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Abstract: The photoelectrochemical (PEC) process has been demonstrated to exert enormous potential
in the fields of analysis, and the rational design of PEC sensors are vital for practical applications.
In this study, Titanium Dioxide Nanoarrays (TDNA) and black phosphorus nanosheets (BPN) were
prepared, and a BPN/TDNA composite was proposed as the photoelectrochemical sensing material
for the detection of ciprofloxacin (Cip). The formation and excellent optoelectronic properties of
BPN/TDNA composite materials have been demonstrated through a series of characterization
methods. Moreover, the measurement of PEC properties exhibited that the introduction of BPN and
natural light would improve the electron migration efficiency and the separation of photogenerated
electron–hole pairs, thereby displaying the synergistic effect to promote photoelectric performance.
More importantly, the current density of BPN/TDNA was linearly proportional to the concentration
of Cip ranging from 1.14 to 438.86 ng/mL, and the detection limit (3S/N) was 7.56 ng/mL. In addition,
such a PEC sensor demonstrated long-term stability, good reproducibility, and selectivity. Finally, the
real commercial sample detection was measured to confirm the possibility of practical applications.
Thus, the BPN/TDNA photoelectrocatalyst provides a new method for Cip detection with high
selectivity and sensitivity.

Keywords: titanium dioxide; pollutant detection; photocatalysis; ciprofloxacin

1. Introduction

Ciprofloxacin (Cip) is considered a third-generation fluoroquinolone antibiotic widely
used in medicine and agriculture to combat various pathogens [1,2]. The abuse of Cip
leads to an increased amount of Cip in animals, parts of which are excreted from ani-
mals [3]. This leads to excessive content of Cip in water, which seriously threatens human
health and the ecological environment [4]. The excessive use of such antibiotics leads
to the emergence and spread of drug-resistant bacteria and genes, which reduces their
therapeutic potential for organisms and is considered a major threat to public health in
the 21st century [5–7]. In addition, these antibiotics are released into the environment
through animals and humans, which is a direct and fatal threat to all biological and aquatic
systems [8]. In some lakes, due to the presence of antibiotics, sediment will exhibit rel-
atively low microbial activity, resulting in a relatively anaerobic environment. Under
these conditions, ammonia, sulfides, and other toxic byproducts will be produced. On
the other hand, it will reduce the degradation rate of organic materials and increase the
problem of bacterial resistance. Therefore, the quantitative analysis of Cip is essential. Some
conventional methods, such as high-performance liquid chromatography (HPLC), capil-
lary electrophoresis chromatography, mass spectrometry (MS), liquid-mass spectrometry
(LS-MS), fluorescence spectrophotometry, chemiluminescence, solid phase extraction, elec-
trochemical technique, and enzyme-linked immunosorbent assay (ELISA) show availability
for determining Cip [3,4,9,10].

Nevertheless, the relatively high detection cost and complex operation process has
restricted their practical applications. To this end, an effective detection method, photoelec-
trochemical (PEC) analysis, arose at a historic moment and has demonstrated promising
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prospects [11]. Due to its merits including high sensitivity, simple operation, and low
background signal, PEC detection has been extensively applied in biosensing and heavy
metal ion detection. Furthermore, due to the separation between the excitation light source
and signal detecting device during the PEC detection process, the background signal can
be minimized, thereby enhancing the detection sensitivity [10,12]. The rational design and
selection of photosensitive electrode materials play a crucial role in the performance of PEC
detection [13,14]. Previously reported semiconductor materials, such as metal oxides, metal
sulfides, and N-doped carbon materials (such as TiO2, CdS, g-C3N4, MOF, and N-graphene
quantum dots), have been widely studied [15–20]. In particular, black phosphorus is a
metal-free, two-dimensional (2D), promising nanomaterial with unique electronic and op-
toelectronic properties, which include high electron mobility (ca. 1000 cm2/(Vs)), excellent
light absorption, and high specific surface area [21–24]. In the last few years, the potential
applications of black phosphorus nanosheets (BPN) have been proved in photovoltaic struc-
tures [25–27]. Our research team successfully fabricated BPN/TDNA composite electrodes
for the detection of Cip under light illumination. This finding suggests that semiconductor
hybridization can effectively enhance the electron transfer capacity and improve light
utilization efficiency. Thus, seeking the reasonable design and preparation of TDNA matrix
composites is significant for the corresponding PEC sensor technology.

Herein, the Titanium Dioxide Nanoarray (TDNA) was prepared and then utilized
to construct BPN/TDNA composites via electrostatic self-assembly to detect Cip under
natural light irradiation. The morphology, component, and crystal structure of BPN/TDNA
were characterized and the superior photoelectrochemical properties (e.g., EIS, current
density–time curve) were measured. The BPN/TDNA showed excellent Cip PEC detection
properties with a wide concentration linear range from 1.14 to 438.86 ng/mL and a low
detection limit of 7.56 ng/mL because of the synergistic effects between BPN and TDNA.
Ultimately, a possible mechanism was proposed through experimental phenomena and
theoretical analysis.

2. Results
2.1. Structure and Morphology of the As-Synthesized Electrodes

Here we show the morphologies and microstructures of the photocatalysts tested
using SEM and TEM. From the SEM in Figure 1a,b, it is evident that the TiO2 prepared has
a sheet-like structure, and these nanosheets are evenly distributed on the surface of the FTO
substrate. Thereafter, NMP dispersion containing BPN is applied to cover the TDNA in a
membrane form. In Figure 1b, we can observe successful contact between TDNA and BPN.
The energy spectrum of Figure 1c indicates that the major constituents of BPN/TDNA
include Ti (58.3 atomic%), O (41.3 atomic%), and P (0.4 atomic%).

Figure 2a shows the HR–TEM image and SAED mode of BPN/TDNA. We can clearly
see that the lattice spacing of TiO2 ((101) lattice = 0.352 nm) is 0.327 nm, corresponding to
the (021) surface of the BPN, which is consistent with the measured XRD results. Figure 2b
displays the element mapping diagram of BPN/TDNA, showing the mapping images of
Ti, O, and P elements, respectively.

The crystal structure and material composition of the synthesized electrode were
analyzed through X-ray diffraction (XRD). As shown in Figure 3, the diffraction peaks
were observed at 25.37◦, 36.94◦, 37.97◦, 38.57◦, 48.08◦, 53.87◦, 55.14◦, 62.12◦, 62.68◦, 68.76◦,
70.30◦, 74.03◦, 75.03◦, and 76.02◦, respectively. The observed peaks were consistent with
the (101), (103), (004), (112), (200), (105), (211), (213), (204), (116), (220), (107), (215), and
(301) diffraction peaks of anatase TiO2 in the JCPDS 21-1272 standard card. Additionally,
diffraction peaks of 27.15◦ and 35.35◦ were observed, which were consistent with the (021)
and (111) diffraction peaks of the BPN in the JCPDS 76-1963 standard card.
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Figure 1. SEM images of (a) TDNA, (b) BPN/TDNA; (c) EDS images of BPN/TDNA. 
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Figure 2. (a) HRTEM images of BPN/TDNA and SAED mode of HR-TEM images; (b) Elemental
mappings of BPN/TDNA.
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Figure 3. XRD patterns of TDNA and BPN/TDNA samples.

The Fourier transform infrared (FTIR) spectra of BPN, TDNA, and BPN/TDNA com-
posite materials are shown in Figure 4. The TDNA infrared spectrum indicated an ab-
sorption peak of 3400 cm−1 to 1600 cm−1 for OH, with a wide absorption band between
500 and 700 cm−1 corresponding to the Ti-O-Ti stretching vibration mode [28]. The weak
band between 3300 cm−1 and 3600 cm−1 was attributed to the stretching and bending
vibration of physically adsorbed water [29]. The external red spectrum of the black phos-
phorus nanosheets (BPN) indicates that the absorption peak in the range of 600–800 cm−1

corresponds to the P-P bond vibration mode in black phosphorus, the absorption peak
in the range of 1200–1300 cm−1 corresponds to the P-H bond vibration mode in black
phosphorus, and the region of 1600–1700 cm−1 corresponds to the C=C stretching vibration
of black phosphorus. This is similar to the measurement obtained by Hu et al. [30]. The
characteristic peaks of BPN and TDNA were retained in the BPN/TDNA nanocomposites’
FTIR spectra, demonstrating the effective combination of the two materials.
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Figure 4. FTIR spectra of TDNA and BPN/TDNA samples.
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Raman spectroscopy (Figure 5) was used to provide information about material crys-
tallinity, phase composition, and defect concentration. The Raman spectra of the TDNA
showed the typical characteristics of the composite anatase phase peak at 142 cm−1 (Eg),
195 cm−1 (Eg), 395 cm−1 (B1g), 515 cm−1 (A1g), and 638 cm−1 (Eg), consistent with the XRD
results. The 142 cm−1 and 195 cm−1 peaks in the TDNA Raman spectra belonged to the
Ti-Ti vibrational mode, while the 395 cm−1, 515 cm−1, and 638 cm−1 peaks were attributed
to the Ti-O vibrational mode [31,32].
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Figure 5. Raman spectra of BPN/TDNA and BPN/TDNA samples.

The Raman spectra showed three typical vibration modes of BPN, namely the out-of-
plane vibration mode of Ag

1 at 364 cm−1, the in-plane vibration mode of B2g at 442 cm−1,
and the in-plane vibration mode of Ag

2 at 470 cm−1. These results were consistent with
the measurements made by Xu et al. [33]. However, due to the much weaker peak of BPN
compared to TDNA, it was difficult to display in the Raman spectra of BPN/TDNA.

Figure 6 shows the XPS electron spectrum of BPN/TDNA, and we can observe the
four elements C, O, Ti, and P through Figure 6a. Figure 6b corresponds to the high-
resolution energy spectrum of the C 1s of the composite material. We can divide it into
three peaks 284.8 eV, 286.5 eV, and 288.5 eV which are C-C bonds, C-O-C bonds, and
O=C-O bonds, respectively. Figure 6c corresponds to two peaks in the high-resolution
energy spectrum of O 1s at 532.0 eV and 529.9 eV, respectively, which can be attributed
to the Ti-OH and Ti-O-Ti bonds [34]. For the high-resolution energy spectrum of Ti 2p
(Figure 6d), the peaks of 458 eV and 464 eV are assigned to the bonding of Ti4+ with oxygen
relative to the 2p3/2 and 2p1/2 orbitals, respectively [35]. The main peak of P 2p in the
XPS spectrum has a complex spectral line shape, mainly due to the interaction between
phosphorus atoms and adjacent phosphorus atoms forming P-P bonds. There may be
phosphorus-oxygen bonds (P-O) formed by black phosphorus and oxygen (O) near 131 eV
(Figure 6e). Due to this electron sharing and overlap, the peak broadening and structural
ambiguity make it difficult to resolve multiple clear peaks. Through XPS measurement, we
can find that the two are tightly connected, laying the foundation for subsequent detection
experiments.
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As shown in Figure 7, TDNA show an absorption edge at 380 nm. Compared with
TDNA, the maximum absorption peak of BPN/TDNA is increased, and the absorption
edge of BPN and TDNA composite materials show an increased red shift in the visible
light region. We can calculate the Eg value of the photocatalyst by plotting the relationship
between (αhv)1/2 and photon energy hv, as shown in Figure 6 by projecting the linear
components of the curve onto (αhv)1/2 = 0, with bandgap values of 3.2 eV for TDNA
and 3.1 eV for BPN/TDNA, respectively [33]. The detection results of the TDNA are
consistent with the work of other groups [36–38]. The results indicate that a composite
material composed of BPN and TDNA can not only broaden the light absorption range,
but also improve the light absorption performance. With the expansion of the spectral
absorption range and the improvement of absorption performance, more electron–hole
pairs are generated during the photodegradation of Cip.
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We have performed a comparison of the PL spectra of TDNA and BPN/TDNA at an
excitation wavelength of 290 nm, as depicted in Figure 8. It was found that the separation
and recombination rates of the photo-induced conductive loads in BPN/TDNA were
slightly faster than those observed for TDNA. Our PL analysis indicates that the coating of
BPN on TDNA can effectively improve the absorption efficiency of excited photoelectrons.

Catalysts 2023, 13, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 8. PL spectra of TDNA and BPN/TDNA samples. 

Furthermore, electrochemical impedance spectroscopy (EIS) is used to characterize 
the interfacial charge transfer behavior of composite electrodes. Measured in a 0.1 mol 
phosphate solution, where a xenon lamp is paired with an AM 1.5 G filter to simulate 
natural light. This measurement was conducted at an open circuit potential of 10 mV, with 
a low frequency of 0.01 Hz and a high frequency of 100,000 Hz. The Nyquist plot of pure 
TDNA/FTO and BPN/TDNA/FDO composite materials obtained is shown in Figure 9a. 
The radius of the semicircle in the high-frequency region and the photoelectrode interface 
during the charge transfer process is known to be related to resistance, with smaller radii 
corresponding to lower resistance [39]. After circuit simulation by EIS, the simulated cir-
cuit impedances under illumination were 10,070 Ω and 4657 Ω, respectively. The arc ra-
dius of the BPN/TDNA/FTO composite electrode is significantly smaller than that ob-
served for TDNA/FTO, indicating a lower resistance and a more effective separation of 
photo-induced electron–hole pairs. At the same time, the Bode Plot was also prepared to 
more clearly describe the relationship between frequency, phase shift, and amplitude, as 
shown in Figure 9b,c. At the same frequency, the impedance of the composite material 
decreases, indicating stronger photoelectron transmission efficiency. Through the Bode 
Plot, it can also be seen that BPN/TDNA/FTO is more stable than TDNA/FTO. These re-
sults suggest that the addition of BPN can significantly improve the transfer and separa-
tion efficiency of photo-generated electron–hole pairs in BPN/TDNA/FTO electrodes, 
thereby enhancing photocatalytic activity in a manner consistent with Wu et al. [40] and 
subsequent PEC performance measurements. 

 

400 500 600 700

 TDNA
 BPN/TDNA

In
te

ns
ity

 (a
.u

.)

wavelenth (nm)

Figure 8. PL spectra of TDNA and BPN/TDNA samples.



Catalysts 2023, 13, 1368 8 of 21

Furthermore, electrochemical impedance spectroscopy (EIS) is used to characterize
the interfacial charge transfer behavior of composite electrodes. Measured in a 0.1 mol
phosphate solution, where a xenon lamp is paired with an AM 1.5 G filter to simulate
natural light. This measurement was conducted at an open circuit potential of 10 mV, with
a low frequency of 0.01 Hz and a high frequency of 100,000 Hz. The Nyquist plot of pure
TDNA/FTO and BPN/TDNA/FDO composite materials obtained is shown in Figure 9a.
The radius of the semicircle in the high-frequency region and the photoelectrode interface
during the charge transfer process is known to be related to resistance, with smaller radii
corresponding to lower resistance [39]. After circuit simulation by EIS, the simulated circuit
impedances under illumination were 10,070 Ω and 4657 Ω, respectively. The arc radius
of the BPN/TDNA/FTO composite electrode is significantly smaller than that observed
for TDNA/FTO, indicating a lower resistance and a more effective separation of photo-
induced electron–hole pairs. At the same time, the Bode Plot was also prepared to more
clearly describe the relationship between frequency, phase shift, and amplitude, as shown
in Figure 9b,c. At the same frequency, the impedance of the composite material decreases,
indicating stronger photoelectron transmission efficiency. Through the Bode Plot, it can
also be seen that BPN/TDNA/FTO is more stable than TDNA/FTO. These results suggest
that the addition of BPN can significantly improve the transfer and separation efficiency of
photo-generated electron–hole pairs in BPN/TDNA/FTO electrodes, thereby enhancing
photocatalytic activity in a manner consistent with Wu et al. [40] and subsequent PEC
performance measurements.
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Figure 9. Nyquist plots (a) and Bode plots (b,c) of TDNA/FTO and BPN/TDNA/FTO under
illumination.

To assess the electrochemical double-layer capacitors (Cdl), we used Ag/AgCl as the
reference electrode for cyclic voltammetry (CV), with the scanning rate of the electrode set
at 20, 50, 100, 150, and 200 mV/s in the potential range of −0.12~0.04 V (Figure 10a,b). Cdl
values were calculated by measuring the non-Faradaic current (I) and the scanning rate
using cyclic voltammetry (CV), wherein the difference in charging current (∆I) is plotted
based on the scanning speed. The variation of I = (Ia − Ic)/2 with scanning rate was shown
in the Figure, with the linear slope (k) of the curve in Figure 10c equivalent to Cdl [41]. The
Cdl estimates for TDNA/FTO and BPN/TDNA/FTO photoanodes were found to be 1.44
and 1.62 µF/cm2, respectively. The BPN/TDNA/FTO photoanode exhibited a higher Cdl
value than the TDNA/FTO photoanode, indicating a larger Electrochemical Active Surface
Area (ECSA) that may help enhance PEC performance.
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respectively. Ia and Ic are Anodic current and Cathodic current, respectively, and the linear slope is
double-layer capacitance (Cdl).

To assess the separation efficiency of electron–hole pairs induced by semiconductor
materials, we measured photocurrent density using linear scanning voltammetry (LSV)
(Figure 11). The results showed that the TDNA/FTO photoanode exhibited a relatively low
current response under natural light irradiation [42], whereas BPN/TDNA/FTO showed a
significantly increased photocurrent density upon BPN addition.
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Figure 11. (a) LSV of different samples under short cut light irradiation; (b) LSV under dark and light
irradiation.

The efficiency of separating photo-induced electron–hole pairs in semiconductor
materials can be demonstrated by using a current density–time curve (I-T) [43]. Typically,
the efficiency of separating photo-induced electron–hole pairs increases with the rise
in photocurrent density, which can enhance photocatalytic activity. To investigate the
photoelectrochemical (PEC) characteristics, a series of transient photocurrent responses of
TDNA/FTO and BPN/TDNA/FTO composite materials were displayed in the 0.0 V current
density–time curve. As illustrated in Figure 12, it can be observed that the photoelectrode
comprising BPN/TDNA/FTO exhibits a higher photocurrent density when exposed to
natural light compared to those made of TDNA/FTO. The separation efficiency of photo-
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induced electron–hole pairs and the recombination rate of photo-generated charge carriers
in BPN/TDNA/FTO composite materials are higher, leading to faster electron transport
and a prolonged lifespan of photo-generated charge carriers. This may be attributed to the
loading of two-dimensional black phosphorus nanosheets.
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Figure 12. I-T at a bias potential of 0.0V (vs. RHE) of TDNA and BPN/TDNA.

Figure 13 was used to evaluate the stability of photoelectrochemical electrodes. The
composite electrodes of TDNA/FTO and BPN/TDNA/FTO were subjected to 3 h I–T curve
measurements to ascertain their stability, and it was observed that the electrodes before
and after modification maintained good stability.
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Figure 13. Stability test of TDNA and BPN/TDNA.

The photoelectrochemical responses of TDNA/FTO and BPN/TDNA/FTO were
measured at a frequency of 10 kHz, and a Mott–Schottky curve was obtained (Figure 14) to
analyze the changes in the semiconductor bandgap and photo-generated electron transport
ability after modification, which are described using the flat band potential (E f b) and charge
carrier density (Nd). The measurements were conducted in the dark with a 0.1 mol/L
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phosphate solution as the carrier electrolyte. The E f b and Nd were estimated using the
relationship (4-1) [44].

1
C2

SC
=

2
Nd A2qεε0

(E − E f b −
KT
q

), (1)

where q is the elementary charge (+e for the electron), ε is the relative dielectric constant of
the semiconductor (TDNA, ε = 86), ε0 is the vacuum dielectric constant, A is the exposed
geometric area of the photoelectrode, K is the Boltzmann constant, T is the absolute tem-
perature, and C2

SC is the capacitance of the space charge. E f b was obtained by intercepting
the potential axis. During the potential scanning in the cathode direction, it was observed
that both TDNA/FTO and BPN/TDNA/FTO had a linear region with a positive slope,
indicating that they are n-type semiconductors. However, the slope of the linear region of
the BPN/TDNA/FTO photoelectrode was lower than that of the TDNA/FTO photoelec-
trode, indicating an increase in carrier density after the addition of BPN. The increase in
conductivity in the photoelectrode also promoted the mobility of photo-generated electrons.
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Figure 14. Mott-Schottky curves of TDNA and BPN/TDNA.

2.2. Optimization of Experimental Conditions

To achieve optimal performance of the constructed electrode during the detection
process (Figure 15), some parameters such as pH, coating amount, and the optimal ratio
of the BPN and TDNA were optimized to achieve the best experimental results. Multiple
tests were conducted on the composite electrode under different pH conditions of 5, 6, 7, 8,
and 9, respectively. Neutral pH was observed to yield a high photocurrent density, while
acidic or alkaline buffer solutions hindered the photocurrent. TDNA/FTO (1 cm × 1 cm)
was coated with 5 µL, 20 µL, 50 µL, 100 µL, and 150 µL of black phosphorus nanosheets
NMP dispersion, and its photocurrent density was monitored at a voltage of 0.0 V. It was
observed that the photocurrent density was strongest when coated with 20 µL. A lower
coating amount led to a poor photocurrent effect, while a higher coating amount hindered
photoelectron transmission. By changing the coating amount of BPN, the optimal ratio of
BPN and TDNA was explored. Through multiple detections of the prepared photoelectrode,
it was found that when coated with 20 µL of black phosphorus nanosheets NMP dispersion,
the photoelectrode displayed a good photocurrent density.
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Figure 15. (a) Effect of PH on photocurrent response of BPN/TDNA; (b) Effect of coating amount on
photocurrent response of BPN/TDNA.

2.3. Detection and Analysis of Cip

To achieve PEC electrodes with significant light response signals, we conducted pho-
tocurrent density measurements on TDNA/FTO and BPN/TDNA/FTO electrodes in a
0.1 M phosphate-buffered solution at pH 7 and 0.0 V voltage, without the presence of Cip.
In Figure 16a, 2560 ng/L Cip was added to each electrode. During the photocatalytic detec-
tion process of Cip, holes can oxidize H2O molecules in the solution to hydroxyl radicals
(·OH), which then oxidize Cip molecules adsorbed on the surface of BPN/TDNA elec-
trodes [45,46]. The detection signal corresponds to the oxidation process of ciprofloxacin,
where the –NH-CH2– group is oxidized by holes to the –N=CH– group [47]. This oxidation
process hinders the recombination of photogenerated carriers with holes, facilitating rapid
transfer and separation of photogenerated carriers, ultimately resulting in a significant
enhancement of photocurrent density in the presence of Cip (Figure 17). In addition, to
further confirm the presence of ·OH in the photoelectrochemical (PEC) process, electron
paramagnetic resonance (EPR) technology was employed to detect the formation of ·OH
by measuring the spin capture adduct of 5,5-dimethyl-1-pyrroline N-oxide (DMPO). As de-
picted in Figure 18, no signal of ·OH was detected under dark conditions. However, under
visible light irradiation, a four-line spectrum with a relative intensity of 1:2:2:1 was ob-
served, indicating the presence of ·OH species. These generated ·OH radicals are expected
to play a crucial role in the oxidation of CFX molecules during the photoelectrochemi-
cal detection process [48]. The oxidation of Cip can be observed using TDNA/FTO and
BPN/TDNA/FTO electrodes. By comparing these two electrodes under natural light irradi-
ation, the advantages of the BPN/TDNA/FTO electrode become evident. It demonstrates
that Cip can undergo photoelectrochemical oxidation effectively on BPN/TDNA/FTO
under natural light irradiation. Furthermore, it highlights the excellent electrochemical per-
formance of the BPN/TDNA/FTO electrode, enabling effective recognition and detection
of the concentration of Cip with the assistance of natural light.
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Figure 16. (a) Photocurrent response of TDNA/FTO and BPN/TDNA/FTO electrodes to 2560 ng/L
Cip; (b) Photocurrent Response of BPN/TDNA/FTO electrodes Based on Different Cip Concentra-
tions; (c) Corresponding linear curve.
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Figure 18. EPR Spectra of BPN/TDNA/FTO Composite for DMPO-·OH.
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In addition, we also investigated the effect of different concentrations of Cip on the
photocurrent density of BPN/TDNA/FTO. Cip reagents with concentrations of 0, 80,
320, 640, 1280, 2560, 5120, 10,240, 20,480, 30,720, 51,200, and 71,680 ng were added to a
70 mL phosphate solution. As the amount of Cip added increases, photocurrent density is
more obvious (Figure 16b). To minimize interference, quantitative detection of Cip was
performed in a phosphate solution at pH 7 and a voltage of 0.0 V. The quantitative detection
results of the successfully prepared PEC electrode for Cip are shown in Figure 16c. Within
the concentration range of 1.14–1024 ng/mL, a logarithmic fit of the concentration with
the photocurrent density reveals two good linear relationships. The corresponding linear
equations are y = 8.15 × 10−6 C/ng L−1 + 0.368 (R2 = 0.960 CCip: 1142.9–9142.9 ng L−1)
and y = 6.75 × 10−7 C/ng L−1–0.467 (R2 = 0.955 CCip: 9142.9–438,857.1 ng L−1), where y
represents the photocurrent density of Cip. The detection limit (S/N = 3) is 7.56 ng/mL.
The true detection limit can reach 1.1ng/mL. Compared with the sensing materials reported
in Table 1 and the detection techniques reported in Table 2, the proposed PEC electrode
exhibits a lower detection limit and a wider Cip detection linear range.

Table 1. Comparison of different electrode materials for Cip detection.

Electrode Methods Linear Range
(ng mL−1)

Detection Limit
(ng mL−1) Reference

BiPO4/BiOI Photocurrent 80–7440 8.3 Zhao et al. (2019) [49]
CdS Electrochemical 33.14–3313.5 7.28 Shan et al. (2016) [50]

g-C3N4/Ti3C2 Amperometry 0.133–331.34 0.043 Yuan et al. (2020) [51]
Ti3C2/Bi4VO8Br/BPN Photocurrent 0.331–497.01 0.994 You et al. (2022) [52]

V2O5/SPE DPV 13.254–120,939.1 3.313 Tajik et al. (2021) [53]
MWCNT/GCE Electrochemical 13,253.6–331,340 19,880.4 Fotouhi et al. (2010) [54]

DNA-based electrochemical
biosensor Electrochemical 33.134–33,134 33.134 Ražná et al. (2015) [55]

MgFe2O4-MWCNTs Electrochemical 33.134–331,340 3.313 ENSAFI et al. (2012) [56]
BPN/TDNA Photocurrent 1.14–438.86 1.14 This work

Table 2. Comparison of different detection methods for Cip detection.

Methods Linear Range (ng mL−1) Detection Limit (ng mL−1) Reference

High resolution mass spectrometry 20–12,500 20 Bavo et al. [57]
Micellar liquid chromatographic 100–5000 24 José et al. [58]

HPLC 10–5120 10 Yuan et al. [59]
ELISA 0.32–5000 0.32 Yuan et al. [59]

Luminescence 30–2500 11 Rodríguez-Díaz et al. [60]
Fluorescently labeled aptasensor 0.63–800 0.63 Hu et al. [61]

Fluorescence 333–133,000 260 Liu et al. [62]
Photocurrent 1.14–438.86 1.14 This work

2.4. Selectivity, Stability, and Reproducibility of BPN/TDNA Electrode for Cip

The selectivity of the PEC electrode was evaluated by comparing the PEC responses
of representative interfering substances with a certain concentration of Cip, as shown
in Figure 19a and Table 3. To monitor the selectivity of the electrode, the photoelectric
performance of the electrode was measured in a blank phosphate-buffered solution, a
ciprofloxacin (Cip) solution (2560 ng/L), and solutions containing bisphenol A (BPNA),
p-benzoquinone (PBQ), Rhodamine B (RHB), 4-Hydroxybenzoic acid (PHB), and Strepto-
mycin (SM) at concentrations 100 times higher than that of Cip. At the same time, 2560 ng/L
of Moxifloxacin (MXF), Jimifloxacin (GEM), Norfloxacin (NOR), or Ofloxacin (OFX) were
added to compare their photoelectric performance with the same amount of ciprofloxacin.
By comparison, it can be observed that the prepared electrode exhibits the most promi-
nent response in the ciprofloxacin solution. The photocurrent remains unchanged in the
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presence of other interfering substances compared to the blank solution. Therefore, the
prepared PEC electrode demonstrates good selectivity.
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Figure 19. (a) Photocurrent monitoring of different pollutants using BPN/TDNA/FTO electrodes;
(b) Time photocurrent response of BPN/TDNA/FTO electrode; (c) 2560 ng/L Cip stability test
based on BPN/TDNA/FTO electrode; (d) Photocurrent Response of Five Parallel BPN/TDNA/FTO
electrodes to 2560 ng/L Cip.

Stability is a crucial factor in evaluating the performance of PEC sensing platforms.
Figure 19b shows the repeated testing of the same PEC electrode in a Cip (2560 ng/L)
phosphate solution by switching the light source. It can be observed that the modified
electrode exhibits good stability. Additionally, the same electrode was tested every 1, 3, 5, 10,
15, and 20 days (Figure 19c), and the results further indicate satisfactory stability of the PEC
electrode. Repeatability is also an important indicator for evaluating excellent electrodes.
We prepared five identical electrodes in a Cip (2560 ng/L) solution using the same method
for parallel experiments (Figure 19d), resulting in a relative standard deviation (RSD) of
2.27%. These results demonstrate the excellent repeatability of the prepared samples.
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Table 3. Interference of Different Disruptors on BPN/TDNA/FTO Photoelectrode.

Disruptors
Observed Current (µA)

Interference Effect (%) SD (n = 3) RSD (%) (n = 3)
R1 R2 R3 Average

Blank 0.397 0.398 0.395 0.367 0 0.002 0.504
CIP 0.591 0.594 0.597 0.594 100 0.003 0.505
BPA 0.447 0.449 0.448 0.448 35.683 0.001 0.223
PBQ 0.453 0.435 0.457 0.448 35.683 0.012 2.679
RHB 0.446 0.448 0.448 0.447 35.242 0.001 0.224
BHA 0.440 0.437 0.444 0.440 32.159 0.004 0.909
SM 0.473 0.468 0.463 0.468 44.493 0.005 1.068

MXF 0.499 0.484 0.476 0.486 52.423 0.012 2.469
GEM 0.516 0.494 0.485 0.498 57.709 0.016 3.213
NOR 0.550 0.495 0.486 0.510 62.996 0.035 6.863
OFX 0.492 0.480 0.472 0.481 50.220 0.010 2.079

2.5. Actual Sample Testing

The feasibility of PEC electrodes for detecting the concentration of Cip in milk samples
was demonstrated using conventional addition methods. Mengniu pure milk was used as
the milk sample, and Table 4 presents the concentrations of analytes in several samples. The
recovery rate ranged from 96.2% to 104.5%, with an RSD value below 4.7%, confirming the
feasibility of this method. These research findings suggest that the developed electrode can
be applied for environmental monitoring and is suitable for quantitative analysis of Cip.

Table 4. Analysis of real samples with different concentrations of Cip.

Samples Add (ng mL−1) Found (ng mL−1) Recovery (%) RSD (%)

Milk

20 20.7 103.5 4.7
80 83.6 104.5 3.2
150 144.3 96.2 4.3
200 193.5 96.75 3.9

3. Materials and Methods
3.1. Materials

All raw materials are analytically pure, and the solution water is ultrapure. Tetra butyl
titanate (C16H36O4Ti, purity ≥ 99%), hydrochloric acid (HCl, AR), sulfuric acid (H2SO4,
AR), sodium hydroxide (NaOH, purity ≥ 96%), ammonium hexafluorotitanate ((NH4)2TiF6,
purity ≥ 99%), acetone (CH3COCH3, purity ≥ 99.5%), anhydrous N, N-methyl pyrrolidi-
none (NMP) (C5H9NO, purity ≥ 99.5%), black phosphorus (BP) (P, purity ≥ 99.9%), iso-
propanol ((CH3)2CHOH), purity ≥ 99.7%), anhydrous ethanol (CH3CH2OH, purity ≥ 99.7%),
and conductive glass (FTO, 15 Ω) (30 mm × 10 mm × 2.2 mm).

3.2. Synthesis of BPN/TDNA/FTO Composites
3.2.1. Treatment of FTO

First we put FTO into deionized water for ultrasonic treatment for 20 min, then we
put FTO into a mixed solution of hydrochloric acid and deionized water with a volume
ratio of 1:1 for continuous ultrasonic cleaning for 15 min, then we put acetone, isopropanol,
absolute ethanol, and deionized water in turn for continuous ultrasonic treatment for
20min, respectively, and finally we put it into an oven for drying at 60 ◦C. We took 60 mL
of deionized water and 60 mL of HCl and mixed well. Then, 2.5 mL of tetra butyl titanate
was slowly added with a 5 mL pipette and fully stirred, and 1 g of (NH4)2TiF6 powder
was weighed and added into the mixed solution, fully stirred, and ultrasonically treated
for 30 min. We placed 24 mL of the above solution into a 50 mL polytetrafluoroethylene
autoclave liner. We used a multimeter to monitor and find out the conductive surface of
the dried FTO. We put the conductive surface of the FTO downward and leant it against
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the Polytetrafluoroethylene (PTFE) at a suitable angle. The autoclave was finally tightened
and placed in an oven at 170 ◦C for 12 h. We took out the FTO after the reaction kettle was
cooled, and rinsed the impurities on the surface of FTO with deionized water. We then
put the FTO with TiO2 side up in an oven at 80 ◦C for 6 h. It was then calcined in a muffle
furnace at 550 ◦C for 2 h.

3.2.2. Preparation of BPN

BPN was prepared using the alkaline NMP solvent stripping method. Add 20 mg
of bulk BPN to 20 mL of saturated NaOH/NMP. Under circulating water condensation
conditions, use a cutting-edge ultrasound instrument to perform ultrasonic dispersion at
a power output of 10 W for 4 h. Afterward, the dispersion was centrifuged at 2000 rpm
for 20 min and we filtered the undissociated BPN twice to obtain the black phosphorus
nanosheets NMP dispersion (0.2 mg/mL).

3.2.3. Preparation of BPN/TDNA/FTO Photoelectrode

Use a pipette gun to take 20 µL of the obtained black phosphorus nanosheets NMP
dispersion (0.2 mg/mL) and coat it on the titanium dioxide nanoarray, then dry it in a
40 ◦C oven. Figure 20 shows the schematic diagram of BPN/TDNA/FTO photoelectrode
preparation.
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3.3. Apparatus

X-ray diffractometer (XRD) was recorded using Cu-Kα radiation on a Bruker D8 Ad-
vance X-ray polycrystalline diffractometer (D8-ADVANCE, Bruker, Karlsruhe, Germany).
The morphology and structure of the as-prepared samples were investigated by trans-
mission electron microscopy (TEM) (JEOL-JEM-2100F, JEOL, Tokyo, Japan) and scanning
electron microscope (SEM) (JEOL-JSM-7800F, JEOL, Tokyo, Japan). The Fourier transform
infrared spectra (FT-IR) of the materials were taken on a Nicolet Nexus 470 spectrome-
ter (Thermo Fisher Scientific, Waltham, MA, USA). The UV-vis absorption spectra were
recorded on a PE lambda 750 spectrophotometer (PerkinElmer, Waltham, MA, USA). Ra-
man spectroscopy was conducted using a 632 nm laser excitation on a RAM HR 800 Raman
spectrometer (HORIBA jobin Yvon, Paris, France). Photoluminescence (PL) spectroscopy
was performed on the FLS 980 fluorescence spectrometer(Edinburgh Company, Livingston,
UK) with an excitation wavelength of 290 nm.
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3.4. Photoelectrochemical Measurements

With the help of a Bio-Logic VMP3 electrochemical workstation, all PEC performances
were evaluated. We used a 300 W xenon lamp (PLS-SXE300, Beijing Bofeilai Technology
Co., Ltd., Beijing, China) equipped with an AM 1.5 G filter as a simulated light source
for sunlight, providing an intensity of 100 mW/cm2. In a three-electrode system, the
generated photoelectrodes, platinum foil, and Ag/AgCl (saturated KCl) were used as
working electrodes, counter electrodes, and reference electrodes, respectively. The reference
electrode was an Ag/AgCl electrode in a Luggin capillary. For the PEC measurements in
our work, a 0.1 M Phosphate buffer solution was chosen as the electrolyte. A photoanode
surface with an area of 1 cm2 was immersed in an electrolyte solution, and the scanning
rate of 10 mV/s was recorded using linear scanning voltammetry (LSV). The double-layer
capacitance (Cdl) was measured using cyclic voltammetry (CV) at scanning rates of 20, 50,
100, 150, and 200 mV/s, with Ag/AgCl serving as the reference electrode. Measurements
of the current density-time (I-T) curve were performed at a constant bias potential of
0.0 V. Electrochemical impedance spectroscopy (EIS) measurements were conducted under
natural light in a 0.1 M phosphate-buffered solution at an open circuit potential with an
amplitude of 10 mV and a frequency range of 100 kHz to 10 mHz. At a frequency of 10 kHz,
Mott–Schottky (M–S) curves were fitted throughout a potential range of −0.8 V to 0.8 V.

4. Conclusions

Ultra-thin BPN with excellent stability and high concentration were successfully pre-
pared using the TSC/NMP fluid extension method. Subsequently, a novel BPN/TDNA
photoelectrode for Cip detection was constructed utilizing these ultra-thin BPN. In this
study, a series of photochemical tests were conducted to investigate the photoelectric per-
formance of the BPN/TDNA electrodes. The electrochemical results revealed that the
incorporation of BPN significantly enhanced the photoelectric efficiency of TDNA. The
presence of BPN in the BPN/TDNA electrode effectively improved the light absorption ca-
pability of the TDNA, while the two-dimensional characteristics of BPN facilitated efficient
charge transfer in the TDNA. Moreover, due to the potential oxidation of Cip via photo-
generated holes in the electrode, the BPN/TDNA exhibited a remarkable PEC response
towards Cip. Consequently, the BPN/TDNA-based photoelectrode demonstrated a wide
linear range and an impressive low detection limit of 7.56 ng/mL for Cip. Furthermore, it
exhibited high recovery rates and low relative standard deviations in real sample detection,
indicating its potential for future commercialization.
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