume
Average Value

(cm3/g)

Pore Volume
Standard
Error (%)

Pore Size
Average

Value (nm)

Pore Size
Standard
Error (%)

1 SC-400 25.61 2.81 0.16 0.01 25.82 2.99
2 SC-500 28.87 1.41 0.19 0 26.77 1.40
3 SC-600 23.46 2.23 0.21 0 36.08 3.81
4 SC-RF-600 37.60 1.31 0.33 0.01 36.01 2.00

2.7. XPS

To further characterize the chemical composition of the catalyst surface, Ce, S, O and C
elements in sample were analyzed by XPS, as shown in Figure 8. In Figure 8a, the Ce 3d can
be deconvoluted into 10 Ce 3d peaks generated from the pairs of spin–orbit doublets. The
six peaks at 882.4 eV, 888.7 eV, 898.67 eV, 900.1 eV, 907.7 eV, and 916.6 eV were assigned to
Ce4+, and the four peaks at 880.2 eV, 884.6 eV, 897.6 eV, and 902.6 eV were indexed to Ce3+.
The results showed that Ce in the catalyst mainly existed with +4 valence [Ce3+/(Ce3+ +
Ce4+) = 31.36%] [19,38].
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Figure 8. XPS spectrum of representative SC-RF-600: (a) Ce 3d spectra, (b) S 2p spectra, (c) O 1s spectra.

As indicated, Figure 8b shows the XPS spectra of S 2p, compared with the binding
energy of S 2p in pristine (NH4)2S2O8 (S 2p3/2 170.8 eV and S 2p1/2 171.2 eV) [39]. The
binding energy of S 2p3/2 and S 2p1/2 in all samples decreased; as the density of the
electron-cloud around the S atom was increased, correspondingly, the acidity of the catalyst
was increased. Among them, the binding energy of S 2p in SC-RF-600 (S 2p3/2 168.1 eV and
S 2p1/2 169.3 eV) was the lowest, which showed that RF plasma modification effectively
enhanced Lewis acidity.

The O 1s spectra (Figure 8c) are deconvoluted into three different near-Gaussian sub-
peaks, where the binding energies are 528.8 eV, 531.1 eV, and 532.2 eV, respectively [19]. The
binding energy at 528.8 eV was attributed to the lattice oxygen (OL) of CeO2; the binding
energy at 532.2 eV represented oxygen vacancy (OV), indicating that Ce had unsaturated
coordination sites to create LA sites, and the binding energy at 531.1 eV represented
chemisorbed oxygen (OC) or OH species [31,40].

Based on XPS measurements, Table 4 summarizes the relative content of different
elements on the sample surface (at%/at%). With increasing temperature, the amount of OV
and the relative content of Ce3+ were increased, and the content of S was decreased (Entrys
1–3), because the temperature increased, the oxygen in the lattice was separated to form OV,
and part of S2O2−

8 decomposed at high temperature. Compared with SC-600 (Entry 3), the
content of carbon over SC-RF-600 (Entry 4) was decreased by 19.4% and the content of OV
was increased by 2.59%, indicating that CeO2 modified by RF plasma effectively reduced
carbon contamination over the catalyst surface, increased the content of OV, and facilitated
the formation of surface LA. The relative content of Ce3+ was increased by 2.63%, and
Ce3+ induced OV generation in the material. The above analysis showed that RF plasma
modification effectively increased OV content and LA sites.
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Table 4. Elemental contents of the samples.

Entry Sample
Atomic Content (at%)

C 1s Ce 3d O 1S S 2p OV Ce3+/(Ce3+ + Ce4+)

1 SC-400 35.47 9.78 49.16 5.58 21.61 26.44
3 SC-500 34.69 10.85 49.32 5.13 24.55 26.84
3 SC-600 31.35 11.83 51.95 4.88 28.52 28.73

4 SC-RF-
600 11.95 17.42 58.37 4.64 31.11 31.36

In summary, the results above showed that CeO2 was modified by RF plasma and then
calcined at 600 ◦C, which led to a higher crystallinity of the catalyst, more oxygen vacancies
formed, and a larger specific surface area via XRD and HR-TEM analysis. Combining FT-IR,
Py-IR, and BET analysis, it was found that SC-RF-600 formed more O=S=O characteristic
functional groups, higher Lewis acid density, and larger specific surface area, which verified
the crystal structure and the microstructure of the catalyst. XPS analysis results further
proved that RF plasma modified-CeO2 formed more oxygen vacancies.

2.8. Catalytic Performance

First, the effects of different process parameters on the product yield (mol%) were
studied using the single variable method. Figure 9a shows the effect of N2 pressure
(0–2 MPa) on the reaction. First, the TrpOMe (see its HPLC chromatogram in Figure S2)
yield reached 43% at 0 MPa, which was caused by partial auto-catalytic esterification, apart
from SC-RF-600 catalysis at this reaction condition, and this was confirmed by data in
Figure 9c. Then, when the pressure increased from 0 MPa to 1 MPa (at 150 ◦C and 9 h), the
yield reached a high level (85.4%). Appropriately increasing the pressure was conducive
to overcoming steric effects [41] and improving the product yield. Therefore, 1 MPa was
selected as the appropriate reaction pressure.

Figure 9b shows the effect of temperature (135–195 ◦C) on the yield of TrpOMe.
At 1 MPa and 9 h, the yield of TrpOMe reached 83.7% when the temperature rose to
150 ◦C, and decreased to 81.6% when the temperature ranged from 150 ◦C to 195 ◦C. The
decrease in TrpOMe yield during the above period was due to the activity decrease caused
by the carbon deposition, which was formed owing to the higher acidity over catalyst
surface under the higher temperature [42]. Therefore, 150 ◦C was selected as the optimal
reaction temperature.

At 150 ◦C and 1 MPa, sampling at intervals between 1–6 h was adopted to collect the
product yield catalyzed by the four catalysts, as shown in Figure 9c. It depicted that the
esterification equilibrium was reached at around 3–5 h for the four catalysts, with the Trp
conversion rate > 99 wt.% during 2–6 h (determined by calculating the dry weight difference
of Trp and catalyst mixture before and after the reaction in Figure S3). But the reaction
equilibrium with the highest TrpOMe yield was achieved for SC-RF-600 (followed by the
catalytic performance of SC-600, SC-500, and SC-400), with the TrpOMe yield reaching
94.5%, apparently shortened the reaction time compared with consuming 20 h catalyzed
by H2SO4 and dimethyl carbonate and 24 h catalyzed by thionyl chloride, accompanied
with environmental polluting [43,44]. Reaction rates were decreasing with the increase in
conversion before the equilibriums, then all TrpOMe yields were decreased after 6 h because
both Trp and TrpOMe were destroyed over a long time and strong acid environment.
Additionally, the blank control group without a catalyst maintained the lowest level in
comparison with the others, as Trp was able to undergo a certain degree of auto-catalysis
(with the highest yield of 43.2% at 2.5 h) under reaction conditions. Consequently, the solid
superacid in our work demonstrated a better ability to catalyze the esterification of Trp.
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Figure 9. Variation in process parameters: (a) Product yield (mol%) over SC-600 vs. N2 pressure
(MPa), reaction conditions: 50 mg catalyst, 0.0025 mol Trp, 0.5 mol methanol, 150 ◦C, 9 h, 500 rpm;
(b) product yield (mol%) over SC-600 vs. temperature (◦C), reaction conditions: 50 mg catalyst,
0.0025 mol Trp, 0.5 mol methanol, 1 MPa N2, 9 h, 500 rpm; (c) TrpOMe yield (mol%) over the different
solid superacid, reaction conditions: 50 mg catalyst, 0.0025 mol Trp, 0.5 mol methanol, 150 ◦C, 1 MPa
N2, 6 h, 500 rpm; (d) the effect of rotating speed on the product yield, reaction conditions: 50 mg
catalyst, 0.0025 mol Trp, 0.5 mol methanol, 1 MPa N2, 6 h.

Lastly, even though the rotating speed (from 500 rpm to 700 rpm) was increased, it
did not have a significant influence on the reaction rate in Figure 9d. Therefore, we will
focus on reducing catalyst particle size and increasing catalyst pore diameter to eliminate
the influence of internal diffusion on the reaction rate in future studies.

From the above results, the catalyst modified by RF plasma effectively improved the
esterification reaction rate of Trp and the esterification yield.

In term of the by-product during Trp esterification, such as L-Tryptophan, N-ethoxy
carbonyl-, ethyl ester and 3-(1-methoxyvinyl)-1,9-dimethyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]
indole (Figure S4), which were produced via excessive dehydration of TyrOMe with
methanol solvent under a highly acidic environment.

3. Experiments
3.1. Materials

Ce(NO3)3·6H2O (purity > 99.5%), NaOH (purity > 97%), (NH4)2S2O8 (purity > 99%,
electrophoretic grade), CH3OH (AR, purity > 99.5%), and 2, 4-Dinitrofluorobenzene
(2,4-DNFB, GC, purity > 98.0%) were purchased from Shanghai Macklin Biochemical
Co., Ltd., Shanghai, China. 3-Nitrotoluene (3-NT, GC, purity > 99.0%) was purchased from
Shanghai Xianding Biotechnology Co., Ltd., Shanghai, China.
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3.2. Catalyst Preparation

CeO2 nanorods were synthesized by the hydrothermal method [45]: firstly, 14.40 g
of NaOH was dissolved in 20 mL of deionized water (DIW), 1.30 g of Ce(NO3)3·6H2O
was dissolved in 40 mL of DIW; and then the two solutions were mixed in a Teflon liner
and stirred magnetically (SLR, Wiggens, Straubenhardt, Germany) for 30 min; finally,
the Teflon liner was sealed in a stainless steel hydrothermal autoclave (KH-100, Mojina
Instrument Manufacturing Co., Ltd., Xi’an, China) and kept at 100 ◦C for 24 h. The pre-
cipitate was collected, washed with DIW until pH = 7, washed twice with anhydrous
ethanol successively, and then dried in an oven (DZF-6050AB, Shanghai Shanzhi Instru-
ment Equipment Co., Ltd., Shanghai, China) at 60 ◦C for 16 h to obtain the final CeO2.
Lastly, CeO2 was modified with RF plasma generator (self-made, power: 90 W, frequency:
1.86 MHz) in an Ar atmosphere (purity: 99.999%, flow rate: 0.2 L·min−1) for 30 min.
As shown in Figure 10, the RF plasma system was equipped with a DC power supply
(DQ-2000-400, Nantong Dingqi Electric Co., Ltd., Nantong, China), a signal generator
(DG4E211, Puyuan Precision Technology Co., Ltd., Beijing, China), and a vacuum pump
(2XZ-2, Shanghai Haoxin Electromechanical Equipment Co., Ltd., Shanghai, China).
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Figure 10. A scheme showing CeO2 by RF plasma modification.

SC-RF-600 was synthesized as follows: first, 11.41 g of (NH4)2S2O8 was dissolved in
50 mL of DIW to prepare (NH4)2S2O8 solution with 1 mol·L−1 and 1.72 g of CeO2 was
introduced and stirred evenly. The mixture was sonicated (800 W, 20 KHz, 30% amplitude,
Soncis VXC800, Soncis & Materials, INC., Newtown, CT, USA) for 10 min; then, the catalyst
precursor was obtained by stirring for 30 min, standing for 3 h, centrifugation (TG16-
WS, Beijing Hongda Hengye Technology Co., Ltd., Beijing, China, 10,000 rpm, 10 min),
and vacuum-dried at 110 ◦C for 3 h. Finally, the catalyst SC-RF-600 was acquired by
calcining the precursor at 600 ◦C for 4 h (Muffle furnace, GWM4-1200L7, Beijing Saiou
Huachuang Technology Co., Ltd., Beijing, China). S2O2−

8 /CeO2-400 (SC-400), S2O2−
8 /CeO2-

500 (SC-500), S2O2−
8 /CeO2-600 (SC-600) were prepared with CeO2 as the carrier by the

same method.
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3.3. Catalyst Characterization

The acid strengths of the catalysts were examined using Hammett indicators. Typically,
the catalyst was heated under vacuum at 200 ◦C for 2 h. The titration was carried out
by dispersing 25 mg catalyst, 0.25 mL dry benzene, and 50 mg Hammett indicator in a
tube, heating in an oil bath (60 ◦C) for 30 min, and then observing the color change of the
catalysts surface.

X-ray diffraction (XRD, X’Pert-ProMPD, PANalytical Company, Almelo, Netherlands)
analysis was performed with Cu Kα radiation (λ = 0.154 nm) at 40 mA and 40 kV, to analyze
solid superacid crystallinity in the 2θ range of 5–90◦ (RT).

Structural information was obtained using high resolution transmission electron
microscopy (HR-TEM), with a high angle annular dark-field scanning transmission electron
microscope (JEM-2100, JEOL Ltd., Tokyo, Japan).

N2 adsorption–desorption experiments were performed at −196 ◦C (Tristar II 3020
3.02, Micromeritics Instrument Co., Ltd., Norcross, GA, USA). The specific surface area
of each catalyst was calculated using the Brunauer–Emmett–Teller (BET) method for the
isotherms, while pore size distribution was calculated using the Barrett–Joyner–Halenda
(BJH) model of the adsorption branch of isotherms.

X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher Scientific Inc.,
Waltham, MA, USA) of samples was conducted using X-ray radiation generated by Al Kα

(1486.6 eV) and analyzed in a vacuum chamber. Binding energy (BE) data were analyzed
using Advantage software (version 5.984, Thermo Fisher Scientific Inc.) following ISO
15,472 [46], and calibrated with a carbon reference (C1s = 284.8 eV) of aliphatic hydrocarbon.

The catalysts were characterized by Fourier transform infrared spectroscopy (FT-IR;
Nicolet 6700, Nicolet Instrument Company, Orlando, FL, USA) using the KBr pellet method
(2 cm−1 resolution from 400 to 4000 cm−1) in transmission mode, with spectra normalized
to the maximal value. The acid density (µmol·g−1) of samples was examined using a
pyridine absorbed infrared spectrometer (Py-IR). Each sample was vacuum-activated (at
200 ◦C) for 0.5 h, and then the sample was cooled to 50 ◦C to record the background
spectrum. Firstly, the catalyst was exposed to pyridine vapor for 15 min. Afterward, the
Py-IR spectrum was acquired after pyridine desorption by evacuation for 0.5 h (at 150 ◦C
and 300 ◦C). Finally, the Py-IR spectrum was recorded by subtracting the background
spectrum (RT).

3.4. Catalytic Esterification

First, 50 mg catalyst was mixed with 0.0025 mol Trp, and the blend added to 0.5 mol
methanol in an autoclave (50 mL, MSC50-P5-T3, Hefei Safety Instrument Co., Ltd., Hefei,
China) equipped with a sampling reflux device. Then, the autoclave was purged by N2
(purity ≥ 99.9%) three times to eliminate residual air. The experiment was conducted
at a specific temperature and N2 pressure (RT) with a rotating speed of 500 rpm, and
adopted a time-sampling method to calculate TrpOMe yield. Subsequently, the reaction
was terminated using an ice-water bath with the post-reaction mixture and the catalyst
separated through a nylon Millipore filter (0.22 µm, Tianjin Jinteng Instrument Factory,
Tianjin, China). A comparison of physical properties (viscosity, density, and water content)
of obtained TrpOMe and commercial TrpOMe is listed in Table S2. It was discovered that
these parameters for the two chemicals were quite close, indicating the obtained product
had a high purity.

A qualitative analysis of the filtrate was conducted using GC-MS (Thermo Fisher
Scientific Inc., Waltham, MA, USA), which consisted of a Trace 1310 gas chromatograph
coupled with a TSQ 9000 triple quadrupole mass spectrometer. The TrpOMe yield was
quantitated by HPLC (Infinity II), equipped with a C18 column (Agilent Eclipse Plus,
4.6 × 250 mm, 5 µm) and UV-DAD detection (G7115, Agilent Technology, Santa Clara, CA,
USA). Chromatographic conditions: column temperature 50 ◦C, mobile phase containing
CH3OH and 5 mM CH3COONH4 (2:3, V/V), and detection wavelength 280 nm. The
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concentration of TrpOMe (mg·mL−1) was quantified by external standard calibration
e (R2 > 0.999). The yield calculation is shown in Equation (2):

Y(wt.%) =
c·V

M·n·1000
× 100 (2)

where, Y was the yield of TrpOMe (wt.%); C was the concentration of TrpOMe (mg·mL−1);
V was the volume of reaction mixture (mL); M was the molecular mass of TrpOMe; n was
the amount of Trp (mol) added.

4. Conclusions

Here, the SC-RF-600 solid superacid was successfully prepared using a combination
of hydrothermal methods and RF plasma modification. It was found that the calcination
temperature mainly affected the crystallinity and acid density of the solid superacid. With
the increase in temperature, the crystal size of the catalyst gradually became larger and
the crystal shape tended to be complete, which was more conducive to the formation
of a solid superacid structure. More importantly, RF plasma improved the dispersion,
prevented particle agglomeration/grain growth, increased the specific surface area, and
increased oxygen vacancy concentration of the catalyst effectively due to its special etching
effects. Finally, SC-RF-600 modified by RF plasma had a better catalytic performance on
the esterification of Trp than SC-600 prepared by a conventional method, and the yield
of TrpOMe reached 94.5% at 150 ◦C and 1 MPa for 2 h over SC-RF-600. This work has
expanded the application potential of plasma technology in the field of solid superacid
catalyst preparation/modification, and this type of catalyst can promote the esterification
reaction of aromatic amino acids with amphoteric dissociation effects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13101385/s1, Figure S1: Py-IR spectra of the catalysts: (a) SC-
400, (b) SC-500, (c) SC-600 and (d) SC-RF-600; Figure S2: HPLC chromatography of the reaction;
Figure S3: Trp conversion rate during the Trp esterification; Figure S4: GC-MS of the by-products
from the esterification reaction of L-Trp, with corresponding by-products structures liste; Table S1:
The summary of acid density over the catalysts; Table S2: Comparison of physical properties between
the obtained TrpOMe and commercial TrpOMe.
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