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Abstract: In this paper, Grubbs- and Hoveyda–Grubbs-type olefin metathesis catalysts featuring
N-cyclopentyl/N’-mesityl backbone-substituted N-heterocyclic carbene (NHC) ligands were syn-
thesized. Their propensity to promote the alternating ring-opening metathesis copolymerization
(ROMP) of norbornene (NBE) with cyclooctene (COE) or cyclopentene (CPE) was evaluated and
compared to that shown by analogous N-cyclohexyl complexes. High degrees of chemoselectivity
were achieved in both copolymerizations. The presence of the N-cyclopentyl substituent allowed for
the achievement of up to 98% and 97% of alternating diads for NBE-COE and NBE-CPE copolymers,
respectively, at low comonomer ratios. Density functional theory (DFT) studies showed that both the
sterical and electronic effects of NHC ligands influence catalyst selectivity.
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1. Introduction

Since their introduction by Arduengo in 1991 [1], N-heterocyclic carbenes (NHCs)
have gained increasing attention, becoming one of the most important classes of ligands
in transition metal coordination chemistry [2–4]. Their strong σ-donating and adaptable
π-accepting abilities make them suitable for providing stable metal–ligand frameworks
with several transition metals [5–7]. The great success of NHCs is also related to the
easy tunability of their steric properties, which has led to the synthesis of a plethora of
different NHC architectures [8]. Accordingly, an enormous number of NHC–transition
metal complexes for various catalytic applications have been reported to date [9–20].

Among them, NHC–ruthenium alkylidene complexes have been extensively studied
as olefin metathesis catalysts [21,22]. These complexes have become ever more popular for
their distinctive features, such as their robustness toward air and moisture, outstanding
tolerance to functional groups, good thermal stability, ease of handling and high selectiv-
ity [21–24].

Many research efforts have been devoted to further enhancing the catalytic perfor-
mances of this class of complexes. A successful strategy to directly influence catalyst
stability, activity and selectivity involves the manipulation of the steric and electronic
properties of the NHC ligand by changing substituents on the nitrogen atoms and/or the
backbone of the NHC ring [25,26].

In particular, unsymmetrical substitution on the nitrogen atoms has led to the devel-
opment of efficient catalysts for several specific metathesis transformations where symmet-
rically substituted NHC complexes fail or are scarcely efficient [26–30]. An example is the
challenging synthesis of alternating copolymers via ring-opening polymerization (ROMP)
of two cyclic olefins with the same olefinic double-bond polarity, such as norbornene (NBE)
with cycloctene (COE) or cyclopentene (CPE) [29,31–36]. Exceptional levels of alternation
for NBE-COE (97% of alternating diads) and NBE-CPE copolymers (91% of alternating
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diads) were achieved in the presence of ruthenium catalysts featuring unsymmetrically
N,N′-substituted NHC (uNHC) introduced by Blechert and Buchmeiser. In both cases,
the control over alternating copolymerization was facilitated by using high comonomer
ratios (NBE:COE 1:50 and NBE:CPE 1:7). The selectivity in the copolymerization was
correlated with the steric interaction between the 2-phenylethyl group on the nitrogen and
the growing polymer chain [37–39]. The same content of alternating units (97%) in NBE-
COE copolymers was obtained by Togni, who employed ruthenium complexes supported
by uNHC ligands with an N-trifluoromethyl group. Moreover, a large excess of the less
reactive monomer (COE) was required [40]. Alternating copolymers of NBE with COE,
containing up to 98% of alternating diads, were synthesized at a lower NBE:COE ratio
(1:10) by Plenio, using unsymmetrical N-alkyl,N′-pentiptycenyl NHC ruthenium catalysts.
The better control of chemoselectivity seems to be related to the high level of dissymmetry
created around the metal by the highly steric encumbered pentiptycenyl group. However,
these catalysts are prepared by using a multi-step synthesis, and the obtained alternating
copolymers have a high dispersity value and a low molecular weight [41] (Figure 1).
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Figure 1. Grubbs- and Hoveyda–Grubbs-type catalysts with uNHCs for alternating ROMP copolymerization.

Over the last few years, we have reported on easily accessible ruthenium catalysts
bearing uNHCs with anti and syn phenyl groups on the backbone [42,43]. Among them,
complex 1, possessing a syn backbone-substituted N-cyclohexyl, N′-mesityl NHC ligand
(Figure 2), was found to be able to produce copolymers of NBE with COE or CPE with a high
chemoselectivity (up to 98% or 95% of alternating diads, respectively) at low comonomer
ratios (NBE:COE 1:10 and NBE:CPE 1:6), emerging as the most selective catalyst for these
ROMP copolymerizations to date [44]. To further improve selectivity, we considered
increasing the steric differences between the N-cycloalkyl and N’-aryl substituents of the
NHC ligand, replacing the cyclohexyl group with a smaller, less flexible cyclopentyl group.
Indeed, it is well-known that even a subtle change in the NHC ligand architecture can
influence catalyst efficiency [25,26,30,44]. Therefore, in this study, we describe two new
complexes, bearing uNHCs with N-cyclopentyl, N′-mesityl substituents and syn phenyl
groups on the backbone (2 and 4, Figure 2), which are suitable for the synthesis of highly
alternating NBE-COE and NBE-CPE copolymers. Their catalytic behavior is also compared
with that of analogous N-cyclohexyl complexes 1 and 3 (Figure 2). DFT investigations are
performed in order to rationalize the experimental findings.
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2. Results and Discussion
2.1. Synthesis of Complexes

Ruthenium complexes 1 and 3 were prepared as previously described [44,45]. The
synthesis of novel complexes 2 and 4 was easily accomplished in four synthetic steps,
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as depicted in Scheme 1. Diamine A was achieved with a yield of 69% from commer-
cial meso-1,2-diphenylethylenediamine via a Pd-catalyzed cross-coupling reaction with
2-bromomesytilene. The reductive amination of cyclopentanone with A in the presence
of sodium borohydride led to unsymmetrically substituted diamine B (64% yield). The
cyclization of this compound with triethyl orthoformate in the presence of ammonium
tetrafluoroborate furnished NHC ligand precursor C with a high yield (79%). The product
was characterized using NMR spectroscopy and mass spectrometry (ESI-MS). The 1H and
13C NMR spectra of C showed the diagnostic resonances for the proton and for the carbon
of the precarbenic position of the imidazolium salt at 8.50 ppm (NCHN) and 157.9 ppm
(NCHN), respectively. NHC proligand C was deprotonated in situ with potassium tert-
amylate and then reacted with RuCl2(=CHPh)(PCy3)2 (GI) or RuCl2(=CH-o-iPrO-Ph)(PCy3)
(HGI) to produce the desired complexes 2 and 4 as air- and moisture-stable solids (26%
and 43%, respectively). Both complexes were characterized using NMR spectroscopy and
an ESI-FT-ICR analysis (see SI). The formation of the complexes was indicated by the
disappearance of the characteristic carbocationic proton of C in the 1H NMR spectra of
both 2 and 4, along with the appearance of diagnostic peaks for the benzylidene protons
at 19.68 ppm and 16.53 ppm for 2 and 4, respectively. Consistently, the benzylidene car-
bon of 2 (Ru=CHPh) was observed at 297.3 ppm, whereas the benzylidene carbon of 4
(Ru=CH-o-iPrO-Ph) was observed at 293.1 ppm. The NHC coordination with ruthenium
was also confirmed by the 13C NMR signals for the carbenic carbon (iNCN) at 222.2 ppm for
the phosphine-containing complex 2 and at 212.0 ppm for the phosphine-free complex 4.
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Scheme 1. Synthesis of novel uNHC ruthenium complexes 2 and 4.

The 1H and 31P NMR solution spectra of 2, recorded in C6D6 at room temperature,
revealed the presence of only one rotational isomer corresponding to the one with the
benzylidene unit located underneath the mesityl group (anti rotamer), as deduced from the
2D 1H NMR NOESY experiments. Analogously, the solution-state structure of complex 4,
determined in the NMR studies, revealed the presence of only a single isomer, identified as
the anti rotamer.

2.2. Alternating ROMP of Norbornene and Cyclooctene

Ruthenium complexes 1-4 were first compared in the ROMP copolymerization of NBE
with COE (Scheme 2).
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The ROMP reactions were carried out under nitrogen in CH2Cl2, at 30 ◦C, employing
different comonomer ratios. The results are summarized in Table 1 and Figure 3 (only for a
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visual aid). In all the experiments, the immediate formation of a highly viscous solution
was observed upon the addition of the catalyst. After two minutes, the polymerizations
were terminated with ethyl vinyl ether, and the polymers precipitated into methanol.

Table 1. ROMP copolymerization of NBE and COE in the presence of catalysts 1–4.

Entry 1 Catalyst NBE/COE Poly(NBE)
[%] 2,3

Poly(COE)
[%] 2,3

Alternating
Diads [%] 3

Mn
4

(g/mol) Ð 4 Yield
(mg)

1 5 1 1:1 26 <1 74 (62) 9.2 × 105 1.86 167
2 5 1 1:4 13 <1 87 (63) 4.2 × 105 2.07 220
3 5 1 1:8 5 1 94 (63) 6.6 × 105 1.93 235
4 5 1 1:10 1 1 98 (63) 8.0 × 105 1.84 244
5 2 1:1 28 - 72 (61) 2.3 × 105 1.92 161
6 2 1:4 9 - 90 (60) 3.6 × 105 1.90 200
7 2 1:8 2 - 98 (61) 4.0 × 105 1.77 238
8 2 1:10 2 - 98 (63) 2.8 × 105 1.86 234
9 3 1:1 22 - 78 (62) 1.1 × 106 1.73 159
10 3 1:4 12 - 88 (63) 1.7 × 106 1.49 228
11 3 1:8 5 <1 95 (63) 1.1 × 106 1.79 230
12 3 1:10 2 <1 98 (63) 1.3 × 106 1.61 244
13 4 1:1 28 - 72 (61) 1.7 × 106 1.60 171
14 4 1:4 7 - 93 (62) 1.3 × 106 1.66 203
15 4 1:8 2 - 98 (63) 1.0 × 106 1.86 196
16 4 1:10 1 1 98 (62) 9.6 × 105 1.85 224

1 Reaction conditions: CH2Cl2 (2.5 mL), catalyst (1.3 µmol), [NBE]/[cat] = 1000, temperature 30 ◦C, time 2 min.
2 Fractions of homopolymer sequences in the copolymer. 3 Determined using 13C-NMR. The value in parenthesis
is the percentage of cis double bonds. 4 Determined using THF size-exclusion chromatography (SEC) calibrated
utilizing polystyrene standards. 5 See ref. [44].
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Figure 3. Content of alternating diads in the copolymers obtained at different ratios of NBE:COE
(norbornene:cyclooctene).

The content of alternating diads along the copolymer chain was determined using
13C NMR spectroscopy. The resonances relative to NBE-COE diads are observed in the
ranges of 128.5–129.0 ppm and 134.8–135.5 ppm. The signals for NBE-NBE are found at
132.9–133.4 ppm and 133.8–134.3 ppm, while the peaks attributable to COE-COE diads
are found at 130.0 and 130.5 ppm. In all the examined copolymers, only NBE-NBE diads
were detected. Signals for COE-COE diads could barely be found. The representative
13C NMR spectra (olefinic region) of the copolymers prepared by action 4 are shown in
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Figure 4, while those relative to copolymers obtained in the presence of 2 are reported in
the Supplementary Materials (Figure S8).
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catalyst 4.

The marked propensity of 1–4 to promote the formation of alternating sequences of
NBE-COE appeared evident when an equimolar mixture of NBE and COE was employed.
Indeed, a content of alternating units varying from 72 to 78% was obtained (entries 1, 5,
9 and 13 in Table 1). At the highest NBE:COE ratio (1:10), all the catalysts were able to
produce an almost perfectly alternating copolymer (98% of alternating diads; see entries
4, 8, 12 and 16 and Figure 5). However, the nature of the cycloalkyl group seemed to
have an effect on the chemoselectivity of the polymerization reaction. Indeed, complexes 2
and 4, with the smaller and less flexible N-cyclopentyl group, showed a slightly stronger
tendency to copolymerize NBE and COE in an alternating fashion with respect to the
N-cyclohexyl catalysts 1 and 3 at an NBE:COE ratio of 1:8 (cf. entries 3 and 7 or 11 and 15).
This is the lowest comonomer ratio used to date for synthesis via the ROMP of alternating
NBE-COE copolymers. As a general remark, with the same N-cycloalkyl substituent,
both the Grubbs and Hoveyda–Grubbs complexes produced copolymers with an almost
identical composition. As for the stereochemistry of the carbon–carbon double bonds in the
alternating copolymers, the amount of cis double bonds (60–63%) is consistent with that
previously reported for copolymers obtained with similar catalysts.

Gel permeation chromatography (GPC) measurements of alternating copolymers
(entries 4, 7,8, 12, 15 and 16) showed number-average molecular weights in the range of
230,000 < Mn < 1,000,000 g/mol. All these copolymers had a monomodal distribution with
moderately narrow dispersities (1.61 < Ð < 1.86). The experimental Mn values were higher
than the theoretical ones (e.g., Mn = 184,000 g/mol for copolymer of entry 8 calculated by
considering that the conversion of NBE (and COE) was 90%), suggesting that incomplete
catalyst initiation or slow initiation over propagation occurred. When Hoveyda–Grubbs-
type catalysts 3 and 4 were employed, Mn values higher than those observed in the presence
of Grubbs complexes 1 and 2 were obtained. This finding could be related to the different
initiation mechanism involved in the two families of catalysts [46–52].
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Figure 5. Content of alternating diads in the copolymers obtained at different ratios of NBE:CPE
(norbornene:cyclopentene).

Differential scanning calorimetric (DCS) measurements of the alternating copolymers
showed only the glass transition temperature (Tg) for each polymer sample. The Tg values
were observed in the range from −46.08 to −52.70 ◦C (Figures S10, S12, S14, S16 in the
Supplemetary Materials), in line with the Tg values reported for similar copolymers [38].

2.3. Alternating ROMP of Norbornene and Cyclopentene

Ruthenium complexes 1–4 were then investigated in the alternating copolymerization
of NBE with CPE (Scheme 3), under the same experimental conditions used for the NBE-
COE copolymerization experiments. A prolonged reaction time (15 min) was used, as CPE
has a lower propensity than COE to undergo ROMP [53]. The results are displayed in
Table 2 and Figure 5 (only for a visual aid).
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Scheme 3. Alternating ROMP of NBE and CPE (ring-opening metathesis copolymerization of
norbornene with cyclopentene).

The amount of alternating diads in the obtained copolymers was determined using
13C-NMR spectroscopy. The resonances relative to NBE-CPE diads are found in the range
of 128.1–128.7 ppm and 135.0–135.8 ppm. The signals for NBE-NBE are observed at
132.9–133.4 ppm and 133.8–134.3 ppm, while the peaks attributable to CPE-CPE diads are
observed at 130.0 and 130.5 ppm. Besides NBE-NBE homosequences, signals for CPE-CPE
diads are detectable in some 13C-NMR spectra of the copolymers.

As an example, the olefinic region of the 13C-NMR spectra for the copolymers obtained
with 4 is shown in Figure 6. The 13C NMR spectra of copolymers obtained with 2 are shown
in the Supplementary Materials (Figure S9). As previously observed, all the catalysts
were able to promote the copolymerization of NBE and CPE in an alternating fashion.
Elevated levels of alternation (78–82%) were achieved, even at a 1:1 comonomer ratio
(Figure 5). Moreover, by using an NBE:CPE ratio of only 1:4, copolymers containing
93–95% of alternating diads were obtained. In the presence of N-cyclopentyl catalyst 4, at
the highest comonomer ratio (1:6), a nearly perfectly alternating NBE-CPE copolymer was
formed (97% of alternating units; entry 16 in Table 2). This percentage of alternating units
is the highest value found to date for NBE-CPE copolymers.
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Table 2. ROMP copolymerization of NBE and CPE in the presence of catalysts 1–4.

Entry 1 Catalyst NBE/CPE Poly(NBE)
[%] 2,3

Poly(CPE)
[%] 2,3

Alternating
Diads [%] 3

Mn
4

(g/mol) Ð 4 Yield
(mg)

1 5 1 1:1 22 <1 78 8.7 × 104 1.59 163
2 5 1 1:2 17 <1 83 7.1 × 104 1.63 115
3 5 1 1:4 7 <1 93 1.0 × 105 1.78 135
4 5 1 1:6 5 <1 95 1.1 × 105 1.87 165
5 2 1:1 19 - 81 1.8 × 105 2.10 163
6 2 1:2 12 <1 88 1.6 × 105 1.95 172
7 2 1:4 6 1 93 1.5 × 105 2.18 186
8 2 1:6 3 2 95 1.5 × 105 2.28 200
9 3 1:1 21 - 79 3.1 × 105 1.98 157

10 3 1:2 15 - 85 1.8 × 105 1.96 165
11 3 1:4 6 <1 94 2.0 × 105 2.01 179
12 3 1:6 4 1 95 1.3 × 105 1.70 171
13 4 1:1 18 - 82 3.2 × 105 1.64 151
14 4 1:2 12 - 88 2.0 × 105 1.85 176
15 4 1:4 5 - 95 3.3 × 105 1.97 168
16 4 1:6 3 <1 97 2.1 × 105 1.95 172

1 Reaction conditions: CH2Cl2 (2.5 mL), catalyst (1.3 µmol), [NBE]/[cat] = 1000, temperature 30 ◦C, time 15 min.
2 Fractions of homopolymer sequences in the copolymer. 3 Determined using 13C-NMR. 4 Determined using THF
size-exclusion chromatography (SEC) calibrated using polystyrene standards. 5 See Ref. [44].
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Figure 6. Olefinic region of 13C-NMR (150 MHz) spectra of alternating NBE-CPE (norbornene
cyclopentene) copolymers obtained via catalyst 4.

The alternating copolymers (entries 4, 8, 12 and 16 in Table 2) were characterized by
relatively high molecular weights (110,000 < Mn < 330,000 g/mol) and unimodal molecular
weight distributions (1.87 < Ð < 2.28). DSC thermograms of the alternating copolymers
showed only one single Tg for each copolymer in the range of
−29.8 < Tg < −31.7 ◦C (Figures S11, S13, S15, S17 in the Supplementary Materials). Again,
these Tg values are comparable to those reported for previously obtained alternating
NBE-CPE copolymers [37,38].

2.4. Molecular Modeling Studies

The exceptional selectivity of catalysts 1–4 toward alternating NBE-COE and NBE-
CPE copolymerization, obtained even at a 1:1 comonomer ratio (72–78% of alternation
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NBE-COE/78–82% of alternation NBE-CPE), encouraged us to perform molecular mod-
eling studies to gain additional information on the catalyst structures. In more detail, we
optimized the geometries of catalysts 3 and 4 via DFT calculations (see SI for computa-
tional details) and compared the minimum energy structures with those obtained via the
optimization of the Buchmeiser catalyst (5a in Ref. [38], the Hoveyda–Grubbs version of
the Blechert and Buchmeiser catalyst in Figure 1) (Figure 7). This catalyst showed good
but not excellent selectivities in alternating copolymerization (for a 1:1 comonomer ratio,
40% of alternation NBE-COE/55% of alternation NBE-CPE), although the catalyst struc-
ture is very similar to that of 3 and 4. The minimum energy geometries and relevant
parameters are reported in Figure 4. According to the computational results, complexes 3
and 4 exhibit a more pronounced proximity of the N-alkyl substituent to the metal with
respect to the Buchmeiser catalyst. This is evidenced by the shorter Ru–C distances for
N-alkyl carbon (~3.18 Å) and by the stronger Ru-H interactions of the N-alkyl group (Ru-H
distance ~2.45 Å). Complexes 3 and 4 also showed a smaller C-C-C bond angle of the
N-cycloalkyl carbon.
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Figure 7. Minimum energy structures of catalysts 3 [45] and 4, as well as the Buchmeiser catalyst.
Most hydrogens were omitted for clarity. Distances are in Å.

Quantitative information on the catalytic pocket of optimized structures has previously
been obtained by modeling topographic steric maps [54,55] and by calculating the percent
buried volumes (%VBur). %VBur is a parameter that quantifies the steric hindrance of
ligands and is defined as the fraction of the total volume of a sphere centered on the metal
occupied by a given ligand [56,57].

Topographic steric maps, shown in Figure 8, were obtained (with a program on the
SambVca web server) [54,55] starting from the optimized minimum energy structures of
the complexes in Figure 7. The complexes are oriented according to the structure on the top
of the map. The NHC ligand is located behind the xy plane, and the iso-contour curves
indicate how deeply the NHC ligands protrude out of the xy plane occupying the space
around the metal. More intense green-yellow lines indicate a stronger steric pressure of
the ligand in that area. For every map in Figure 8, the overall %VBur and %VBur values for
each quadrant are reported.

According to the topographic steric maps, the overall %VBur is slightly higher for
complexes 3 and 4 (31.8 and 31.7, respectively) with respect to the Buchmeiser catalyst
(31.2). Not surprisingly, all complexes show a dissymmetry of steric hindrance, with respect
to the plane perpendicular to the NHC plane, due to the unsymmetrical N-substitution and
the presence of alkydene on one side of the catalyst (NW-SW vs. NE-SE quadrants). More
interesting is the dissymmetry in the %VBur value of the NE and SE quadrants for catalysts
3 and 4, which is flattened in the Buchmeiser catalyst. This dissymmetry is mainly due to
the presence of the syn Ph groups on the NHC backbone of complexes 3 and 4, as it induces
a dissymmetry of the catalytic pocket with respect to the plane of the NHC.
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Figure 8. Topographic steric maps of 3 [45], 4 and Buchmeiser catalyst. The iso-contour curves of
steric maps are in Å. The maps were constructed starting from the minimum energy structures of
complexes optimized via DFT calculations. The complexes are oriented according to the structure on
the top of the map. Overall %VBur and %VBur representative of each single quadrant are reported
for each map. %VBur is a parameter that quantifies the steric hindrance of ligands and is defined as
the fraction of the total volume of a sphere centered on the metal occupied by a given ligand [56,57].
Quadrants in topographic steric maps are identified as NW, NE, SW and SE, according to their
position on the map.

To investigate the influence of the catalytic pocket shape on alternating copolymer-
ization, the CPE and NBE minimum energy coordination structures were located. The
geometries and free coordination energies in CH2Cl2 (see SI for computational details) are
depicted in Figure 9. For all structures, the π interaction between olefin and metal results
in a stretching of the C=C double bond (for coordinated CPE, the C=C distance is 1.39 Å vs.
1.35 Å for free CPE; for coordinated NBE, the C=C distance is 1.40 Å vs. 1.35 Å for free NBE).
According to the computational results, all catalysts exhibit lower coordination energies
for NBE with respect to CPE. This finding is in agreement with the higher reactivity of
norbornene in the copolymerization. Nevertheless, the ∆∆G of the CPE coordination is
significantly lower for 3 and 4, with respect to the Buchmeiser catalyst (see Table 3). Indeed,
3 and 4 show a coordination energy for CPE that is only 0.7 kcal/mol higher than that for
NBE, whereas the energy gap is 2.0 kcal/mol for the Buchmeiser catalyst. As shown in
Figure 9, comparing the NBE minimum energy coordination structures, slightly shorter
NBE-Cl and NBE-alkylidene distances are observed for 3 and 4, as a possible effect of
phenyls on the NHC backbone. This suggests the presence of sterical interactions slightly
penalizing NBE coordination with 3 and 4 with respect to the Buchmeiser catalyst.
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Figure 9. CPE and NBE minimum energy coordination structures for catalyst 3 (3-CPE and 3-NBE),
catalyst 4 (4-CPE and 4-NBE) and Buchmeiser catalyst (B-CPE and B-NBE). Free energies of CPE
and NBE coordination in CH2Cl2 are in kcal/mol.

Table 3. %VBur, ∆∆G monomer coordination and Ru charge of 3, 4 and Buchmeiser catalyst.

Catalyst %VBur
1 ∆∆G 2 Ru Charge 3

3 31.7 0.7 −0.30214
4 31.8 0.7 −0.30677

Buchmeiser 31.2 2.0 −0.29546
1 %VBur of topographic maps reported in Figure 8. 2 ∆∆G represents the energy difference between the coordina-
tion energy of CPE and the coordination energy of NBE (∆∆G = ∆GCPE − ∆GNBE). 3 Ru charges were obtained
from NBO analysis.

Finally, to gain information on the electronic effects of the different NHC ligands on
the catalyst behavior, we calculated the Ru charge for all catalysts by carrying out a natural
bond orbital (NBO) analysis. As shown in Table 3, the absolute value of the negative
charges of Ru decreases in the order 4 > 3 > Buchmeiser. The lower coordination free
energy observed for the Buchmeiser catalyst for the more electron-donating NBE could
partially be a consequence of the less negative Ru charge.

In summary, according to the DFT studies, 3 and 4 present higher %VBur for NHC
moiety, which also entails a dissymmetrical distribution of the catalytic pocket due to the
syn phenyls on the backbone. The coordination of NBE with CPE is more favored for
the Buchmeiser catalyst with respect to 3 and 4, which is in agreement with the lower
percentage of alternating copolymers produced by this catalyst. This difference may be
caused by both sterical and electronic effects.

3. Materials and Methods
3.1. General Information

All the operations of synthesis and handling involving sensitive chemicals were per-
formed under a nitrogen atmosphere in a glovebox or by using standard Schlenk techniques.
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The glassware and vials used were dried in an oven at 120 ◦C overnight and exposed to
a vacuum–nitrogen cycle three times. Commercially available starting materials and sol-
vents were purchased from Merck Italy (Milan, Italy). Toluene and methylene chloride
were purchased from Merck, suitably dried (over sodium and lithium aluminum hydride,
respectively) and distilled before use. Deuterated solvents were dried over activated
4 Å molecular sieves prior to use. Organic molecules and organometallic compounds
were purified through flash column chromatography using silica gel 60 (230–400 mesh)
purchased from Merck Italy (Milan, Italy) and TSI Scientific (Cambridge, Massachusetts,
United States), respectively. Thin-layer chromatography (TLC) was performed using silica
gel 60 aluminum foils with an F254 fluorescence indicator.

Complexes [1-cyclohexyl-3-mesityl-4,5-diphenyl-2-imidazolidinylidene](dichloro)
(benzilydene)(tricyclohexylphosphine) (1), [1-cyclohexyl-3-mesityl-4,5-diphenyl
imidazolidinylidene]dichloro(2-isopropoxyphenylmethylene)ruthenium (3) and N1-mesityl-
1,2-diphenylethane-1,2-diamine (A) were synthesized according to procedures detailed in
the literature [44,45].

NMR experiments were carried out on a Bruker AM 300 (Bruker, Germany) (300 MHz
for 1H; 75 MHz for 13C), Bruker AVANCE 400 ((Bruker, Germany) 400 MHz for 1H; 100 MHz
for 13C; 161.97 MHz for 31P) and Bruker ASCEND 600 (Bruker, Germany) (600 MHz for
1H; 150 MHz for 13C). Chemical shifts in the spectra were reported as follows: chemical
shift (ppm), multiplicity and integration. Multiplicity was abbreviated as follows: singlet
(s), doublet (d), triplet (t), multiplet (m), broad (br) and overlapped (o). 1H and 13C-NMR
chemical shifts are listed in parts per million (ppm) downfield from tetramethyl silane
(TMS) as the internal standard. 31P chemical shifts are referenced using H3PO4 as the
external standard.

An ESI-MS analysis was performed on a Waters spectrometer (Waters Corporation,
Milford, Massacchussets, United States) with an electrospray source. An ESI-FT-ICR
analysis of ruthenium complexes was carried on a Bruker Solarix XR spectrometer ((Bruker
Daltonik GmbH, Bremen, Germany). GPC measurements were performed on a Waters
1525 binary equipped with a Waters 2414 RI detector using four Styragel columns (range
1000–1,000,000 Å) (Waters Corporation, Milford, Massacchussets, United States).

DSC measurements were carried out on a DSC Q20 apparatus, manufactured by TA
Instruments Waters/TA instruments, New Castle, Delaware, United States), in flowing N2
with a cooling and heating rate of 10◦C /min.

3.2. Synthesis of N1-Cyclopentyl-N2-Mesityl-1,2-Diphenylethane-1,2-Diamine (B)

Diamine A (1 equiv.), cyclopentanone (7 equiv.) and dry methylene chloride
(C = 0.1 M) were introduced into a round-bottom flask. The reaction mixture was stirred
at room temperature over activated molecular sieves 4 Å for three days and then filtered.
Afterward, the solvent was removed under vacuum, the crude reaction product was diluted
with dry methanol (C = 0.1 M), and NaBH4 (7 equiv.) was added in three portions.

The reaction mixture was stirred for 4 h, diluted with methylene chloride and extracted
with water. The organic phase was dried over Na2SO4 and filtered, and then the solvent
was removed under reduced pressure. The product was obtained as an oil, which was
purified using flash column chromatography on silica gel (hexane: ethyl acetate 9:1) to
produce a white solid (yield 64%).

1H-NMR (CDCl3, 400 MHz): δ 7.27–7.23 (o m, 3H); 7.16–7.10 (o m, 3H); 6.93–6.90
(o m, 2H); 6.83–6.81 (o m, 2H); 6.68 (br s, 2H); 4.50 (d, J = 4.8, 1H); 4.24 (d, J = 4.7, 2H);
2.89 (m, 1H); 2.15 (s, 9H); 1.70 (o m, 3H); 1.48 (o m, 3H), 1.28 (o m, 2H) (Figure S1 (top) in
the Supplementary Materials).

13C-NMR (CDCl3, 100 MHz): δ 142.51; 141.02; 139.52; 129.66; 129.07; 128.31; 127.94;
127.87; 127.52; 127.03; 127.01; 126.90; 66.51; 65.32; 56.38; 35.60; 34.38; 32.43; 23.85; 20.45;
19.63 (Figure S1 (bottom) in the Supplementary Materials).

ESI+MS: m/z = 399.3 (MH+).
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3.3. Synthesis of 1-Cyclohexyl-3-Mesityl-4,5-Diphenyl-4,5-Dihydro-1H-Imidazol-3-Ium
Tetrafluoroborate (C)

Diamine B (1 equiv.) and triethyl orthoformate (8 equiv.) were introduced into a
round-bottom flask, equipped with a magnetic stirrer and a condenser. The mixture was
stirred at room temperature for five minutes. After that, ammonium tetrafluoroborate
(1.2 equiv.) was added, and the mixture was heated at 130 ◦C for 2 h. Subsequently, the
condenser was removed to facilitate the evaporation of the ethanol produced during the
reaction. A crude brownish oil was obtained, which was then washed with diethyl ether
and purified using flash column chromatography on silica gel (hexane: ethyl acetate 9:1 to
1:1) to produce a white solid (yield 85%).

1. H-NMR (CDCl3, 400 MHz): δ 8.50 (s, 1H); 7.22 (br s, 3H); 7.01 (m, 3H); 6.93 (t,
J = 7.7 Hz, J = 7.6, 2H); 6.83 (br s, 1H); 6.78 (d, J = 11.6 Hz, 1H); 5.89 (dd, J = 11.8 Hz,
J = 3.2 Hz, 1H); 4.13 m, 1H); 2.48 (s, 3H); 2.32 (s, 3H); 2.28 (br m, 1H); 2.14 (s 3H); 2-06-1.52
(overlapping signals, 9H) (Figure S2 (top) in the Supplementary Materials).

13C-NMR (CDCl3, 100 MHz): δ 157.89,139.40; 135.07; 134.36; 131.70; 130.94; 130.34;
129.81; 129.27; 129.02; 128.22; 127.51; 72.70; 68.91; 60.26; 31.47; 31.42; 22.99; 22.86; 20.90;
19.63; 19.42 (Figure S2 (bottom) in the Supplementary Materials).

ESI+MS: m/z = 409.3 [M+(-BF4−)]

3.4. Synthesis of [1-Cyclopentyl-3-Mesityl-4,5-Diphenyl-2-Imidazolidinylidene](Dichloro)
(Benzilydene)(Tricyclohexylphosphine)Ruthenium (2)

In a glovebox, under a nitrogen atmosphere, a Schlenk tube was charged with tetraflu-
oroborate salt C (1 equiv.) and dry toluene (C = 0.026 M). Potassium tert-amylate (1 equiv.)
was then added to the resulting suspension, and the reaction mixture was stirred for five
minutes at room temperature. After that, GI (1 equiv.) was added. The flask was removed
from the glovebox and kept under stirring at room temperature for 0.5 h. The crude reaction
mixture was purified using flash column chromatography on silica gel (hexane: diethyl
ether 9:1 to 1:1) to produce the desired complex as a pink brownish solid (yield 26%).

1H-NMR (C6D6, 400 MHz): δ 19.68 (br s, 1H) (Ru = CHPh); 9.01 (br s, 1H); 7.50
(br s, 1H); 7.14 (overlapping signals, 4H); 7.06 (m, 4H); 6.88 (o m, 3H); 6.59 (m, 2H); 6.48
(br m, 2H); 6.03 (overlapping signals, 3H); 5.79 (m, 1H); 5.03, d, J = 9,1 Hz, 1H); 3.27 (m,
1H); 2.69–1.88 (overlapping signals, 41H) (Figure S3 (top) in the Supplementary Materials).

13C-NMR (C6D6, 150 MHz):) 297.26 (br s, Ru = CHPh); 222.22 (iNCN)
(2JC−P = 77.90 Hz); 151.82; 138.33; 136.86; 136.74; 136.04; 133.17; 133.15; 129.63; 127.49; 75.42;
64.98; 64.02; 32.54; 32.45; 30.92; 29.94; 28.25; 26.94; 24.68; 23.76; 21.03; 20.72
(Figure S3 (bottom) in the Supplementary Materials).

31P-NMR (C6D6, 161.97 MHz): δ 29.32 (Figure S4 in the Supplementary Materials).
ESI-FT-ICR (2-Cl): m/z calcd 915.4093, found 915.4093 (Figure S6 in the

Supplementary Materials).

3.5. Synthesis of 1-Cyclopentyl-3-Mesityl-4,5-Diphenyl-2-Imidazolidinylidene](Dichloro)
(Benzily-Dene)(2-Isopropoxyphenylmethylene)Ruthenium (4)

In a glovebox, under a nitrogen atmosphere, a Schlenk tube was charged with tetraflu-
oroborate salt C (1 equiv.) and dry toluene (C = 0.026 M). Potassium tert-amylate (1 equiv.)
was then added to the resulting suspension, and the reaction mixture was stirred for
five minutes at room temperature. After that, HGI (1 equiv.) was added, and the flask
was removed from the glovebox and kept under stirring at room temperature for 0.5 h.
The crude reaction mixture was purified using flash column chromatography on silica
gel (hexane: diethyl ether 9:1 to 1:1) to produce the desired complex as a green solid
(yield 43%).

1H-NMR (C6D6, 600 MHz): δ 16.53 (s, 1H) (Ru=CH-o-iPrOPh); 8.80 (br s, 1H); 7.39–7.06
(o m, 7H); 6.67–6.56 (o m; 7H); 6.47 (d, 1H, J = 7.7); 6.14 (m, 1H), 6.03 (d, 1H, J = 8.2 Hz),
4.98 (d, 1H, J = 8.3 Hz); 4.69 (m, 1H); 3.14 (br m, 1H), 2.61–2.1 (overlapping signals, 7H);
1.95 (s, 3H); 1.81–1.75 (overlapping signals, 8H), 1.62 (br m, 2H); 1.62 (br m, 3H), 1.46–1.31
overlapping signals, 2H) (Figure S5 (top) in the Supplementary Materials).
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13C-NMR (CD2Cl2, 75MHz): 293.13 (Ru=CH-o-iPrO-Ph); 211.99 (iNCN); 152.26; 144.22;
139.49; 138.19; 137.63; 136.60; 136.00; 132.48; 130.12; 129.69; 129.39; 129.16; 128.16; 128.02;
127.74; 127.48; 122.57; 122.43; 112.94; 75.02; 65.57; 64.35; 30.90; 30.43; 23.42; 22.35; 21.72;
21.63; 20.67; 19.66; 19.58 (Figure S5 (bottom) in the Supplementary Materials).

ESI-FT-ICR (4-Cl): m/z calcd 693.2210, found 693.2188 (Figure S7 in the
Supplementary Materials).

3.6. General Polymerization Procedure

Norborn-2-ene (1.3 mmol, 1 equiv.) and an appropriate amount of cis-cyclooctene
or cyclopentene were dissolved in methylene chloride and warmed to 30 ◦C. A methy-
lene chloride solution of catalysts (1.3 µmol) was then injected. The polymerization was
quenched by adding ethyl vinyl ether, and the polymer formed was coagulated in methanol,
recovered via filtration and dried under vacuum.

4. Conclusions

In this study, new Grubbs- and Hoveyda–Grubbs-type complexes possessing an
unsymmetrical N-cyclopentyl, N’-mesityl NHC ligand, with syn phenyl groups on the back-
bone, were synthesized. Their catalytic behavior was investigated in the alternating ROMP
of NBE with COE or CPE and compared to that of corresponding N-cyclohexyl complexes.
All the complexes were found to be able to produce copolymers with exceptional levels
of alternation, and no difference in chemoselectivity between the two families of catalysts
was observed. As for the N-cycloalkyl substituent, the replacement of the cyclohexyl group
with the less sterically encumbered and less flexible cyclopentyl group led to an almost per-
fectly alternating polymer, NBE-COE, at the lowest comonomer ratio (1:8) reported to date.
Moreover, N-cyclopentyl catalyst 4 was identified as the most selective in the alternating
copolymerization of NBE-CPE, producing 97% of alternating units at a comonomer ratio of
1:6. Moreover, in this case, to the best of our knowledge, this represents the highest value
achieved to date. Notably, all the alternating copolymers obtained possessed relatively
high molecular weights and moderately narrow dispersities.

According to the DFT studies, 3 and 4 presented a dissymmetrical shape of the catalytic
pocket due to the syn phenyls on the backbone. The coordination of NBE was only slightly
favored with respect to CPE, which is in agreement with the high percentage of alternating
copolymers produced by these catalysts. A comparison with similar unsymmetrical NHC-
Ru catalysts indicated that both sterical and electronic effects of the NHC ligands in 3 and 4
may be involved in determining the selectivity in copolymerization.

A deeper investigation into possible combinations of N-alkyl and N′-aryl substituents
of different bulkiness to further improve chemoselectivity in the alternating ROMP copoly-
merization is currently underway.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13010034/s1, Figures S1–S5: NMR spectra of B, C, 2 and
4; Figures S6 and S7: ESI-FT-ICR spectra of 2 and 4; Figures S8 and S9: olefinic regions of 13C NMR
spectra of copolymers obtained via 2; Figures S10–S17: DSC thermograms of alternating copolymers;
computational details. References [58–67] are cited in the Supplementary Materials
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