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Abstract: Hydrogen peroxide (H2O2) is a clean and mild oxidant that is receiving increasing attention.
The photocatalytic H2O2 production process utilizes solar energy as an energy source and H2O and
O2 as material sources, making it a safe and sustainable process. However, the high recombina-
tion rate of photogenerated carriers and the low utilization of visible light limit the photocatalytic
production of H2O2. S-scheme heterojunctions can significantly reduce the recombination rate of
photogenerated electron–hole pairs and retain a high reduction and oxidation capacity due to the
presence of an internal electric field. Therefore, it is necessary to develop S-scheme heterojunction
photocatalysts with simple preparation methods and high performance. After a brief introduction of
the basic principles and advantages of photocatalytic H2O2 production and S-scheme heterojunctions,
this review focuses on the design and application of S-scheme heterojunction photocatalysts in photo-
catalytic H2O2 production. This paper concludes with a challenge and prospect of the application of
S-scheme heterojunction photocatalysts in photocatalytic H2O2 production.
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1. Introduction

Since its first synthesis in 1818 by Thenard [1], hydrogen peroxide (H2O2) has been
considered a promising liquid fuel and a green oxidizer for a wide range of energy, envi-
ronmental and chemical synthesis applications [2–4]. Currently, the anthraquinone (AQ)
method dominates H2O2 production, accounting for about 95% of global H2O2 output [3,5].
Despite the maturity of AQ oxidation technology, it suffers from drawbacks such as high
energy consumption, dangerous operation and pollution to the environment. In addition,
direct synthesis of H2O2 using H2 and O2 can mitigate environmental concerns [6]. How-
ever, this method is cost-prohibitive, lacks selectivity for H2O2 and is prone to explosion [7].
Thus, there is a pressing need to discover an environmentally friendly and efficient H2O2
production method.

Solar energy is a clean and sustainable source of energy. Since Fujishima and Honda
discovered the photo-assisted oxidation of water on TiO2 electrodes in 1972 [8], semicon-
ductor photocatalysis has been applied in several research fields [9–11]. Photocatalytic
H2O2 production is a safe and green process using renewable solar energy as an energy
source and resource-rich H2O and O2 as raw materials. In the long run, photocatalytic
H2O2 production has great potential in environmental pollution treatment [12]. As shown
in Figure 1, a great number of relevant studies have emerged in the field of photocatalytic
H2O2 production in recent years [2,5,13–21]. However, the low visible light utilization
and low solar energy conversion efficiency seriously hinder its commercial feasibility. So
far, researchers have adopted various modification methods to enhance the efficiency of
photocatalytic H2O2 production, such as doping [22,23], vacancy engineering [24], surface
engineering [25], nanoparticle deposition [26] and heterojunction construction [17,27,28],
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as well as combinations of two or more of these methods [29]. Thus, there is a pressing
need to discover an environmentally friendly and efficient H2O2 production method.
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Figure 1. Representative photocatalysts for photocatalytic production of H2O2 in the last
decade [2,5,13–21].

Mechanisms such as type-II, Z-scheme and S-scheme mechanisms are the most com-
mon in the literature used to describe the charge transfer in heterojunction structures.
Although type-II heterojunctions can improve the separation efficiency of photogenerated
carriers, they also sacrifice the charge of the strong redox potential, resulting in reduced
redox capacity. Z-scheme photocatalysts, initially proposed by Bard in 1979, have found
application in photocatalytic H2O2 production due to their effective charge separation
and robust redox capabilities [30]. For instance, Cheng et al. [31] synthesized Z-scheme
Ag/ZnFe2O4–Ag–Ag3PO4 composites for photocatalytic H2O2 production, which was
generated by a continuous two-step one-electron oxygen reduction. Nevertheless, there
is still some confusion about the mechanism of Z-scheme heterojunctions. Addressing
the limitations inherent in type-II and Z-scheme mechanisms, Yu’s team introduced the
concept of S-scheme heterojunctions in 2019 [32]. The S-scheme heterojunction is composed
of a reduction semiconductor and an oxidation semiconductor, which can be a p-type
or n-type semiconductor. Efficient photogenerated carrier migration is achieved by the
built-in electric field (IEF) at the interface of the different semiconductors, thus maintain-
ing a high redox capacity [33,34]. In the past few years, S-scheme heterojunctions have
attracted unprecedented attention because of their excellent photocatalytic activity. They
are widely utilized in the fields of photocatalytic CO2 reduction [35–39], photocatalytic H2
production [40–44], photocatalytic H2O2 production [45] and other applications [46–49].

In this comprehensive review, we have undertaken a multi-faceted exploration of pho-
tocatalytic H2O2 production and the pivotal role played by S-scheme heterojunctions. Our
journey commenced with an elucidation of the fundamental mechanism governing photo-
catalytic H2O2 production, followed by an in-depth analysis of the latest advancements
in S-scheme heterojunctions employed within this context. Notably, recent years have
witnessed remarkable progress in S-scheme heterojunction research, a modification strategy
that holds immense potential for elevating photocatalyst activity and, consequently, the
yield of photocatalytic H2O2 production. Our objective is to provide an in-depth reference
on the H2O2 production system of S-scheme heterojunctions to stimulate new inspirations
and promote the industrialization of photocatalytic H2O2 production.
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2. Mechanism of Photocatalytic H2O2 Production Reaction

In general, the process of photocatalytic H2O2 production consists of three main steps
(Figure 2). In the first step, when the absorbed photon energy of the semiconductor is
greater than its band gap (Eg), electrons are excited and jump from the valence band (VB)
to the conduction band (CB), while the hole remains in the VB, resulting in photogenerated
electron–hole pairs. In the second step, the photogenerated electrons and holes separate and
migrate, accompanied by the recombination of photogenerated electrons and holes, only a
few of which can migrate to the surface of photocatalyst. In the last step, the electrons and
holes migrating to the surface of the photocatalyst are involved in oxidation and reduction
reactions, respectively. There are two main pathways for the synthesis of H2O2: oxygen
reduction reaction (ORR) and water oxidation reaction (WOR).
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The reaction potentials of photocatalytic H2O2 production are shown in Figure 2. Cur-
rently, ORR can be divided into two-step single-electron reduction (O2 → ·O−2 → H2O2 )
and direct one-step double-electron reduction (O2 → H2O2 ) routes, where the protons are
mainly derived from the decomposition of H2O. Since the potential of O2/·O−2 (−0.33 V) is
much more negative than that of O2/H2O2 (0.68 V), it requires a more negative CB position
of the photocatalyst, which unavoidably increases the band gap of the photocatalyst. In
general, narrow-band-gap photocatalysts are more utilized to increase their light absorption
ability. Therefore, it is necessary to modify the ORR route to a one-step double-electron
reaction. However, the presence of the four-electron oxygen reduction reaction makes the
photocatalytic production of H2O2 less selective.

The WOR pathway is a way to synthesize H2O2 by using photogenerated holes (h+)
in the photocatalytic H2O2 production process. Similar to the ORR pathway, the WOR
pathway can also be divided into two-electron WOR (direct two-electron and indirect
two-electron) pathways and a four-electron WOR pathway. As shown in Figure 2, in the
direct two-electron WOR pathway, the h+ can directly oxidize H2O to H2O2 in a one-
step two-electron reaction. In addition, in the indirect two-electron reaction, the h+ can
first oxidize H2O to hydroxyl radicals (·OH) and then form H2O2 by coupling two ·OH.
Theoretically, the direct two-electron WOR pathway requires a 1.76 V positive valence band
(VB) potential of the photocatalyst, while the indirect two-electron WOR pathway requires
a 2.73 V positive VB potential. The direct two-electron WOR pathway is thermodynamically
more favorable but kinetically unfavorable compared to the indirect two-electron WOR
pathway. Similar to the ORR pathway, the WOR pathway also results in low selectivity of
H2O2 because of the competitive reaction of the four-electron WOR pathway.
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In general, photocatalysts can be designed in such a way that H2O2 can be produced
simultaneously by both two pathways. The dual-channel pathway integrating the ORR
and WOR pathways produces H2O2 via O2 and H2O without the addition of sacrificial
agents and achieves 100% atomic utilization. In addition, photocatalytic H2O2 production
is usually accompanied by the decomposition of H2O2. In order to improve the yield and
selectivity of H2O2 in photocatalytic process, it is essential to prepare photocatalysts with
suitable band gaps to provide high redox potential, high separation efficiency of photogen-
erated charges and excellent visible light absorption performance. To date, the performance
of photocatalytic H2O2 production has been improved by such modification methods as
elemental doping [19,50], morphology modulation [51], deposition of noble metals [52],
vacancy engineering [53,54] and construction of heterojunctions [55–57]. Among them,
the construction of heterojunctions shows excellent photocatalytic activities because it can
induce the maximum separation of photogenerated carriers. Considering this, in the next
section, we focus on S-scheme heterojunctions.

3. S-Scheme Heterojunctions
3.1. Mechanism of S-Scheme Heterojunctions

The separation efficiency of photogenerated carriers is an important factor for pho-
tocatalysts. In order to avoid the compounding of photogenerated carriers in a single
photocatalyst, two photocatalysts were combined to enhance the photocatalytic activities.
As shown in Figure 3a, in a type-II heterojunction, photogenerated carriers are generated
in each of the two semiconductors under the irradiation of light. The photogenerated elec-
trons and photogenerated holes migrate in opposite directions and aggregate on different
semiconductors, thus achieving spatial separation. Although the effective separation of
photogenerated carriers is achievable in type-II heterojunctions, this charge transfer re-
duces the redox ability of the photocatalyst. Moreover, kinetically, the presence of Coulomb
repulsion inhibits this charge transfer route.

Z-scheme heterojunctions mainly include traditional Z-scheme, all-solid-state Z-
scheme and direct Z-scheme heterojunctions (Figure 3b). Traditional Z-scheme and all-solid-
state Z-scheme heterojunctions need to be bonded by an electron acceptor and an electron
donor or a metal conductor. Thereby, electron–hole pairs with high redox capacity react
with shuttling redox ion pairs or, in all-solid-state Z-scheme heterojunctions, burst each
other due to greater thermodynamic driving forces [58]. Direct Z-scheme heterojunctions
are derived from traditional Z-scheme and all-solid-state Z-scheme heterojunctions [59].
In a direct Z-scheme heterojunction, when two semiconductors are in contact, due to the
Fermi-level difference between them, positive and negative charges collect in the interface
region near the two semiconductors, resulting in an internal electric field (IEF). Photogen-
erated electrons are transferred from the CB of one semiconductor to the VB of the other
semiconductor under the action of the IEF, as illustrated in Figure 3b. However, the term
“Z-scheme heterojunction” is associated with considerable confusion, theoretical imma-
turity and problems. In consideration of the above disadvantages, a new charge transfer
mechanism needs to be introduced to explain the charge transfer process in heterojunction
photocatalysts. Thus, in 2019, Fu et al. [32] presented an S-scheme heterojunction with a
similar structure to that of type-II heterojunctions which compensated for the shortcom-
ings of Z-scheme heterojunctions [60]. As shown in Figure 3c, a S-scheme heterojunction
is a coupling of an oxidizing photocatalyst (OP) and a reducing photocatalyst (RP) [61].
Like the structure of type-II heterojunctions, the OP and RP exhibit a similar interleaved
structure, but the charge transfer routes between them are different. The RP with a small
work function and high Fermi energy level and the OP with a large work function and
low Fermi energy level form an S-scheme heterojunction by interlocking patterns. When
the OP and RP are in close contact, the Fermi energy levels are bent in the interface region
until the Fermi energy levels of the two photocatalysts reach equilibrium [62]. A charge
accumulation layer and a charge depletion layer are formed at the interface. Energy band
bending occurs in the OP and RP, which induces the recombination of electrons on the CB
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in the OP and holes on the VB in the RP. As a result, the holes on the lower VB in the OP
and the electrons on the higher CB in the RP are retained, favoring strong oxidation and
reduction reactions, respectively [33,63]. In conclusion, by this mode formation, not only
can the separation of photogenerated carriers be achieved, but the strong oxidation and
reduction capabilities can also be obtained. The charge transfer path is macroscopically
“step-like”, so it is termed a step-scheme heterojunction.
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3.2. Characterization of S-Scheme Heterojunctions

At the moment, the charge transfer pathway in S-scheme heterojunctions can be
demonstrated by the characterization of ex situ/in situ irradiated X-ray photoelectron
spectroscopy (ISIXPS), Kelvin probe force microscopy (KPFM) and electron paramagnetic
resonance spectroscopy (EPR) [62]. The increase or decrease in electron density can be
characterized by the shift in binding energy in the in situ XPS spectra under light conditions.
The decrease in binding energy represents the increase in electron density and the atom
gains electrons. Conversely, the increase in binding energy represents the decrease in
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electron density and the atom loses electrons [34,64]. Thus, it can be used to determine
the direction of charge transfer in heterojunction photocatalysts. For example, Yu et al.
synthesized hierarchical TiO2@ZnIn2S4 core–shell hollow spheres and determined the
electron transfer paths by XPS. As shown in Figure 4b,c, Ti 2p and O 1s of TiO2@ZnIn2S4
shifted to lower energy levels under dark conditions compared to TiO2, indicating an
increase in the electron density of TiO2. The binding energies of Zn 2p, In 3d and S 2p of
TiO2@ZnIn2S4 under dark conditions were shifted to higher energy levels compared to
those of ZnIn2S4 (Figure 4d–f). This indicates that electrons migrate from ZnIn2S4 to TiO2
when the two photocatalysts are in contact. When light is irradiated, the electron transfer
is reversed. That is, the photogenerated electrons migrate from TiO2 to ZnIn2S4. This
matches the charge transfer mechanism of the S-scheme heterojunction shown in Figure 4a.
In addition, space charge separation in heterojunctions can be revealed by photoirradiated
Kelvin probe force microscopy (KPFM) investigation. For example, Cheng et al. [65]
prepared a S-scheme heterojunction by growing CdS in situ on the surface of pyrene-alt-
triphenylamine conjugated polymer. Figure 5a shows an atomic force microscopy image
of the photocatalyst; it can be seen that there is a surface potential difference between the
two interfaces. Figure 5b,c shows the surface potential maps of the composites under dark
and light conditions. As shown in Figure 5d, the surface potential difference between the
PT (A) and CdS (B) is about 100 mV under dark conditions, which proves that an intrinsic
electric field is formed between them pointing from the A direction to the B direction. After
irradiation, the surface potential of A decreases while the surface potential of B increases.
This change in surface potential proves that CdS is an electron donor in the heterojunction
(Figure 5e). Furthermore, electron paramagnetic resonance (EPR) and DFT calculations
can also indirectly evidence the charge transfer process [66]. EPR can be used to detect the
type of radicals contained in the reaction system. Thus, to confirm that the charge transfer
path of the synthesized heterojunction follows the S-scheme heterojunction photocatalyst,
the presence of •OH and •O2 radicals in the reaction system can be detected by EPR. It is
known that the oxidation potential of OH/•OH and the reduction potential of O2/•O2
reach 2.73 V and –0.33 V.
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3.3. Synthesis Method

Presently, various methods to synthesize S-scheme heterojunctions exist, such as the
hydrothermal/solvothermal method [67–69], sol–gel electrostatic spinning method [70,71],
self-assembly method [32,72,73] and co-precipitation method [74,75]. For example, Li
et al. [76] synthesized a novel S-scheme TiO2/ZnIn2S4 heterojunction photocatalyst by the
hydrothermal method and evaluated its photocatalytic performance by photocatalytic H2
production. TiO2 nanofibers are dispersed in an aqueous ethanol solution containing Zn2+

and In3+, which are anchored to the surface of TiO2 nanofibers by Coulomb electrostatic
interactions, while an S source is added. TiO2/ZnIn2S4 heterojunctions are obtained
by hydrothermal method. It was found the S-scheme mechanism of photogenerated
charge transfer made TiO2/ZnIn2S4 exhibit the highest H2 production activity with a H2
production rate of 6.03 mmol·g−1·h−1.

4. H2O2 Production by S-Scheme Heterojunction Photocatalysts

H2O2 production by photocatalysis is a safe, sustainable and green process because it
requires only water and oxygen from the air as raw materials and sunlight as an energy
source [77–79]. In S-scheme heterojunctions, the Fermi energy level difference between
semiconductors induces the formation of an intrinsic electric field and energy band bending,
which promotes the effective migration and separation of photogenerated electrons and
holes. This advantage of S-scheme heterojunctions makes them promising for photocatalytic
H2O2 production. This review focuses on the application of S-scheme heterojunctions in
photocatalytic H2O2 production.

4.1. Photocatalytic H2O2 Production

As described in Section 2, the two main pathways for photocatalytic H2O2 production
are the ORR and WOR pathways. Photocatalytic reactions mainly include light absorption,
migration and separation of photogenerated charges and redox reactions on surfaces. The
most important prerequisite for photocatalytic H2O2 production is to satisfy the reaction
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potential of ORR and WOR pathways. Thus, the band gap position of the photocatalyst
is of critical importance in H2O2 production. S-scheme heterojunctions have significant
advantages in photocatalytic H2O2 production because of effective separation of photogen-
erated carriers and enhanced redox capacity. The oxygen reduction pathway is the most
popular photocatalytic H2O2 production pathway. For example, Jiang et al. [80] synthesized
S-scheme ZnO/WO3 heterojunction photocatalysts for photocatalytic H2O2 production by
hydrothermal and calcination methods. FESEM and TEM images show that ZnO/WO3
exhibits a hierarchical microsphere structure (Figure 6a,b). The prepared ZnO/WO3 het-
erojunctions showed superior photocatalytic activity compared to the single component.
When the volume of WO3 was 30%, ZW30 exhibited an H2O2 yield of 6788 µmol·L−1·h−1.
In addition, cyclic tests revealed good stability of ZW30, with a small decrease in H2O2
yield after four cycles. Figure 6c depicts the mechanism of ZnO/WO3 for photocatalytic
H2O2 production. The process is based on a direct 2e− ORR pathway, accompanied by
indirect 2e− ORR pathway. The characterization and experimental results demonstrate the
formation of a ZnO/WO3 S-scheme heterojunction with a structure capable of providing
more reducing electrons, thus enhancing the driving force of H2O2 production by ORR.
In another work, Lai et al. [81] developed a CdS/K2Ta2O6 S-scheme heterojunction by a
two-step hydrothermal method, which exhibits excellent photocatalytic H2O2 production
activity without using any sacrificial agent and additional O2. The SEM image shows that
the CdS/K2Ta2O6 composite exhibits a flower-like structure (Figure 7a). In situ irradiated
XPS, EPR and DFT calculations were used to propose the mechanism of an S-scheme
heterojunction for H2O2 production (Figure 7b). The simultaneous presence of WOR and
ORR pathways enables efficient utilization of the redox system. All the above studies
provide insights into the design of S-scheme heterojunction photocatalysts for efficient
photocatalytic H2O2 production. In recent years, there have been a number of S-scheme
heterojunctions applied in photocatalytic H2O2 production. Table 1 presents the studies of
S-scheme heterojunctions for photocatalytic H2O2 production.
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Table 1. Studies of S-scheme heterojunctions for photocatalytic H2O2 production.

Photocatalyst Morphology Light Source Reaction
Solution Pathway

Concentration
of

Photocatalyst/g·L−1
H2O2 Yield Ref.

ZnO/WO3
Hierarchical

microsphere structure 300 W Xe lamp 50 mL of 10 vol%
ethanol

Direct 2e− ORR
and indirect 2e−
ORR pathways

1.0 6788 µmol·L−1·h−1 [80]

CdS/K2Ta2O6
Flower−like

structure
300 W Xe lamp
(λ > 420 nm)

Ultra−pure
water

2e− ORR and
WOR pathways 0.6

160.89 µmol·L−1·h−1;
346.31 µmol·L−1·h−1

with saturated O2

[81]

ZnO/g-C3N4
ZnO NPs dispersed

on the CN nanosheet
300 W Xe lamp
(λ > 350 nm)

50 mL of 10 vol%
ethanol ORR pathway 0.4 1544 µmol·L−1·h−1 [82]

TiO2/In2S3 Core–shell structure 300 W Xe arc
lamp

40 mL of 10 vol%
ethanol

Indirect 2e−
ORR pathway 0.5 376 µmol·L−1·h−1 [45]

C3N4/PDA Nanosheet
300 W Xe arc

lamp
(λ > 350 nm)

50 mL of 20 vol%
ethanol

Indirect 2e−
ORR pathway 0.4 3801.25 µmol·g−1·h−1 [83]

ZnO/COF
(TpPa−Cl)

ZnO nanoparticles
distributed on the

surface of TpPa−Cl
300 W Xe lamp 10 vol% ethanol Indirect 2e−

ORR pathway 0.5 2443 µmol·g−1·h−1 [84]

TiO2/PDA Inverse opals 300 W Xe arc
lamp

40 mL of 10 vol%
ethanol ORR pathway 0.5 ~2.2 mmol·g−1·h−1 [85]

In2O3/ZnIn2S4
Ordered hollow

structure

250 W Xe
lamp

(λ > 420 nm)

50 mL of 5 vol%
ethanol ORR pathway 0.4 5716 µmol·g−1·h−1 [86]

Sv−ZIS/CN

Three−dimensional
flower-like structure
and agaric shaped

with a microporous
structure

300 W Xe lamp
(λ > 420 nm)

50 mL of 10 vol%
isopropanol

Direct 2e− ORR
and indirect 2e−
ORR pathways

0.4 1310.18
µmol·L−1·h−1 [87]

Bi2S3@CdS@RGO

Flaky RGO is
wrapped onto the
CdS nanoparticles

and Bi2S3
rod−aggregate

morphology

300 W Xe lamp
(λ > 420 nm)

50 mL of 10 vol%
isopropanol

Indirect 2e−
ORR pathway 1.0 212.82 µmol·L−1

within 180 min [88]

ZnO@PDA Inverse Opal 300 W Xe arc
lamp

50 mL of 4 vol%
glycol

Direct 2e− ORR
and indirect 2e−
ORR pathways

0.4 1011.4 µmol·L−1·h−1 [89]

S-pCN/WO2.72

Uniform porous
sheet−like

two−dimensional
structure

300 W Xe lamp
(λ > 420 nm) 100 mL water

Direct 2e− ORR
and indirect 2e−
ORR pathways

1.0 90 µmol·L−1 within
180 min [90]

TiO2@RF Core–shell structure 300 W Xe lamp 15 mL water 2e− ORR
pathway ~0.67 66.6 mmol·g−1·h−1 [91]

sulfur-doped
g-C3N4/TiO2

Well-ordered
macroporous
framework

300 W Xe lamp 50 mL water 2e− ORR and
WOR pathways 0.2 2128 µmol·g−1·h−1 [92]
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4.2. Water Splitting

H2O2 can also be used as a valuable by-product of photocatalytic overall water split-
ting to produce H2. Photocatalytic H2 production from overall water splitting has been
a hot research problem; however, it has the disadvantages of slow kinetics and difficult
product separation. The production of H2 and H2O2 from pure water by a two-electron
photocatalytic mechanism solves the above problems due to a lower reaction potential than
that of the four-electron reaction [93,94]. Two-electron overall water splitting thermodynam-
ically requires a stronger oxidation capacity of the photocatalyst. S-scheme heterojunctions
have a strong redox capacity because of their unique step-scheme charge transfer mecha-
nism. For instance, Meng et al. [95] successfully synthesized a g-C3N4/CoTiO3 S-scheme
heterojunction photocatalyst and applied it in photocatalytic overall water splitting for H2
production under visible light. The H2 production efficiency was significantly improved
without sacrificial agents, while the presence of H2O2 was detected in the photocatalytic
process. Based on the results of EPR and DFT calculations, the possible reaction mechanism
of the photocatalyst is shown in Figure 8. The difference in the Fermi energy levels of CN
and CoTiO3 results in the formation of an intrinsic electric field (IEF) at the contact surface
of the two photocatalysts. As a result, energy band bending also occurs in the interface
region, forming an S-scheme heterojunction. This means of charge transfer promotes the
migration and separation of photogenerated carriers and preserves the strong redox ability
of the system, which is beneficial in enhancing the efficiency of photocatalytic overall
water splitting.
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4.3. Coupling of H2O2 Production and Organic Synthesis

S-scheme heterojunctions can maximize the redox ability of photocatalysts, effectively
utilizing photogenerated electrons and holes and, therefore, having the ability to simultane-
ously achieve the reduction of O2 to H2O2 and the oxidation of organics [96]. For instance,
He et al. [55] synthesized floatable S-scheme TiO2/Bi2O3 photocatalysts by immobilizing
hydrophobic TiO2 and Bi2O3 on lightweight polystyrene (PS) spheres by hydrothermal
and photodeposition methods. The photocatalysts showed significant H2O2 yields and
were able to oxidize furfuryl alcohol (FFA) to furoic acid (FA). The mechanism of the
photocatalytic reaction was revealed by in situ DRIFT spectroscopy and DFT calculations
(Figure 9a,b). In addition, the floatable photocatalyst is able to be in closer contact with O2
compared to conventional biphasic photocatalytic systems, solving the problem of slow
transport of gas reactants from suspended photocatalysts (Figure 9c). Moreover, floatable
photocatalysts are less prone to agglomeration, easy to recover and can be recycled. The
floatable S-scheme heterojunction photocatalyst not only improves the efficiency of pho-
tocatalytic reactions but also provides a new idea for efficient multiphase catalysis. In
addition, recently, Yu et al. successfully prepared S-scheme TiO2@BTTA photocatalysts by
synthesizing COF (BTTA) via Schiff-base condensation and by encapsulating TiO2 NF with
BTTA COF. The heterojunction photocatalysts show high H2O2 production activity and
furoic alcohol (FAL) oxidation activity, with a H2O2 production rate of 740 µmol·L−1·h−1

and a FAL conversion of 96%.
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4.4. Pollutant Degradation with In Situ H2O2 Production

H2O2 is usually used in the degradation of contaminants due to its oxidizing ability to
improve photocatalytic degradation efficiency. In general, the reactive oxygen species (ROS)
used for photocatalytic degradation are mainly H2O2, ·O−2 and ·OH. H2O2 is the only
stable molecule among them and has a longer lifetime than other active radicals. In situ
H2O2 production to enhance the degradation of contaminants in photocatalytic processes
has proven to be an effective strategy. Recently, S-scheme heterojunction photocatalysts
have also been developed for this application (Table 2). Li et al. [97] synthesized a novel
layered BP/BiOBr S-scheme heterojunction by self-assembling BiOBr nanosheets on the
surface of BP nanosheets by liquid-phase sonication combined with solvothermal methods.
The composite exhibited excellent photocatalytic degradation activity of tetracycline (TC)
under visible light, which was 7.8 times higher than that of pure BiOBr. The increased
activity was attributed to the structure of S-scheme heterojunctions retaining a high redox
capacity. The active groups during the experiment were tested by ESR characterization, as
shown in Figure 10a,b. After illumination, the signals of both ·O−2 and ·OH groups were
detected, but the signals of ·O−2 groups became lower with the increase in illumination
time, indicating that some ·O−2 and H+ formed H2O2. The results indicate that the main
active substances of TC mineralization are in situ generated H2O2 and ·OH. Based on the
above results, the photocatalytic mechanism of the S-scheme heterojunction is proposed as
shown in Figure 10c.
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Table 2. Studies of S-scheme heterojunction photocatalytic H2O2 production coupled with pollu-
tant degradation.

Photocatalyst Morphology Contaminant
or Organics Light Source Reaction

System
Concentration of

Photocatalyst/g·L−1 H2O2 Yield Degradation
Efficiency Ref.

PDI−
Urea/BiOBr

BiOBr
nanospheres

dispersed on the
PDI−Urea

lamellar layer

Ofloxacin
(OFLO),

tetracycline
(TC)

300 W Xe lamp
(λ > 420 nm)

50 mL of TC
(50 mg/L) and

OFLO
(10 mg/L)

1.0
71 µmol·L−1·h−1

after 3 h
irradiation

93%(~65%)
photocatalytic
degradation

rate for OFLO
(TC) after

150 (90) min

[98]

BP/BiOBr Two−dimensional
structure

Tetracycline
(TC)

300 W Xe arc
lamp

(λ > 420 nm)

100 mL of TC
(50 mg/L) 1.0 1.62

µmol·L−1·min−1

~85%
photocatalytic
degradation
rate for TC
after 90 min

[97]

Graphitic−
C3N4/ZnCr

Layered
structures

Rhodamine
B(RhB) Xe lamp 100 mL of RhB

(5 ppm) 1.0 −

99.8%
photocatalytic
degradation
rate for RhB
after 210 min

[99]

PDI/g-C3N4/
TiO2@Ti3C2

Multi-layered 2D
frame

Atrazine
(ATZ)

300 W Xe lamp
(λ > 420 nm)

50 mL of ATZ
(10 ppm) 0.8 ~160

µmol·L−1·h−1

75% removal
rate of ATZ
within one

hour
[100]

g-C3N4/α-
MnS

Inhomogeneous
morphology
with a rough

surface

Oxytetracycline
(OTC)

300 W Xe lamp
(λ > 420 nm)

50 mL of OTC
hydrochloride
(20 mg·L−1)

1.0 111.6
µmol·L−1·h−1

82.2%
degradation of
OTC in water
within 80 min

[101]

Red mud/CdS

RM particles
loaded on the
surface of CdS
nanospheres

Amoxicillin
(AMX)

LED lamp (410
< λ < 760 nm)

50 mL of AMX
(20 mg·L−1) 0.5 1.05 mg·L−1·h−1

73.0%
degradation of
AMX within

120 min

[102]
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Overall, the structure of S-scheme heterojunctions realizes rapid transfer and effective
separation of photogenerated carriers and retains the strong redox capability of photo-
catalysts. This section shows the different S-scheme heterojunction photocatalysts in the
literature for H2O2 production pathways and provides insights into the synthesis of efficient
S-scheme heterojunction photocatalysts.

5. Conclusions and Outlook

Photocatalytic H2O2 production is a strategy used to avoid the drawbacks of conven-
tional H2O2 production methods and, thus, achieve the conversion from solar energy to
chemical energy. However, studies have shown that the efficiency and stability of single-
component photocatalysts are not sufficient for practical applications. Therefore, modified
photocatalysts obtained by constructing heterojunctions to facilitate the migration and sepa-
ration of photogenerated carriers have been developed. The novel S-scheme heterojunction
proposed by Yu’s group overcomes the inherent defects of conventional heterojunctions
and obtains a high redox capacity while promoting the effective separation of photogener-
ated carriers. This paper reviews the mechanism of novel S-scheme heterojunctions and
photocatalytic H2O2 production and the application of S-scheme heterojunctions in the
field of photocatalytic H2O2 production.

Up to now, the efficiency of photocatalytic H2O2 production has been limited by
the energy band position of photocatalysts, the absorption ability of visible light and the
migration and separation efficiency of photogenerated carriers. In particular, the inhibition
of photogenerated carrier recombination is crucial for photocatalytic efficiency. It is shown
that promoting the migration and separation of photogenerated carriers by constructing
heterojunctions is most effective. In addition, there are two pathways for photocatalytic
H2O2 production: two-electron ORR and two-electron WOR pathways. Most of the current
studies have focused on the two-electron ORR pathway, which requires the addition of
a hole sacrificial agent (isopropyl alcohol, ethanol, etc.) to facilitate the separation of
photogenerated carriers. In contrast, the two-electron WOR pathway is rarely realized
because it requires a higher oxidation potential than the four-electron WOR pathway to
drive the reaction. Therefore, controlling the energy band structure to obtain a sufficient
redox potential can improve the selectivity for H2O2.

S-scheme heterojunctions are found to be effective in enhancing visible light absorp-
tion, promoting the migration and separation of photogenerated charges, extending the
lifetime of useful photogenerated charges and keeping a high redox capacity. However, the
development of S-scheme heterojunctions in photocatalytic H2O2 production is still subject
to various limitations. We propose the following aspects to promote the advancement of
S-scheme heterojunctions in this field:

1. Modification of the pore size, porosity and particle size of S-scheme heterojunction
photocatalysts to increase their surface area, which is conducive to improving the
adsorption of reactants (H2O, O2) by the photocatalysts;

2. Construction of multiphase catalytic systems. At present, there are few studies on
enhancing H2O2 yield by constructing multiphase S-scheme heterojunction photocat-
alytic systems. The disadvantage of slow gas transport kinetics of bi-phase catalysts
can be avoided by constructing multiphase catalytic systems, which can promote
the adsorption of O2 by solid photocatalysts and further improve the efficiency of
photocatalytic reactions;

3. Combining photocatalysis with electrocatalysis. S-scheme heterojunctions are used to
promote the separation of photogenerated charges by using intrinsic electric fields
(IEF) at the interface, and other electric fields can be superimposed to further improve
their separation efficiency. The introduction of an external electric field by applying
a voltage can induce surface charge redistribution of the photocatalyst and can also
facilitate the adsorption and activation of O2 and H2O;

4. To construct the relationship between the Fermi energy level difference and redox po-
tential. Modulation of redox potential by controlling the Fermi energy level positions
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of semiconductors and constructing S-scheme heterojunctions to avoid four-electron
competition reactions and improve the selectivity of H2O2 products;

5. Optimize the model for theoretical calculations to pre-select semiconductors with
suitable Fermi energy levels and energy band structures by theoretical calculations.
Meanwhile, theoretical calculations combined with in situ characterization results
can also enhance the investigation of the mechanism of photocatalytic H2O2 pro-
duction and contribute to the deeper comprehension of interfacial charge transfer
in S-scheme heterojunctions, which is important for the design of efficient S-scheme
heterojunction photocatalysts;

6. Considering future commercialization, in addition to the dual-channel pathway of
photocatalytic H2O2 production, the cost of S-scheme photocatalysts should be con-
trolled and recyclable and reusable photocatalysts should be designed.

Currently, the research of S-scheme heterojunctions in the field of photocatalytic H2O2
production is still in the preliminary stage. There are still many challenges on the road
to commercialization of photocatalytic H2O2 production. We hope that our summary
and outlook can facilitate the exploration of S-scheme heterojunctions in photocatalytic
H2O2 production.
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