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Abstract: This study reports the removal of hydrocarbon (HC) pollutants from petroleum refinery
wastewater by integrated photocatalytic oxidation and adsorption using a TiO2/AC hybrid material.
The hybrid adsorbent/catalyst was prepared by the impregnation of TiO2 over AC and characterized
by FTIR, SEM, EDX, and XRD analyses. Under the optimized reaction conditions of pH 3, 30 ◦C,
and 1000 mg TiO2/AC per 500 mL of sample in 50 min, the integrated photocatalytic oxidation-
adsorption achieved a net percentage removal of benzene, toluene, aniline, and naphthalene of 91%
from model HC solutions. Under these conditions, for the treatment of real refinery wastewater,
TiO2/AC caused a 95% decrease in chemical oxygen demand (COD). The integrated photocatalytic
oxidation and adsorption using TiO2/AC showed a clear advantage over the individual adsorption
and photocatalytic oxidation using AC and TiO2, whereby about the same level of removal of
model HCs and a decrease in the COD of refinery wastewater was attained in 105 min and 90 min,
respectively, utilizing larger adsorbent/catalyst dosages. GC-MS analysis revealed that during
the integrated process of adsorption-photocatalytic oxidation, all the parent HCs and oxidation
byproducts were completely removed from the refinery wastewater. Based on the outstanding
performance, cost-effectiveness, and environmental greenness, the newly designed TiO2/AC via the
integrated adsorption-photocatalytic oxidation can be counted as an effective alternative route for
the large-scale processing of refinery wastewater.

Keywords: refinery wastewater; hydrocarbon pollutants; photocatalytic oxidation; adsorption;
activated carbon; chemical oxygen demand

1. Introduction

A large amount of oily wastewater is produced in the petroleum industry from the
upstream production of crude oil to its storage, which eventually flows downstream from
transportation and then refining processes [1,2]. Recently, many efforts have been devoted
to minimizing the waste produced during crude oil refining, which largely consists of
different types of petroleum hydrocarbons (HCs) [3–5] (Table 1). Due to the excessive
requirements and the usage of water in oil refineries at various stages, a significant quantity
of wastewater (0.4–0.6 times that of the crude oil refined) is produced that is laden with
different levels of HC pollutants [6,7]. More seriously, the global requirement for crude oil is
on the rise [8]; hence, the production of petroleum wastewater is also increasing. The toxic
HC-laden wastewater not only contributes to atmospheric pollution through the escape of
volatiles, but it also creates soil and water pollution [9]. With climate change and increased
environmental awareness, the practice of venting off refinery wastewater in large quantities
is becoming increasingly unacceptable without the necessary treatment. Several efforts
have been documented to develop efficient techniques for treating such wastewater, includ-
ing biodegradation, pyrolysis, photocatalysis, ultrasonic treatments, adsorption, solvent
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extraction, land farming, incineration, and advanced oxidation processes [5,10–13]. With
these techniques, the toxic components can be minimized to a certain level; however, their
complete removal is not yet possible due to the recalcitrant nature of HCs, which necessi-
tates the development of new and more advanced techniques to ensure public health [12].

Table 1. Typical composition of refinery wastewater.

pH
Level (mg/L)

Ref.
BOD COD SS O&G Phenols NH3 -SO4−2

7–9 150–360 300–600 ≤150 ≤50 - 15 - [14]
8.0 40.25 80–120 22.8 - 13 - - [15]
6.6 - 596 120 - - - 887 [16]

150–350 300–800 100 3000 20–300 - - [17]
8.0 570 850–1020 - 12.7 98–128 5.1–2.11 15–23 [18]
10 8.0 80.8 - 47.5 - 2.3 - [17]

- 658–710.5 - 45 30 22 10 [19]

Adsorption treatment of oily wastewater is preferred due to its low cost, simplicity
of operation, recycling of adsorbent material, and easy applicability. The adsorbents used
for the removal of HC pollutants can be classified into three classes, i.e., inorganic min-
eral adsorbents such as clays, silica, zeolite, etc. [20]; organic synthetic adsorbents, such
as polymers, polymer composites, or polyurethane foams, etc. [21]; and bio adsorbents,
including agricultural residues, corn cob, straws, saw dust, etc., which are all low-cost
materials but offer poor efficiency [22]. Among these, mineral clays constitute an impor-
tant class of natural aluminosilicates that are widely used for the removal of different
wastewater contaminants because of their low cost, high surface area, and high adsorp-
tion performance [23]. Due to the hydrophilic nature of the clays, they are generally not
suitable for the adsorption of aliphatic and aromatic HCs present in the oil-contaminated
wastewater [24]. In order to make them organophilic, the natural clays are modified with
various surfactants, by which the cationic and anionic sites of the clay matrix are exchanged
with organic cations or anions [25]. The most common adsorbent used for the removal of
organic waste and HCs from wastewater is activated carbon (AC) [26]. AC derived from
coconut shell was reported to remove 90% of chemical oxygen demand (COD) from refinery
wastewater [27]. Similarly, activated coke obtained from lignite achieved a 53% reduction
in COD from heavy oil wastewater [28]. Okiel and his team [29] reported promising results
for the removal of HCs from an oil–water emulsion using powdered AC (PAC), deposited
carbon (DC), and bentonite as adsorbents. However, AC provides limited efficiency in the
case of high concentrations of organic pollutants.

Catalytic photochemical oxidation has become popular because of its simple operation,
versatility, and high efficiency in the removal of a wide variety of organic pollutants from
wastewater [30,31]. In this process, the HCs in water are converted into harmless H2O and
CO2 via the generation of a highly reactive (2.8 V oxidation potential) hydroxyl radical (OH.)
in the presence of a photocatalyst and UV radiation. The distinct feature of the OH. radical
is a wide range of selectivity and high oxidation activity, and hence, it can facilitate the
oxidation of refinery wastewater laden with HCs [32–34]. In the photocatalytic degradation
of organics, oxides of various semiconductors such as SnO2, WO3, CeO2, Fe2O3, ZnO, ZnS,
CdS, SiO2, and TiO2 have been reported to be efficient photocatalysts [10,35]. Among these,
TiO2 has earned a vital position for the oxidation of HCs in wastewater due to its high
efficiency, stability, easy availability, low cost, and convenient recovery from the treated
wastewater [36,37]. In this regard, a UV/TiO2 oxidation system has shown high activity in
the degradation of a wide range of organic pollutants [35,38], and it has also proved to be a
good choice for the degradation of HCs in refinery wastewater. However, this approach
suffers from high processing costs and the continued existence of some oxidation products
in the treated wastewater [39,40].
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Inspired by previous reports, this study reports the removal of HC pollutants from
petroleum refinery wastewater by integrated photocatalytic oxidation-adsorption tech-
niques using a TiO2/AC hybrid adsorbent/catalyst. The hybrid material was synthesized
by impregnating TiO2 over AC, and it was characterized by scanning electron microscopy
(SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), and Fourier trans-
form infra-red (FTIR) spectroscopy. The removal of HC pollutants was investigated using
model as well real refinery wastewater samples in a specially designed photoreactor. The
HC removed from the treated refinery waste was monitored through high-performance liq-
uid chromatography (HPLC), COD analysis, and gas chromatography mass–spectrometry
(GC-MS) analyses.

2. Results and Discussion
2.1. Characterization of TiO2/AC Hybrid Adsorbent

The chemical composition of TiO2/AC was characterized by FT-IR, and the results
are shown in Figure 1. AC exhibited low-intensity peaks at 3400 cm−1 that show O-H of
the carboxyl group and a peak at 1700 that shows the presence of C=O groups indicating
carbonyl or carboxylic configurations. Peaks positioned around 1600 cm−1 indicate C=C
functionalities of aromatics. The FTIR spectra of TiO2/AC show characteristics peaks of
AC, in addition to a strong absorption peak at 500 cm−1 that is ascribed to the vibration
of Ti-O bonds in the TiO2 lattice [41]. These results affirm the preparation of the TiO2/AC
hybrid adsorbent material.
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Figure 1. FTIR spectra of (A) AC and (B) TiO2/AC.

SEM characterizes the surface monological features, particles shape, and distribution,
and hence, the AC and TiO2/AC hybrid materials were studied by SEM. The SEM micro-
graph of the AC (Figure 2a) shows a rough, heterogenous, and uneven surface, with some
surface layers folded out in the form of dispersed flakes. The surface seems highly porous
and spongy, which may show good adsorption behavior. The SEM micrograph of TiO2/AC
(Figure 2b) also shows similar morphology as that of the AC; however, distinct crystallites
of TiO2 (bright spots) can be seen dispersed on the surface of the AC, which evidence the
incorporation of TiO2 on the surface of the AC. The elemental composition of the TiO2/AC
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hybrid adsorbent was analyzed by EDX analysis. The EDX profile is shown in Figure S1
(Supplementary Materials), and the percentage weights of the various elements are given
in Table 2. The data show that the TiO2/AC contains high percentages of C, O, and Ti,
which are about 66, 28, and 2%, respectively. However, some other elements, such as Al, Si,
S, Ca, and Zn, were also found to be present in minor quantities, which may be assumed to
be associated with matrix of the AC.
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Table 2. Elemental composition of TiO2/AC.

Elements Mass % Elements Mass %

C 66.65 Al 0.38
O 28.71 Si 0.72
Ti 2.0 S 0.12
Ca 0.90 Zn 0.53

The XRD patterns of the AC and TiO2/AC are shown in Figure 3. The XRD pattern
of AC shows a typical amorphous pattern with an intense peak at around 2θ of 24.3◦,
which can be assigned to the graphite configuration [42]. The XRD pattern of the TiO2/AC
shows the characteristics peaks corresponding to the rutile phase at 2θ of 27, 36, and 55 [43],
as well as the anatase phase at 2θ of 25 and 48, which match with the standard cards
of JCPDS 88-1175 and JCPDS 84-1286, respectively [44]. This confirms the successful
impregnation of TiO2 over the AC surface.

2.2. Adsorption over AC

The adsorption of HC pollutants from model and refinery wastewater was studied
using AC in batch mode experiments. Initial adsorption experiments were carried out
with model wastewater under conditions of different temperatures, adsorption times, and
adsorbent doses to find the optimum conditions required for the maximum removal of HCs.

The adsorption experiments of 100 mL model wastewater were carried out at an
ambient temperature for 60 min using different weights of AC as adsorbent dosages
ranging from 100 mg to 800 mg. The results are shown in Figure 4, which indicate that the
percentage removal of all model HCs linearly increased with an increase in the adsorbent
dose up to 600 mg, beyond which no increase in percentage removal occurs. The maximum
removal of benzene, toluene, phenol, and naphthalene was 55, 46, 45, and 49%, respectively,
at an AC dose of 600 mg. However, with a further rise in the AC dose, the percentage
removal of HC remained constant. The adsorption of organic substances over the surface
of the AC commonly occurs via Van der Waals forces or π–π interaction [17]. The increase
in adsorption of HCs at higher AC doses is due to more availability of vacant adsorption



Catalysts 2023, 13, 193 5 of 19

sites on the surface of the AC. Under low AC doses, the level of adsorption is low because
of insufficient reactive sites for adsorption, which increases with an increasing AC dose. In
the case of a higher adsorbent dose, the abundance of adsorbents may aggregate, which
constrains the accessibility of free surface for adsorption [45].
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Figure 4. Effect of AC dosage on the removal of HCs from model wastewater (ambient temperature,
60 min, feed volume 100 mL).

The adsorption of HCs under various temperatures, i.e., 30, 35, 40, 45, and 50 ◦C,
shows that (Figure 5) the removal of HCs from the model wastewater increases by a factor
of 10% with an increase in temperature from 30 to 35 ◦C. However, with a further increase
in temperature from 40 to 50 ◦C, no positive influence is observed; rather, the adsorption
of all model HCs slightly declines at a higher temperature. This may be attributed to the
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weakening of the electrostatic attraction between the HC molecules and the surface of the
AC at higher temperatures, which in turn leads to a decrease in the level of adsorption [46].

Catalysts 2023, 13, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 4. Effect of AC dosage on the removal of HCs from model wastewater (ambient temperature, 
60 min, feed volume 100 mL). 

The adsorption of HCs under various temperatures, i.e., 30, 35, 40, 45, and 50 °C, 
shows that (Figure 5) the removal of HCs from the model wastewater increases by a factor 
of 10% with an increase in temperature from 30 to 35 °C. However, with a further increase 
in temperature from 40 to 50 °C, no positive influence is observed; rather, the adsorption 
of all model HCs slightly declines at a higher temperature. This may be attributed to the 
weakening of the electrostatic attraction between the HC molecules and the surface of the 
AC at higher temperatures, which in turn leads to a decrease in the level of adsorption 
[46]. 

30 35 40 45 50
0

10

20

30

40

50

60

70

%
 R

em
ov

al
 

Temperature (oC)

 Benzene
 Toluene
 Phenol
 Naphthalene

 
Figure 5. Effect of temperature on the removal of HCs from model wastewater using AC (60 min, 
adsorbent dose 600 mg/100 mL model wastewater). 

0 100 200 300 400 500 600 700 800 900

10

20

30

40

50

60

%
 R

em
ov

al

AC Dose (mg/100 mL)

 Benzene
 Toluene
 Phenol
 Naphthalene

Figure 5. Effect of temperature on the removal of HCs from model wastewater using AC (60 min,
adsorbent dose 600 mg/100 mL model wastewater).

The influence of adsorption time on the percentage removal of model HCs on the
AC was investigated at different adsorption times, i.e., 15, 30, 45, 60, 75, 90, 105, 120, and
135 min. The results in Figure 6 indicate that the adsorption of HCs linearly rises with the
increase in adsorption time and reaches a maximum of above 94% in 105 min; however,
with a further increase in time, there is no increase in adsorption. These results suggest that
initially, the adsorption rate increases with an increase in the adsorption time due to the
availability of vacant adsorption sites on the surface of the AC, but as the vacant sites are
occupied in 105 min, the adsorption then becomes constant [47]. The optimization of the
adsorption time is important in controlling the cost of the process [17].
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2.3. Adsorption Kinetics

In order to investigate the mechanism of adsorption of model HC over AC, the pseudo-
first-order and pseudo-second-order kinetics models were applied to the adsorption data.
Figures S1 and S2 (Supplementary Materials) show the pseudo-first- and pseudo-second-
order kinetic plots for the adsorption of benzene, toluene, phenol, and naphthalene over
AC, whereas the values of rate constants, i.e., k1, k2, and the equilibrium concentration (qe)
and corresponding correlation coefficients are given in Table 3.

Table 3. Kinetic parameters for adsorption of model HCs on AC.

Benzene Toluene Phenol Naphthalene

Pseudo-first-order kinetic parameters

k1 (mg g−1min−1) 0.021 0.021 0.021 0.021
qe1 (mg g−1) 2.761 2.576 2.600 2.612

R2 0.930 0.931 0.930 0.933

Pseudo-second-order kinetic parameters

k2 (mg g−1min−1) 0.044 0.024 0.025 0.017
qe2 (mg g−1) 4.878 3.676 3.760 0.067

R2 0.150 0.101 0.179 0.261

The data show that, applying the pseudo-first-order kinetic model, the plots of
ln(qe−qt) vs. time (t) for all the model HCs give linear plots with a R2 of above 0.930
for all model compounds. Meanwhile, in the case of pseudo-second-order kinetics, non-
linear plots are obtained from (t/qt) vs. time (t) with a R2 less than 0.261. This confirms
that the pseudo-first-order kinetic model shows satisfactory correlation for the adsorption
of HC onto AC. The current results agree with the reported literature, which shows that
the adsorption of organic pollutants (acid blue dye) from water on AC prepared from
waste rubber follows pseudo-first-order kinetics [48]. Similarly, other studies have also
shown that the adsorption of benzene, toluene, and phenol over chemical AC agree with
pseudo-first-order kinetics [49,50]. These results show that the adsorption of HCs over AC
occurs through the liquid phase transport rate, rather than the intraparticle transport rate.

2.4. Adsorption Isotherms

The equilibrium data of adsorption were analyzed by adsorption isotherm models,
which give important information about the interaction of the adsorbate and adsorbent.
The Freundlich and Langmuir isotherm models were used to interpret the adsorption data.
The Langmuir isotherm considers the monolayer adsorption on uniform adsorption sites,
whereas the Freundlich isotherm explains multilayer adsorption on a heterogenous sur-
face [51]. Figures S3 and S4 (Supplementary Materials) show the plots of the Langmuir and
Freundlich isotherms for the adsorption of model HCs over AC, respectively. The Langmuir
constants (K1 and qm) and Freundlich constants (n and Kf) calculated from the respective
plots and the coefficients of correlation (R2) for both isotherms are given in Table 4. The val-
ues of R2 are close to 1 for both isotherms, which means that the adsorption data fit both the
Langmuir and Freundlich isotherm models. This agrees with several studies, in which the
adsorption of different adsorbates over various carbonaceous adsorbents follows both these
adsorption isotherms [52–55]. This suggests that both chemical and physical adsorption is
involved for the removal of HCs from the model wastewater. However, the adsorption of
some HC pollutants, such as Benzene, phenol, toluene, etc., from water over AC derived
from difference biomass sources follows the Langmuir adsorption isotherm [49,56]; on
the other hand, the adsorption of similar compounds on variously activated AC samples
follows the Freundlich isotherm [50,57].
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Table 4. Isotherm parameters for adsorption of model HCs on AC.

Parameters Benzene Toluene Phenol Naphthalene

Langmuir isotherm parameters

qm (mg/g) 4.902 3.676 3.690 4.329
K1 0.040 0.031 0.031 0.035
R2 0.998 0.997 0.998 0.998

Freundlich isotherm parameters

N 0.988 0.752 0.753 0.873
Kf 1.834 2.018 2.017 1.915
R2 0.997 0.998 0.999 0.999

2.5. Thermodynamic Parameters

Various thermodynamic parameters, such as ∆G◦, ∆H◦, and ∆S◦, were calculated from
the adsorption data, and the results are shown in Table 5. It is clear that ∆H◦ shows negative
values, which suggests the exothermic nature of the adsorption of benzene, toluene, phenol,
and naphthalene onto AC, and this also affirms the results of the effect of temperature on
the level of adsorption (Section 2.2). The positive values of ∆G◦ show that the adsorption
and desorption are not in mutual thermodynamic equilibrium. An increase in the ∆G◦

value also indicates that the degree of spontaneity is higher at a lower temperature. The
positive value of ∆S◦ shows that randomness increases at the solid liquid interface during
adsorption, which may be associated with some changes in the structures of the adsorbent
or adsorbate [58].

Table 5. Thermodynamic parameters for adsorption of model HCs on AC.

Temperature
(◦C)

∆G◦

(kJ·mol–1)
∆H◦

(kJ·mol–1)
∆S◦

(kJ·mol–1)
∆G◦

(kJ·mol–1)
∆H◦

(kJ·mol–1)
∆S◦

(kJ·mol–1)

Benzene Toluene

30 4.560

−0.0010 0.002

5.076

−0.0004 0.001
35 3.607 4.532
40 3.771 4.816
45 3.937 5.000
50 4.107 5.079

Phenol Naphthalene

30 4.971

−0.0017 0.001

4.556

−0.0007 0.001
35 4.635 4.224
40 4.922 4.710
45 5.101 4.893
50 5.299 4.970

2.6. Simultaneous Oxidation and Adsorption with TiO2/AC

The removal of model HCs was investigated by simultaneous oxidation and adsorp-
tion over a TiO2/AC hybrid material. Simultaneous oxidation and adsorption experiments
were carried out in a photoreactor under UV irradiation at a temperature of 35 ◦C, a pH of
3, and 1 h contact time using different weights of TiO2/AC ranging from 100 to 800 mg for
100 mL of a model wastewater sample. The results are shown in Figure 7, which indicate
that the percentage removal of all the model HCs increased linearly with the increase
in weight of the TiO2/AC until 500 mg, beyond which the percentage removal became
constant. Statistical analysis also confirmed the significant differences among model waste
HCs, their doses, as well as their interaction (Table 6). Among the model waste HCs, the
maximum percentage reduction of benzene occurred (59.97%), followed by phenol (58.31%),
toluene (57.83%), and naphthalene (57.17%) at all doses. However, the maximum percent-
age removal of benzene (94.4%), toluene (92.7%), phenol (91%), and naphthalene (92%)
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was attained at 500 mg TiO2/AC (Table 7). With the increase in the weight of TiO2/AC,
the concentration of both the photocatalyst i.e., TiO2, and the adsorbent, i.e., AC, increased;
hence, the rate of photocatalytic oxidation and adsorption also increased.
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Figure 7. Effect of catalyst/adsorbent dose (TiO2/AC) on removal of HC (35 ◦C temperature, pH 3,
and 1 h contact time; feed volume 100 mL).

Table 6. Analysis of variance for % reduction of model waste by TiO2/AC.

Sources of Variation Df Sum of Squares Mean Square F-Value Prob. Value

Rep. 2 0.54136 0.27068
Pollutants 3 140.275 46.7583 826.99 ** 0.000

Error I 6 0.33924 0.05654
Doses 10 104558 10455.8 307,591 ** 0.000

Pollutant x Dose 30 149.635 4.98751 146.72 ** 0.000
Error-II 80 2.71939 0.03399

Total 131 104851
** = Highly significant at p ≤ 0.05 level of probability.

Table 7. Comparison test of TiO2/AC dose vs. reduction in pollutant concentration.

Dose Benzene Toluene Phenol Naphthalene Mean

100 10.500i 10.433i 11.100h 10.667i 10.675K
200 23.433f 21.700g 23.299f 21.500g 22.458J
300 33.167b 30.700d 32.333c 29.6333e 31.458I
400 42.700X 40.167Z 42.233Y 39.267a 41.092H
500 51.300T 49.333V 50.400U 48.300W 49.833G
600 59.200R 58.333S 60.367Q 58.267S 59.042F
700 70.233N 69.333O 69.300O 67.567P 69.108E
800 88.567J 81.233K 80.600L 79.300M 82.425D
900 92.133D 90.200H 89.733I 90.600G 90.667C

1000 94.400A 92.700C 91.033F 92.100D 92.233B
1100 94.00B 92.033DF 91.133F 91.767E 92.558A

Mean across all doses 59.967A 57.833C 58.312B 57.179D

In order to examine the influence of reaction time on the process efficiency, simulta-
neous oxidation and adsorption experiments were carried out at different reaction times
ranging from 10 to 80 min with 10 min increments. The results are shown in Figure 8,
which indicate that the percentage removal of HCs was rapid up to 50 min, when the
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maximum removal of all model HCs (average 92%) was attained, and then it remained
constant. As mentioned above, about 90 % removal of HCs in the model wastewater was
attained in 90 min in the case of simple photocatalytic oxidation using TiO2, as well as
in simple adsorption over AC separately, whereas the same level of removal occurred in
60 min in simultaneous oxidation and adsorption using TiO2/AC. This shows the enhanced
efficiency of the simultaneous process.
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Figure 8. Effect of time on removal of HC using TiO2/AC (35 ◦C temperature, pH 3, and 1 h contact
time; TiO2/AC dose 500 mg/100 mL feed volume).

Our previous lab experiments showed that in the case of simple photocatalytic oxida-
tion using 100 mg of a TiO2 catalyst, the maximum percentage removal of benzene, toluene,
phenol, and naphthalene in 60 min was about 43.5, 42.1, 45.8, and 44.6% respectively [40].
Likewise, in the present study, the maximum removal of benzene, toluene, phenol, and
naphthalene by simple adsorption using 500 mg AC was about 55, 46, 45, and 49% respec-
tively, in 60 min. On the other hand, in the case of integrated photocatalytic oxidation and
adsorption, using 500 mg of TiO2/AC, above 90% removal of the same model HCs was
attained in 50 min reaction time. These results clearly show the advantage of the integrated
treatment process over the individual photocatalytic oxidation and adsorption.

2.7. Treatment of Refinery Wastewater

Refinery wastewater samples were collected from the Attock Oil Refinery in Rawalpindi,
Pakistan. Samples were collected at the point at which wastewater leaves the dissolved air
flotation (DAF) unit. The initial characterization of refinery wastewater, shown in Table S1
(Supplementary Materials), indicates that the values of various parameters such as the pH,
turbidity, dissolved and suspended solids, and COD are beyond the permissible levels of
the environmental health safety guidelines (2009). In particular, the pH and COD of the
sample are critically high, i.e., 9.2 and 970 mg/L, versus the allowable limits [59,60]. Thus,
the refinery wastewater sample requires proper treatment before being discharged into
the environment.

The removal of HC pollutants from the refinery wastewater samples was investigated
by simple adsorption over AC, photocatalytic oxidation using a UV/TiO2 system, and
integrated oxidation and adsorption over TiO2/AC, and the results are presented in Table 8.
The adsorption experiments were carried out in batch mode under optimized conditions,
i.e., an AC dose of 600 mg/100 mL, 35 ◦C, and 105 min, respectively. The results indicate
that the COD of the refinery wastewater was reduced to 77 mg/L after adsorption on the
AC, thus attaining a significant reduction of about 92% in the COD. Likewise, in the case
of photocatalytic oxidation over the UV/TiO2 system under optimized conditions in our
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previous study [40], i.e., pH 3, at 30 ◦C, in 90 min reaction time, and 100 mg/L catalyst
dose, the COD of the refinery wastewater decreased to about 77 mg/L, thus attaining about
a 93% decrease in COD.

Table 8. Decrease in COD of refinery wastewater by various treatment process.

Treatment of Refinery
Wastewater Reaction Time (min) COD (mg/L) Reduction in COD (%)

Untreated sample - 970 -
Adsorption over AC 105 77 92

Photocatalytic oxidation
by UV/TiO2

90 65 93

Integrated photocatalytic
oxidation and adsorption

over TiO2/AC
50 48.5 95

In the case of the integrated photocatalytic oxidation and adsorption process in
the presence of TiO2/AC at 30 ◦C temperature, 50 min treatment time, and using a
1000 mg/500 mL dose, there was a prominent reduction in the COD of the refinery wastew-
ater, i.e., from 970 mg/L to 48.5 mg/L, accounting for about a 95% reduction in COD.
These results clearly show the advantage of the integrated process using TiO2/AC over
the simple adsorption and photocatalytic oxidation. The integrated process brings about
more than the same level of decrease in the COD of the refinery wastewater in just 50 min,
which is attained by adsorption over AC in 105 min and photocatalytic oxidation using the
UV/TiO2 system in 90 min.

It may be inferred from the above results that the level of COD removed from the
refinery wastewater with the current process is higher than the literature reports. For
example, El-Gawad reported about a 79% removal of COD from wastewater, with initial
COD values of 500 mg/L in 60 min adsorption time, using AC entrapped in alginate
polymer [61]. A 45% and 40% reduction in COD was reported by Sun et al. in the case of
coking and papermaking wastewater by adsorption over bottom ash, using a 10 g/100 mL
waste sample [62]. Similarly, the COD removal attained through photocatalytic oxidation
under different conditions has been found to be 63% [63], 78% [63], and 80% [64]. Thus,
TiO2/AC can potentially be used for the largescale treatment of refinery wastewater.

2.8. GC-MS Analysis

The GC-MS chromatograms of the refinery wastewater as collected from the source
and the sample processed through adsorption over AC, photocatalytic oxidation over TiO2,
and integrated oxidation and adsorption over TiO2/AC are displayed in Figure 9, and
the types of HCs identified in each sample along with their retention times and relative
percentage concentrations are given in Table S2 (Supplementary Materials). The GC-MS
data showed that in the refinery wastewater sample, the concentration of aliphatic, aromat-
ics, oxygenates, and naphthenic HCs was about 69.23, 25.36, 3.2, and 2.21 %, respectively.
Among the aliphatic HCs, the major compounds occurring in the sample ranged from C9
to C35 saturates. The aromatics included mostly alkyl derivatives of xylene, benzene, and
phenanthrene. The oxygenated compounds were mostly saturated alcohols, carboxylates,
and esters, whereas the major naphthenic compounds included alkylated cyclopentane
and cyclohexane. The HCs identified in the refinery wastewater sample agree with the
literature reports [5,63]. The GCMS spectra of the refinery wastewater treated by adsorp-
tion over AC show no major peaks, except for the solvent peak (used for extraction) with
a peak area of about 99.6%, whereas none of the parent HCs are present in the sample.
This shows that AC efficiently removed all HCs from the wastewater in 105 min. These
results are endorsed by the percentage removal of HCs in the model wastewater and the
decrease in the COD of the refinery wastewater. The GC-MS chromatogram of the refinery
wastewater treated by photocatalytic oxidation also does not show the presence of any peak
corresponding to parent HCs, which suggests that the HCs in the sample were degraded
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by oxidation [9]. However, some minor peaks can be observed in the chromatogram, which
shows the presence of oxygenated HCs with a relative percentage concentration smaller
than 0.02%. These compounds were identified to be octa-decatrienoic acid, hexadecanol,
nonadecatriene-diol, pentadecanoic acid, methyl-methyl ester, and hepta-triacotanol. It can
be assumed that some of the parent HCs were not completely degraded during photocat-
alytic oxidation; rather, they were partially oxidized to give the oxygenated byproducts,
due to their resilient nature [40].
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The GC-MS analysis of the refinery wastewater sample treated by integrated photocat-
alytic oxidation and adsorption over TiO2/AC shows that all the parent HCs were removed,
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and none of the oxidation byproducts were left in the sample. Although the removal of HCs
also occurred in case of adsorption over AC, it took about 105 min. Likewise, photocatalytic
oxidation removed more than 90% of HCs in 90 min, but some oxidation byproducts were
left behind. On the other hand, in the case of the integrated treatment process, the dual
effect of oxidation and adsorption almost completely removed all the HCs in just 50 min.

2.9. Process Mechanism

In the integrated photocatalytic oxidation and adsorption process using TiO2/AC, the
removal of HCs occurs in two pathways i.e., photo-oxidation and adsorption, by virtue
of the bifunctionality of the hybrid catalyst/adsorbent. The TiO2 functionality catalyzes
the photocatalytic oxidation of HCs under UV irradiation, during which susceptible com-
pounds are completely oxidized [9,63], whereas the resistant HCs are partially oxidized.
These resilient HCs as well as the oxidation byproducts are adsorbed over the AC. This
phenomenon is supported by the results of the GC-MS analysis.

The mechanism of the photodegradation of organic pollutants by TiO2 in the presence
of UV light has been extensively explained [9]. The illumination of TiO2 by UV radiation
with energy equivalent to its band gap causes the excitation of electrons from the valance
band to the conduction band, and an electron hole in the valence band is created. The free
electrons in the conduction band and the holes in the valence band become involved in
the redox reactions with the substrate on the surface of the catalysts [64]. At the valance
band gap (hvb

+) with +ive potential, the water molecule on the catalyst surface is split
to produce OH· radicals, whereas the electrons in the (eCB

−) conduction band convert
O2 on the surface to excited O2

−·, and this in turn leads to the production of an OH·
radical [65–67]. The OH· radical, being a strong oxidizing agent, degrades the HCs to CO2
and H2O.

The role of AC in TiO2/AC is the adsorption of aromatic, aliphatic, and partially
oxidized HCs. AC is a favorite medium for the adsorption of various organic and inorganic
impurities due to its high surface area, nonpolar character, and porous structure, which
adsorbs the organic compounds through several mechanisms, including hydrogen bonding,
the formation of a donor accepter complex, π–π interaction, etc. [68]. Commonly, the
adsorption of HCs is attributed to the number and type of oxygenated functional groups
at the surface of AC, which facilitates the HC adsorption via hydrogen bonding. These
functionalities also influence the delocalization of the electron and control surface charge.
The π–π interaction between the delocalized π electrons of aromatic HC and the π electrons
of the graphite ring on the surface of the AC also cause the binding of aromatics on AC [69].
Likewise, the aromatic ring may act as an electron acceptor and the surface carboxylic acid
group of AC as an electron donor, which establishes an acceptor–donor complex, resulting
in adsorption [70]. Hence, multiple types of interactions are involved in the adsorption
of HCs over the AC. This is described in a previous section, i.e., the adsorption of HCs
over AC follows both the Langmuir and Freundlich adsorption isotherms, which suggests
that the adsorption of HCs occurs in both ways—as monolayer on the surface, as well
as in the pores as heterogeneous adsorption—or it may also be assumed that different
HC molecules may behave differently. The mechanism of removal of the HCs may be
graphically presented, as in Scheme 1 below.
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3. Materials and Methods
3.1. Reagents and Chemicals

All the regents and chemicals used in this study were of analytical grade and utilized
without any further purification unless mentioned. Model HCs used were (99%) (Fischer
Scientific, (Leicestershire, UK). Model wastewater was prepared by dissolving benzene,
toluene, phenol, and naphthalene (model HCs) in distilled water with a concentration
of 100 mg/L of each. The activated carbon (AC) was purchased from Duksan Chemicals
(Siheung-si, Korea); the BET surface area of the AC was about 3000 m2/g. Refinery
wastewater samples were collected from Attock Oil Refinery Ltd., Morgah Rawalpindi,
Pakistan. Samples were collected from the point at which the wastewater leaves the
dissolved air flotation (DAF) unit. Samples were collected in glass bottles, transported to
the laboratory, and stored in the refrigerator to avoid the loss and decomposition of HCs.
The samples were characterized by preliminary characterization, such as of the COD, pH,
electrical conductivity, total suspended solids, turbidity, and density, which were analyzed
through the standard methods.

3.2. Preparation and Characterization of TiO2/AC Hybrid Adsorbent

TiO2 supported on an AC hybrid adsorbent was prepared by a low-temperature
impregnation method [44]. About 50 mL of methanol was taken in a beaker, to which
0.09 mL of titanium tetraethoxide (Ti(OC2H5)4) was added with the help of a micro pipette
under ominous stirring until complete dissolution. About 400 mg of AC was added to it
and further stirred for 1 h to homogenize the dispersion. The suspension was then filtered
through a filter paper, and the residue was dried in oven at 90 ◦C for about 3 h. The dried
solid product was then calcined in a furnace at 400 ◦C under a nitrogen atmosphere to
obtain TiO2-loaded AC (TiO2/AC).

3.3. Characterization of TiO2/AC

The TiO2/AC prepared in the laboratory was characterized by SEM, EDX, XRD, and
FTIR analysis. FTIR analysis of the samples was carried out by a FTIR spectrophotometer
(Perkin Elmer, Spectrum II, Waltham, MA, USA), integrated with an ATR sample base
diamond plate. The spectra of the samples were recorded at a resolution 4 cm−1 and in
a scan range of 4000 to 450 cm−1 by NTOS2 software. The surface morphology of the
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materials was analyzed by scanning electron microscope (Hitachi S-4700, Tokyo, Japan).
The elemental analysis of the materials was carried out by energy-dispersive X-ray analysis,
through an X-ray source equipped with SEM. XRD analysis of the materials was performed
using an X-ray diffractometer (Xpert Philips, Almelo, Netherlands). The source of radiation
of the X-ray diffractometer was CuKα, and λ = 1.54 Å was the radiation wavelength.
The diffraction patterns of the powder samples were recorded at an angle range of 10 to
80 degrees.

3.4. Adsorption Experiments

The adsorption experiments were carried out in batch mode. About 100 mL of model
wastewater was taken in a conical flask, a known amount of AC was added to it, and it was
stirred on a magnetic stirrer for a certain time. The adsorbent was recovered by filtration,
and the concentration of HCs removed was analyzed through HPLC. The adsorption
experiments were carried out under variable conditions of temperature, time, and adsorbent
dose. The adsorption data were interpreted through kinetics and isotherm models, and
the thermodynamic parameters were also evaluated. Using the same procedure, the
treatment of refinery wastewater was also carried out similarly, and the decrease in the
HCs’ concentration was monitored through COD analysis.

3.5. Integrated Photocatalytic Oxidation-Adsorption Experiments

In integrated photocatalytic oxidation and adsorption experiments, about 500 mL of
model wastewater was charged into the photoreactor (Figure 10), and a known weight of
TiO2/AC was added to it. The sample was photo-irradiated by UV lamp under continuous
stirring for about 120 min. The UV lamp used was mercury 400W (200–550 nm), having
the highest irradiation peak at 365 nm. The sample was filtered, and the concentration of
HCs was analyzed through HPLC. The reaction was carried out under different conditions
of TiO2/AC dosage, temperature, and reaction time. The treatment of the real refinery
wastewater was also carried out following the same procedure, and the HC content was
monitored via COD analysis.
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In model wastewater, the concentrations of benzene, toluene, phenol, and naphthalene
were analyzed by HPLC (Shimadzu, Kyoto, Japan) equipped with a C18 column, using



Catalysts 2023, 13, 193 16 of 19

acetonitrile and deionized water (60:40) as a solvent system, for 10 min run time at a
wavelength of 254 nm. A calibration curve was plotted from the peak areas of different
standard concentrations of model HCs, from which the concentrations of HCs in the sample
were measured. The decrease in the concentration of HCs at time t (Ct mg/L) from the
initial concentration (Co mg/L) was calculated as the percentage removal of model HCs,
using Equation (1):

% removal of HCs =
Co − Ct

Co
× 100 (1)

The concentration of HC pollutants in the real refinery wastewater was determined as
chemical oxygen demand, which was analyzed through the standard method reported in
the literature [40].

Individual HC compounds in the refinery wastewater were identified through GC-MS
analysis (Thermo Scientific (DSQ II) GC-MS, Waltham, MA, USA), furnished with a TR-SMS
capillary column (30 m × 0.25 µm × 0.25 mm i.d). The flow rate of He, as a carrier gas, was
1 mL/min. The sample injection volume was 1 µL, and the initial oven temperature was
50 ◦C, with 1 min hold, then raised to 280 ◦C with a ramp of 6 ◦C/min and hold for 1 min.
The chromatograms were interpreted by matching with individual HCs with the data in
the MAINLIB and Replib libraries.

4. Conclusions

In summary, the removal of HC pollutants from refinery wastewater was investigated
by integrated photocatalytic oxidation and adsorption over TiO2/AC prepared in the
laboratory. Adsorption over AC resulted in more than 90% removal of model HCs from
model wastewater, under an AC dose of 0.6 g, 35 ◦C in 105 min. The adsorption of HCs
by AC followed the pseudo-first-order kinetic model. The adsorption data were best fit to
both the Langmuir and Freundlich isotherms. Under optimized conditions, the reduction
in the COD of refinery wastewater by adsorption over AC was found to be 92%. Integrated
oxidation and adsorption of the model wastewater in the presence of TiO2/AC led to
about 90% removal of all HCs in 50 min at pH 3, 30 ◦C, and a dose of 250 mg for 100 mL
of sample. In the case of the refinery wastewater, TiO2/AC removed about 95% COD
under UV irradiation at optimized conditions. The integrated process brings about more
than the same level of decrease in the COD of the refinery wastewater in just 50 min,
which is attained by adsorption over AC in 120 min and photocatalytic oxidation using
the UV/TiO2 system in 90 min. The GCMS analysis indicated that in the case of the
integrated process treatment, no traces of HCs were left in the treated refinery wastewater
sample. This technology can also be applied for other streams containing various types of
organic pollutants.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal13010193/s1, Figure S1. EDX profile of TiO2/AC; Figure S2. First order
kinetic plots for adsorption of (a) benzene (b) toluene (c) phenol and (d) naphthalene over activated
carbon; Figure S3. Second order kinetic plots for adsorption of (a) benzene (b) toluene (c) phenol and
(d) naphthalene over activated carbon. Figure S4. Langmuir isotherms for Benzene (a), Toluene (b),
Phenol (c) and Naphthalene (d) adsorption over activated carbon; Figure S5. Freundlich isotherms
for Benzene (a), Toluene (b), Phenol (c) and Naphthalene (d) adsorption over activated carbon;
Table S1. Physiochemical characteristics of refinery wastewater collected from ARL; Table S2. Hydro-
carbons identified by GC-MS analysis in untreated and treated refinery wastewater sample [38,71,72].
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