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Abstract: Tuning the coordination environment centering metal atoms has been regarded as a promis-
ing strategy to promote the activities of noble metal single-atom catalysts (SACs). In the present work,
first-principle calculations are employed to explore the oxygen evolution reaction (OER) performance
of Ir and Ru SACs with chemical coordination being nitrogen (M-N4-C), oxygen (M-O4-C), and car-
bon (M-C4-C) in graphene, respectively. A “three-step” strategy was implemented by progressively
investigating these metrics (stability, catalytic activity, structure–activity relationship). A volcano plot
of reactivity is established by using the adsorption-free energy of O* (∆GO*) as a theoretical descriptor.
The intrinsic OER activity is IrN4-C > IrO4-C > RuO4-C > RuN4-C > IrC4-C > RuC4-C. The in-depth
tuning mechanism of ∆GO* can be indicated and interpreted by the d-band centers of the active sites
and the crystal orbital Hamilton population analysis of metal-oxygen bonds, respectively.

Keywords: noble metal single-atom catalysts; structure–activity relationship; density functional
theory; oxygen evolution reaction; theoretical descriptor

1. Introduction

Electrochemical water splitting is a promising approach for producing highly purified
hydrogen using renewable electricity, encompassing both the hydrogen evolution reac-
tion (HER) and the oxygen evolution reaction (OER) [1–5]. Nevertheless, the large-scale
application of electrolytic water splitting is hindered by the absence of highly active and
cost-effective electrocatalysts to overcome the slow kinetics of the OER. While the prevalent
RuO2 and IrO2 electrocatalysts are active in driving OER, their large-scale utilization in
water-splitting devices is limited by the scarcity [6–8]. As a result, atomically dispersed
Ir and Ru atoms fixed on various supporting matrices have attracted extensive attention
due to their advantages in minimizing the usage of noble metals and promoting reaction
kinetics in OER [9,10]. However, it is noteworthy that carbonaceous supports, renowned
for their exceptional conductivity and plentiful defects, provide distinct advantages in
supporting single-atom electrocatalysts. These heteroatoms (e.g., N, O, S, P) can be inten-
tionally incorporated and controlled using experimental techniques to achieve the desirable
OER performance. Additionally, these heteroatoms can establish stable coordination with
the single metal atom, to a certain extent, impeding their aggregation during both the
reaction and preparation processes [11]. Interestingly, in this field, the local environments
of metal atoms play a crucial role in not only anchoring metal atoms, but also tuning
the electronic properties of active sites [12–15]. In recent years, tuning the coordination
shell of single-atom catalysts (SACs) using hetero atoms has been widely reported [16–22].
For instance, Wang et al. demonstrated that Co-N2C2 exhibited higher selectivity and
activity than those of Co-N3C1 and Co-N4 on electroreduction of CO2 to CO [23]. Zhao et al.
revealed that Mo-S2O2-C outperformed Mo-N4-C, Mo-O4-C, and Mo-S4-C sites in oxygen
reduction reaction (ORR), with a low theoretical onset potential being 0.87 V [19]. Yuan
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et al. reported Fe-N3P as an outstanding ORR catalyst. The limiting potential (1.22 eV) was
less than that of Fe-N4 (1.36 eV) [24]. Jiang et al. revealed that the Ag-N2C2 site exhibited
much better H2 evolution activity than the Ag-N4 site on carbon nitride [25]. Cheng et al.
indicated that the hydrogen evolution reaction (HER) activity increases in the order of
Mo-O2N2, Mo-O2N1C1, and Mo-O2C2, with overpotentials being 98 mV, 71 mV, and 61 mV
at 10 mA cm−2 [26]. In addition, SACs have been the subject of extensive research in the
field of the OER [27–29]. Niu et al. investigated the OER activity of a single transition metal
supported on defective g-C3N4 with N vacancy (TM/VN-CN) using DFT calculations. Their
findings revealed that Ru/VN-CN exhibited exceptional performance with an overpotential
being 0.32 V [27]. Wang et al. reported the OER performance of FeXYiN3−i (X, Y = B, C,
O, P, and S; i = 0, 1) moiety in Fe–porphyrin with first-principle calculations, and they
indicated that FeC2N2-II showed superior catalytic activity with the overpotential being
0.17 V [28]. Su et al. synthesized the Pt1–C2N2 SAC catalyst, which sustained a current
density of 120 mA/cm2 at an overpotential of 405 mV and exhibited a high mass activity of
3350 Ag−1 at 232 mV [29]. Given these premises, it is imperative to explore the catalytic
performance of Ir and Ru coordinated to N, O, and C as electrocatalysts for OER.

In the present work, OER catalytic activities of three distinct coordination environ-
ments of graphene-supported Ir SACs and Ru SACs were comprehensively investigated
with density functional theory (DFT) calculations. The catalytic performance of these sites
was compared in terms of stability, binding strength of intermediate states, and limiting
potentials. A volcano plot of activity was established by using the binding free energy of
the oxygen atom (∆GO*) as a theoretical descriptor. The ∆GO* is sensitive to the micro-
environments of metal atoms. The in-depth binding characteristics of the key intermediate
state O* can be revealed by crystal orbital Hamilton population analysis. The quantitative
trend of ∆GO* of different active sites can be indicated by the d-band center of the active
sites. This work not only reports IrN4-C as an outstanding OER catalyst, but also reveals
the fundamental structure–activity relationship of single Ir and Ru atoms in different
coordination environments.

2. Results and Discussion
2.1. Structures and Stability of Ir, Ru Embedded N4-C/O4-C/C4-C

Figure 1 shows optimized structures of MN4-C, MO4-C, and MC4-C (M = Ir, Ru).
In MN4-C and MO4-C, all atoms are nearly in the same plane, which is consistent with
previous studies [30–32]. In MC4-C, by contrast, the C atoms in the coordination shell and
the M atom protrude out of the graphene substrate. Such structural characteristics can be
interpreted by the orbital geometry of sp2 (O, N) and sp3 (C) hybridizations. The lattice
parameters of MN4-C, MO4-C, and MC4-C (M = Ir, Ru) are a = 12.27 Å~12.30 Å, b = 12.52 Å,
and c = 19.82 Å~19.87 Å, which align with a previous study [33]. Experimentally, SACs are
often prone to aggregation during synthesis and catalysis, emphasizing the significance of
evaluating the thermal stability of SACs in calculations. Currently, comparing the binding
energy and cohesive energy of single metal atoms is an effective approach for estimating
the thermodynamic stability of SACs [27,34,35]. In this work, the binding energies (Ebind)
of metal atoms were calculated as shown in Figure 2. The theoretical cohesive energies
of bulk Ir and Ru are 5.15 eV and 5.17 eV, respectively [36]. Thus, MN4-C, MO4-C, and
MC4-C (M = Ir, Ru) exhibit satisfied stabilities considering that their binding energies are
less than −5.00 eV. As seen in Figure 2, the Ir atoms in IrO4-C and the Ru atoms in RuO4-C
(Ebind = −2.19 eV and−2.73 eV, respectively) could potentially undergo aggregation during
catalysis. However, the electronic structures and catalytic performance of IrO4-C and
RuO4-C are still studied in this work in order to obtain the structure–activity relationship.
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2.2. OER Catalytic Activity

The free energy profiles of OER on MN4-C, MO4-C, and MC4-C (M = Ir, Ru) were
explored by DFT calculations. In the traditional adsorbate evolution mechanism (AEM)
mechanism, OER involves four proton-coupled electron transfer (PCET) steps, as shown in
Scheme 1. The elementary reactions are [37,38]:

OH− + *→ OH* + e−

OH* + OH− → O* + H2O + e−
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O* + OH− → OOH* + e−

OOH* + OH− → * + O2 (g) + H2O + e−

where * represents the active site of catalysts, and OH*, O*, and OOH* represent three
different catalytic intermediates adsorbed on the active site. The first PCET step is the
addition of one hydroxyl group to the M (M = Ir, Ru) atom, forming OH* accompanied by
the transfer of one electron. Then, OH* further reacts with the second hydroxyl group to
attain O*. Subsequently, the third hydroxyl group is absorbed on the surface of O* to give
OOH* intermediate. Finally, OOH* combines with the fourth hydroxyl group by PCET,
resulting in the release of O2 and the regeneration of the free active site.
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Scheme 1. Schematic of the 4e− process of OER on the MN4-C, MO4-C, and MC4-C (M = Ir, Ru).

The corresponding Gibbs free energy profiles of MN4-C, MO4-C, and MC4-C (M = Ir, Ru)
catalysts are shown in Figure 3. Optimized structures of the different catalytic intermediates
for OER can be depicted in Figures S1–S6. Gibbs free energy change (∆G) for each OER
reaction step on MN4-C, MO4-C, and MC4-C can be seen in Table S1. In these calculations,
the Gibbs free energy of the initial state of OER is defined as 0.00 eV. The cumulative free
energy change of the entire OER process is 4.92 eV. By identifying ∆Gmax [37,39,40], the initial
potential and corresponding potential determination step (PDS) can be extracted from the free
energy diagrams of the OER processes. As shown in Figure 3a, the second PCET step (OH* +
OH−→ O* + H2O + e−), which forms the O* intermediate, is the PDS of OER on IrN4-C. The
free energy of all electrochemical reaction steps becomes downhill if the applied potentials
are higher than 1.53 eV for IrN4-C. The ηOER value of IrN4-C is 0.30 V, indicating that IrN4-C
exhibits outstanding catalytic activity towards OER. The PDSs of OER on IrO4-C, IrC4-C,
RuN4-C, RuO4-C, and RuC4-C are all the third PCET (O* + OH−→ OOH* + e−) step with
the ηOER values being 0.51 V, 1.43 V, 0.99 V, 0.62 V, and 1.73 V, respectively (Figure 3b–f). In
addition, the first PCET step (OH− + *→OH* + e−) of OER is exothermic for IrC4-C, RuN4-C,
and RuC4-C, whereas other PCETs are endothermic, suggesting that stronger OH* binding
leads to poorer activity of IrC4-C, RuN4-C, and RuC4-C. Note that the ηOER value of IrN4-C is
at least 0.21 V lower than that of IrO4-C and IrC4-C, indicating that the OER catalytic activity
of IrN4-C is significantly better than that of IrO4-C and IrC4-C. Similarly, the OER catalytic
performance of RuO4-C is superior to that of RuN4-C and RuC4-C (0.62 V vs. 0.99 V and
1.73 V). These reveal that OER activities are closely related to the coordination environment of
SACs [41,42]. Moreover, the chemical identity of noble metal atoms also plays a crucial role
in tuning the catalytic performance [27]. For instance, the ηOER value of IrN4-C (0.30 V) is
smaller than that of RuN4-C (0.99 V). Thus, the OER activity order of MN4-C, MO4-C, and
MC4-C (M = Ir, Ru) is: IrN4-C > IrO4-C > RuO4-C > RuN4-C > IrC4-C > RuC4-C.
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2.3. Origin of the OER Activity

According to the Sabatier principle [43], too strong or too weak binding interactions
of intermediates on catalysts will show a negative impact on energy conversion efficiency.
Therefore, the catalytic activities can often be evaluated or predicted by the adsorption
energies of intermediates (∆GOH*, ∆GO*, ∆GOOH*). Table 1 shows that adsorption-free
energies of intermediates vary with the metal atoms and their coordination environments.
Interestingly, the variation of adsorption-free energies of OOH* and OH* on the catalysts
are smaller than 1.38 eV. Nevertheless, the variation of ∆GO* on different catalysts is much
more profound (about 2.48 eV). Thus, the adsorption of O atoms is more sensitive to
the microenvironment of active sites than other intermediate states. The OER activity of
MN4-C, MO4-C, and MC4-C (M = Ir, Ru) can probably be evaluated by the binding energy
of O* (∆GO*).

Table 1. The adsorption-free energy of OH*, O*, and OOH* for MN4-C, MO4-C, and MC4-C
(M = Ir, Ru).

Systems IrN4-C IrO4-C IrC4-C RuN4-C RuO4-C RuC4-C

∆GOH* (eV) 0.96 1.72 −0.42 −0.01 0.40 −0.26
∆GO* (eV) 2.49 2.94 0.01 0.67 1.52 −0.08

∆GOOH* (eV) 3.97 4.68 2.66 2.89 3.37 2.88

Figure 4a shows that the relationship between ∆GOH* and ∆GOOH* can be expressed
as ∆GOOH* = 0.95∆GOH* + 3.03 with a high coefficient of determination (R2 = 0.990). This
suggests that ∆GOOH* rises with increasing ∆GOH*. Therefore, ∆GOOH* and ∆GOH* ex-
hibit almost the same weight when they are used as theoretical descriptors. As shown
in Figure S7, however, ∆GOOH* and ∆GOH* do not exhibit strong correlations with the
catalytic activities. We then plot the d-band center with respect to the ∆GO*. Interestingly,
as seen in Figure S8, the linear relationship can only be seen in the planar active sites
(M-N4-C and M-O4-C). The MC4-C sites deviated from the scaling relationship due to
geometrical distortions. In addition, the formation of O* from OOH* is the PDS of most
catalysts. The exception is IrN4-C, in which the PDS step is the conversion of OH* to
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O*. These findings indicate that the ηOER can be simultaneously related to the ∆GO*. The
volcano plot is therefore established when ∆GO* is selected as a descriptor for OER activity
(Figure 4b). It is apparent that IrN4-C stands on the top of the OER volcano plot with the
∆GO* value being 2.49 eV. IrO4-C exhibits unsatisfied catalytic efficiency owing to weak
O* binding (ηOER = 0.51 V). While the IrC4-C, RuN4-C, RuO4-C, and RuC4-C exhibit small
formation energies of O*, also lead to low OER activity (ηOER = 1.43 V, 0.99 V, 0.62 V, and
1.73 V, respectively).
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Subsequently, crystal orbital Hamilton populations (COHP) and integrated COHP
(ICOHP) are employed to describe the adsorption trend of intermediated states [44–46].
COHP is a prevalent method to analyze the bonding characteristics between atoms in chem-
ical species and can often provide important information in the study of structure–activity
relationships. For instance, Yan et al. demonstrated that there is a strong linear relationship
between the ∆GOH* and ICOHP with an R2 of 0.91, explaining the OH* adsorption trend.
Thus, the Co-N-C/GDY achieved superior OER performance due to its moderate binding
strength with OH* species [45]. Wang et al. revealed that the bonding strength between
the 3d metal atom and O* intermediate generally decreases with the atomic number in-
creases for different MBene substrates by employing ICOHP calculations [46]. The binding
strength of the M-O bond in MN4-C-O*, MO4-C-O*, and MC4-C-O* (M = Ir, Ru) can be
further examined by COHP analysis. As depicted in Figure 5, the bonding (–COHP > 0)
and antibonding (–COHP < 0) contributions in each M-O bond are shown on the right and
left panels, respectively. The ICOHP values of the M-O bond in IrO4-C-O* (−4.14 eV) are
more than that in IrN4-C-O* (−5.24 eV). The ICOHP values of the M-O bond in IrC4-C-O*,
RuN4-C-O*, RuO4-C-O*, and RuC4-C-O* are −6.88 eV, −6.62 eV, −5.57 eV, and −8.45 eV,
respectively, which is more negative compared to IrN4-C-O*. These findings reveal that
the binding strength of the oxygen atom in IrO4-C is weaker than that in IrN4-C, while the
strong binding of the oxygen atom is observed in IrC4-C, RuN4-C, RuO4-C, and RuC4-C
compared to IrN4-C. Thus, IrN4-C exhibits excellent catalytic OER performance in these
catalysts due to the moderate adsorption energy of O*. The OER performance of MN4-C,
MO4-C, and MC4-C (M = Ir, Ru) could be evaluated by the binding energy of O* (∆GO*),
which is consistent with the above discussions about the volcano plot in Figure 4b.

As it has been demonstrated that ∆GO* is a theoretical descriptor to evaluate the OER
activity, it is important to study the structure–property relationship between the binding
energy of O* and the microstructure of the active sites. The charge density difference
(CDD) of MN4-C, MO4-C, and MC4-C (M = Ir, Ru) was examined with iso-surfaces set at
0.015 e/Å3. As shown in Figure 6, electrons transfer (0.54 e~0.82 e) from M atoms to the N4-
C/O4-C/C4-C substrate (Tables S3 and S4). Such charge redistributions are consistent with
CDD analysis, showing the accumulation of significant positive charges (pink area) around
the anchored M atoms (Figure 6). It is worth noting that formal charges carried by metal
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atoms are strongly dependent on coordination shells. For instance, the Bader charge of Ir
atoms are +0.56|e| and +0.72|e| on the C4-C and N4-C substrates, respectively. Notably,
the d-band center (εd) has been extensively employed as an effective descriptor to establish
the relation between the intrinsic electronic properties of catalysts and their adsorption
behaviors [27,47]. For instance, Niu et al. established a linear correlation between the εd
and the adsorption energy of OER intermediates, providing a quantitative description
of adsorption energies and revealing the origin of activity based on electronic structures.
Consequently, Ru embedded in defective g-C3N4 exhibits exceptional performance, with
an overpotential as low as 0.32 V [27]. Yang et al. demonstrated that the overpotential
of CoNi in nitrogen-doped graphene shows a volcano-shaped relationship with the εd of
the catalytic site Co. This suggests that the εd of the catalytic site is a critical parameter
influencing the OER activity [47]. The partial density of states (PDOS) of d orbitals for M
atoms on MN4-C, MO4-C, and MC4-C (M = Ir, Ru) are shown in Figure 7. As can be seen,
replacing carbon with oxygen or nitrogen for coordination with M metal shifts the εd of
the M atom toward the Fermi level (Ef). For example, the εd values for Ir atoms on IrN4-C,
IrO4-C, and IrC4-C exhibit the following trend: IrN4-C (−1.86 eV) > IrO4-C (−2.20 eV) >
IrC4-C (−2.60 eV). In addition, the εd values for Ru atoms on the C4-C, O4-C, and N4-C
substrates are −1.81 eV, −1.10 eV, and −1.07 eV (Figure 7b), respectively. The closer the
εd of the active site is to the Fermi level, the stronger its ability to participate in capturing
reaction intermediates and forming bonds, resulting in higher catalytic activity. Specifically
speaking, a more negative εd is related to weaker adsorption [48,49]. However, in Ru SACs,
the activity of RuO4-C surpasses that of RuC4-C and Ru-N4-C. It is explicable that the
association between the εd and catalytic performance is merely a qualitative description
and not a quantitative trend. Thus, the moderate εd value of Ir atoms on IrN4-C can lead
to a neither too strong nor too weak binding strength of oxygen atom (∆GO*). As a result,
IrN4-C shows excellent OER performance with the lower overpotential being 0.30 V.
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2.4. Solvent Effects

Given that OER takes place in aqueous electrolytes, the impact of solvent effects in the
reaction pathways of MN4-C, MO4-C, and MC4-C (M = Ir, Ru) has also been investigated
using an implicit solvent model. The Gibbs free energy profiles of OER on MN4-C, MO4-C,
and MC4-C (M = Ir, Ru) catalysts in a vacuum (black lines) and implicit solvent model (red
lines) are shown in Figure S9. Gibbs free energy changes (∆G) for each OER reaction step
on MN4-C, MO4-C, and MC4-C can be seen in Table S5. The third PCET (O* + OH− →
OOH* + e−) is the PDS of OER on MN4-C, MO4-C, and MC4-C (M = Ir, Ru) in the implicit
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solvent model, which is quite consistent with those in the vacuum. As can be seen in
Figure S8, the ηOER value of IrN4-C is 0.33 V in the implicit solvent model, which is only
slightly increased by 0.03 V (ηOER = 0.30 V in a vacuum). The ηOER values of IrO4-C and
RuO4-C are 0.71 V and 0.67 V in the implicit solvent model, which are 0.20 V and 0.05 V
higher than that in a vacuum, respectively. The ηOER values of IrC4-C and RuC4-C are
1.34 V and 1.58 V in the implicit solvent model, which is 0.09 V and 0.15 V less than that
in a vacuum. These results are from the diverse influence of the implicit solvent model
on ∆GO*. In addition, the adsorption-free energy of *OH on IrC4-C, RuN4-C, and RuC4-C
is decreased compared with that in a vacuum, indicating stronger interactions between
the O atom and the M (M = Ir, Ru) atom. While the overpotential of MN4-C, MO4-C, and
MC4-C (M = Ir, Ru) increases by −0.15 V~0.20 V, the qualitative trends of the influence of
coordination shells are not affected by the solvation. This finding aligns well with recent
research reports [50–52]. Zhang et al. reported that in the implicit solvent model, the
onset potential of Pt (111) increases by 0.11 V compared to that in a vacuum, and the ORR
performance trend of metal surfaces is consistent with that in a vacuum [51]. Peng et al.
showed that including solvent effects increases the overpotential of the Fe- or Ni-doped
Co3O4(001) by around 0.20 V~0.40 V. However, the general OER activity trends of Fe- or
Ni-doped Co3O4(001) remain unchanged [52]. Therefore, our results demonstrate that
the implicit solvent model can enhance O* adsorption by finely tuning the OER activity.
Additionally, the implicit solvent model has a minor impact on the Gibbs free energy
profile. The trend of catalytic performance in the implicit solvent model closely mirrors
that observed in vacuum. IrN4-C exhibits excellent OER catalytic performance compared
to IrO4-C, IrC4-C, RuN4-C, RuO4-C, and RuC4-C.

2.5. Structural Distortions and OER Activity

The impact of structural distortions at the evaluated coordination sites on catalytic
activity was thoroughly investigated. Among the various SACs studied, IrC4-C and
Ru-C4-C exhibit the most pronounced structural distortions. Notably, these structural
deformations lead to a situation where the single metal atom protrudes from the C4-C
substrate, resulting in excessively strong binding with O* intermediates. Consequently,
IrC4-C and Ru-C4-C show poor catalytic performance in OER. In addition, RuN4-C displays
minor structural distortions in comparison to IrN4-C, IrO4-C, and RuO4-C, which shows
small formation energies of O*, and also leads to low OER activity. These findings indicated
that structural distortions induce a strong interaction between the metal atom and reaction
intermediates, consequently impeding the efficiency of the oxygen evolution reaction. This
discovery provides invaluable insights for the ongoing efforts to optimize catalyst design
and achieve enhanced catalytic performance.

3. Computational Methods

All DFT calculations were carried out using a plane-wave basis set within the Vienna
Ab Initio Simulation Package (VASP 5.4.4) [53–55]. The exchange–correlation function was
described by the Perdew–Burke–Ernzerhof (PBE) parameterization of the generalized gra-
dient approximation (GGA) [56–59]. The projector-augmented wave (PAW) approximation
was adopted to describe the ion–electron interactions [60]. The plane-waves expansion of
the Kohn–Sham orbitals was expanded to a kinetic energy cutoff of 400 eV. Then, 10−4 eV
was set as the convergence criteria for the energy, and −0.02 eV/Å was set as the conver-
gence criteria for the forces on each atom. The DFT-D3 method with Becke–Jonson damping
was adopted to accurately describe the long-range van der Waals (vdW) interactions [61].
The solvation effect was evaluated under an implicit solvent model VASPsol [62].

MN4-C, MO4-C, and MC4-C (M = Ir, Ru) catalysts were constructed by embedding
an M atom in N4-C, O4-C, and C4-C cavities, respectively. A vacuum thickness of more
than 15 Å in the vertical direction was utilized to avoid interactions between periodic
images. The Brillouin zone was sampled using a 2 × 2 × 1 gamma-centered k-point mesh
for structural optimizations, while a denser k-point mesh of 4 × 4 × 1 was employed
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for electronic property computations. The binding energy (Ebind) was calculated using
the equation:

Ebind = Etotal − Esubstrate − EM (1)

where Etotal, Esubstrate, and EM are energies of the catalysts, doped graphene substrates, and
an isolated M atom in a vacuum, respectively. The adsorption energy of three different
catalytic intermediates can be described as follows:

∆EOH∗ = EOH∗ + 1/2EH2 − E∗ − EH2O (2)

∆EO∗ = EO∗ + EH2 − E∗ − EH2O (3)

∆EOOH∗ = EOOH∗ + 3/2EH2 − E∗ − 2EH2O (4)

where E*, EOH*, EO*, and EOOH* are energies of the clean catalyst substrate, and surfaces
adsorbed by OH*, O*, and OOH* species, respectively. EH2O and EH2 are energies of H2O
and H2 molecules in gas phases, as shown in Table S6. The adsorption-free energies can be
obtained in the equation:

∆Gads = ∆Eads + ∆EZPE − T∆S (5)

where Eads and EZPE are the adsorption energy and zero-point energy, respectively. T is
fixed at 298.15 K in this study and S is the entropy. For all OER steps on MN4-C, MO4-C,
and MC4-C (M = Ir, Ru) catalysts, the Gibbs free energy change (∆G) can be calculated by
the following expression [63]:

∆G = ∆E+ ∆EZPE − T∆S + ∆GpH (6)

where E is the energy of the reactant and product obtained from DFT computations directly.
∆GpH = kBTln10× pH represents the free energy contribution due to the variations in the
H concentration, where kB is the Boltzmann constant. In this work, the pH value was set
to 14. The theoretical OER overpotential (ηOER) for a given electrocatalyst can be defined
as [64]:

ηOER= max{∆G1, ∆G2, ∆G3, ∆G4}/e− 1.23 V (7)

where ∆Gi (i = 1, 2, 3, 4) represents the Gibbs free energy change for each step of OER, and
the value of 1.23 eV is the equilibrium overpotential of OER. The charge density difference
was obtained by the following equation:

∆ρ = ρAB − ρA − ρB (8)

where ρAB, ρA, and ρB are electron densities of complexes, substrates, and adsorbates,
respectively.

4. Conclusions

In summary, by means of first-principle calculations, the theoretical increase in OER
activity on MN4-C, MO4-C, and MC4-C (M = Ir, Ru) was IrN4-C > IrO4-C > RuO4-C >
RuN4-C > IrC4-C > RuC4-C in the alkaline media. In particular, IrN4-C exhibits outstanding
OER performance with a low overpotential of 0.30 V. Our calculations indicate that the
weak binding of O* to IrO4-C results in poor catalyst activity, and the strong binding of
O* is responsible for the lower OER activity observed in IrC4-C, RuN4-C, RuO4-C, and
RuC4-C. Furthermore, the analysis of COHP and PDOS highlights the enhancement of
electrocatalytic activity with the tuning of the coordination shells of M atoms, which
effectively adjusts the electronic structure of M atoms to balance the binding strength of O*.
Our study challenges traditional thinking and inspires more theoretical and experimental
investigations into exploring the catalytic properties of SACs by considering different
coordination environments with other metals.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13101378/s1, Figure S1: Optimized structures of (a) IrN4-C
catalyst and (b–d) OER intermediates along the pathway on IrN4-C. Ir, C, N, H, and O atoms are
presented with blue, brown, yellow, white, and red circles, respectively. Figure S2: Optimized
structure of (a) IrO4-C catalyst and (b–d) OER intermediates along the pathway on IrO4-C. Ir, C,
H, and O atoms are presented with blue, brown, white, and red circles, respectively. Figure S3:
Optimized structure of (a) IrC4-C catalyst and (b–d) OER intermediates along the pathway on IrC4-C.
Ir, C, H, and O atoms are presented with blue, brown, white, and red circles, respectively. Figure
S4: Optimized structure of (a) RuN4-C catalyst and (b–d) OER intermediates along the pathway on
RuN4-C. Ru, C, N, H, and O atoms are presented with purple, brown, yellow, white, and red circles,
respectively. Figure S5: Optimized structure of (a) RuO4-C catalyst and (b–d) OER intermediates
along the pathway on RuO4-C. Ru, C, H, and O atoms are presented with purple, brown, white,
and red circles, respectively. Figure S6: Optimized structure of (a) RuC4-C catalyst and (b–d) OER
intermediates along the pathway on RuC4-C. Ru, C, H, and O atoms are presented with purple,
brown, white, and red circles, respectively. Figure S7: The scaling relationship between (a) ∆GOH*
vs. ηOER, (b) ∆GOOH* vs. ηOER on MN4-C, MO4-C, and MC4-C (M = Ir, Ru). Figure S8: The scaling
relationship between ∆GO* vs. d-band center on MN4-C, MO4-C, and MC4-C (M = Ir, Ru). Figure S9:
Free energy diagrams of OER processes on (a) IrN4-C, (b) IrO4-C, (c) IrC4-C, (d) RuN4-C, (e) RuO4-C,
and (f) RuC4-C in vacuum (black lines) and implicit solvent model (red lines), respectively. H, C,
O, N, Ir, and Ru atoms are represented with white, brown, red, yellow, blue, and purple circles.
Table S1: Gibbs free energy change (∆G) for each OER reaction step on MN4-C, MO4-C, and MC4-C
(M = Ir, Ru) in vacuum. Table S2: The d-band center of M atom on MN4-C, MO4-C, and MC4-C
(M = Ir, Ru). Table S3: Bader charges of IrN4, IrO4-C, IrC4-C. The ZVAL represents the number of
valent electrons in each atomic sphere. Table S4: Bader charges of RuN4, RuO4-C, and RuC4-C. The
ZVAL represents the number of valent electrons in each atomic sphere. Table S5: Gibbs free energy
change (∆G) for each OER reaction step on MN4-C, MO4-C, and MC4-C (M = Ir, Ru) with an implicit
solvent model. Table S6: The calculated total energies (E) and thermodynamic quantities for the gas
phase H2 species (T = 298.15 K, P = 1 bar), and free H2O at 298.15 K, 0.035 bar.
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