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Abstract: Developing the large-scale preparation of non-noble metal catalysts with high performance
is crucial for promoting the electrochemical production of hydrogen from water. In this work, a
novel TiO2@FeNi2S4 (TiO2@FNS) branch nanoflake array on Ni foam can be prepared at a large
scale (50 cm2) by combining an atomic-layer-deposited (ALD) TiO2 skeleton with one-step facile
low-temperature (<100 ◦C) sulfurization method. As-prepared TiO2@FNS arrays exhibit excellent
hydrogen evolution reaction (HER) performance with an overpotential of 97 mV at 10 mA cm−2, su-
perior to the FNS counterpart (without TiO2 coating) and other reported catalysts. The enhanced HER
catalytic performance of TiO2@FNS is attributed to the increased specific surface area and improved
structural stability due to the introduction of TiO2 coating. Moreover, theoretical calculations also
show that the bimetallic NFS structure is more favorable to the dissociation of water molecule and
the desorption of H than the monometallic Ni3S2 counterpart. With the combination of experimental
results and theoretical calculations, this work has enlightened a new way of exploring high-efficient
catalysts for HER.

Keywords: FeNi2S4; TiO2; branch nanoflake arrays; electrocatalyst; hydrogen evolution reaction

1. Introduction

Electrocatalytic hydrogen evolution reaction (HER) by water splitting is a green and
promising technology to generate hydrogen with high purity and high yield [1–3]. During
the whole HER process, the electrocatalyst plays a key role in hydrogen production [4–6].
The perfect electrocatalyst should possess facile synthesis process for large-scale application,
cheap raw materials to cut cost, and outstanding electrochemical performance for increasing
H2 production [7,8]. Currently, Pt and Pt-based alloys present the best HER performance
compared with other catalysts, however, the high price, low crustal abundance and inferior
long-term cycle stability impede their widespread application [9]. Based on these scientific
challenges, a variety of highly efficient non-noble metal catalysts (such as transition metal
oxides [10], sulfides [11,12], selenide [13,14], nitrides [15], carbide [16], and phosphide [17],
etc.) have been designed and synthesized by researchers.

Among these non-precious electrocatalysts, transition metal sulfides are expected to be
the candidates for replacing the Pt-based catalysts due to their low cost, facile preparation
and good stability [18]. Moreover, the HER activity of these metal sulfides can be further
improved through introducing other metal species to form binary metal sulfides [19].
In addition, the traditional powder electrode materials are always subject to unsatisfied
catalytic activity because the insulating binder used in the electrode preparation process
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leads to inferior contact between the electrode and electrolyte [20]. Therefore, constructing
integrated binary metal sulfides electrode is an efficient strategy to realize satisfied HER
performance. For example, Sivanan-tham et al. [21] designed in situ grown NiCo2S4
nanowire array on Ni foam with a two-step method to form an integrated electrode. With
an enlarged specific surface area, the fabricated NiCo2S4 nanowire array displayed a better
HER activity than NiCo2S4 nanoparticles. However, most reported binary metal sulfides
have no obvious morphology change before and after sulfurization process [22–24], which
fails to further increase the specific surface area and expose active sites to optimize HER
performance. Moreover, improving the structural stability of binary metal sulfides to meet
the practical application requirement still remains a great challenge.

In this work, we report a simple atomic-layer-deposition (ALD) and sulfurization
strategy to rationally construct integrated TiO2@ FeNi2S4 (TiO2@FNS) arrays as robust
electrocatalysts for HER in alkaline medium. The ALD fabricated TiO2 coating not only
enhances the structural stability of final TiO2@FNS arrays, but also leads to the formation
of unique branch nanoflakes morphology. Therefore, the binder-free TiO2@FNS arrays
possess large specific area and strong adhesion on the Ni foam, endowing them with more
active cites, faster ions/electrons transport rate and better structural stability. In alkaline
medium, the TiO2@FNS branch nanoflake arrays could deliver a better HER property than
the FNS (without TiO2 coating) counterpart with a lower overpotential of 97 mV at 10 mA
cm−2. Furthermore, excellent durability is demonstrated when using the TiO2@FNS arrays
as electrocatalyst. More importantly, density functional theory (DFT) calculations revealed
that FeNi2S4 shows larger H2O absorption energy (−0.13 eV) and smaller H* desorption
energy (0.82 eV) than those of monometallic Ni3S2 (−0.09 eV/1.01 eV), thus leading to the
better HER performance of FeNi2S4 in alkaline solution. Our work can provide a reference
for the rational design of efficiently integrated arrays for applications in electrocatalysis
and energy storage.

2. Results and Discussion
2.1. Morphology and Structure Analyses

The preparation process of integrated TiO2@FNS arrays is schematically illustrated
in Figure 1. Firstly, the Fe2Ni2CO3(OH)8 (FNC) nanosheet precursor on nickel foam is
fabricated via a facile hydrothermal process with Fe(NO3)2 as the Fe resource. Especially,
Fe2+ ions react with Ni2+ ions provided by Ni foam substrate to form the final FNC
nanosheet arrays. Afterward, an ALD method is used to construct a uniform TiO2 coating
on the surface of FNC nanosheet (TiO2@FNC). After a simple low-temperature sulfurization
process, the TiO2@FNC is converted to final TiO2@FNS branch nanoflake arrays.
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Figure 1. Schematic illustration of the preparation process for binder-free TiO2@FNS arrays.

The morphology change in different samples can be observed by their scanning
electron microscope (SEM) images (Figure 2). The large FNC nanosheets with thickness
of 30–60 nm are developed vertically on the surface of Ni foam substrate, forming a three-
dimensional porous and open structure (Figure 2a,d). With a TiO2 coating, the thickness
of the TiO2@FNC nanosheet increases to 40~70 nm, and the porous network structure is
still perfectly preserved (Figure 2b,e), suggesting that the ALD process has no effect on the
morphology structure. Different from the TiO2@FNC, the morphology of final TiO2@FNS
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arrays changed radically after the final sulfurization in Na2S solution at 90 ◦C. Obviously,
numerous small nanoflakes are distributed on the outer layer to form a novel TiO2@FNS
branch nanoflake arrays structure (Figure 2c,f). Moreover, the TiO2@FNS sample is ~50 cm2

with black color (the inset in Figure 2f), indicating our preparation process can be easily
adapted for large-scale production.
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Figure 2. SEM images of (a,d) FNC, (b,e) TiO2@FNC and (c,f) TiO2@FNS arrays. The inset of (f) is
the optical photograph for large-scale fabricated TiO2@FNS electrode.

Transmission electron microscope (TEM) images provide us with further insight into
the structure of FNC and TiO2@FNS at the nanoscale. The FNC exhibits a nanosheet
structure with a smooth surface (Figure 3a). Meanwhile, the measured interplanar d-
spacing is ~0.37 nm (Figure 3b), which is in good agreement with the (006) plane of
Fe2Ni2CO3(OH)8 phase. In the selected area electron diffraction (SAED) pattern (Figure 3c),
obvious diffraction spots can be observed, matching well with the (003), (006) and (012)
planes of Fe2Ni2CO3(OH)8 [25].

As for TiO2@FNS arrays, the internal TiO2 core is homogeneously coated by the
cross-linked FNS nanoflakes (Figure 3d). A clear interplanar d-spacing of ~0.28 nm is
observed in the HRTEM image (Figure 3e), corresponding to (311) plane of FeNi2S4 phase.
Moreover, the diffraction rings in Figure 3f reveals the amorphous and polycrystal property
of FNS, respectively corresponding to the (111), (311) and (400) facets of FeNi2S4 [26]. In
addition, energy dispersive X-ray (EDS) mapping images (Figure 3g) demonstrate the
uniform distribution of Fe, Ni, S, O and Ti elements in the TiO2@FNS core-branch arrays.

X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were performed
to confirm the phase and composition of TiO2@FNS branch nanoflake arrays. As shown
in Figure 4a, apart from the peaks of Ni foam, other diffraction peaks match well with
Fe2Ni2CO3(OH)8 phase (JCPDS 49-0188) [27]. After ALD and sulfurization process, new
diffraction peaks correspond to FeNi2S4 phase (JCPDS 47-1740) [28], revealing the successful
preparation of FNS. Note that no diffraction peaks of TiO2 can be observed due to its
amorphous feature. The composition of FNS branch arrays is further verified by XPS results.
Figure 4b exhibits the high-resolution Ni 2p spectra of the TiO2@FNS branch nanoflake arrays.
In addition to two shake-up satellite peaks, the peaks located at 873.48 and 856.08 eV belong to
Ni 2p1/2 and Ni 2p3/2, respectively. Moreover, two smaller peaks are indexed to 853.28 and
872.28 eV, suggesting the co-existence of Ni2+/Ni3+ [29]. According to Gaussian fitting, the
high-resolution Fe 2p spectra shows four peaks (Figure 4c), in which the peaks at 711.08 eV
and 724.48 eV are in good agreement with the Fe2+ [30], while the peaks indexed to 713.18
and 726.68 eV match well with the Fe3+ species[31]. As for the S 2p spectra (Figure 4d), two
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peaks at 162.74 eV (S 2p1/2) and 161.68 eV (S 2p3/2) are observed, being consistent with
the S2- [29]. In addition, the O 1s and Ti 2p spectra are detected in the TiO2@FNS branch
nanoflake arrays. Two core levels at 530.78 and 531.59 eV match well with Ti-O bond
and O-H bond, respectively (Figure 4e) [32].Ti 2p3/2 (458.03 eV) and Ti 2p1/2 (463.73 eV)
characteristic peaks in Figure 4f further confirm the existence of TiO2 [33]. All these results
mutually prove the successful fabrication of TiO2@FNS arrays.
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(c) Fe 2p, (d) S 2p, (e) O 1s, and (f) Ti 2p.
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2.2. Electrochemical Performance Analyses

The HER activity of TiO2@FNS was assessed in a three-electrode cell with 1 M KOH
solution as the electrolyte. FNC and FNS on Ni foam were also directly used as the test
electrodes to evaluate their HER electrocatalytic performances for comparison.

As exhibited in Figure 5a, TiO2 shows a negligible HER activity. Moreover, compared
with FNC, FNS and TiO2@NS counterparts, our fabricated TiO2@FNS sample displays the
best HER performance with the lowest overpotential of 97 mV at 10 mA cm−2. The effective
electrochemical active surface areas (ECSA) of all samples were estimated by testing the
double-layer capacitance (Cdl) based on the CV results at different scan rates. As shown
in Figure 5b, the ECSA value is deemed to the half of the slope value. The TiO2@FNS
branch nanoflake electrode possesses an ECAS value of 51 mF cm−2, much larger than the
TiO2 (4 mF cm−2), FNC (14 mF cm−2), FNS (31 mF cm−2) and TiO2@NS (42 mF cm−2) [34]
electrodes. Moreover, even compared with other reported HER electrocatalysts (CoP [35],
NiS2 [36], Co9S8 [37], Ni3S2 [38], CoS [39], MoSe2 [40], Mo2C [41] and Ni0.7Fe0.3S2 [42]),
our TiO2@FNS core-branch arrays still exhibit a superior HER property (Figure 5c). Low
charge-transfer resistance is a characteristic of an effective electrocatalyst, especially a C-free
electrocatalyst. Thus, electrochemical impendence spectroscopy was conducted to obtain
charge-transfer data. Obviously, the TiO2@FNS electrode shows a smaller semicircular
diameter than TiO2, FNC, FNS, and TiO2@NS samples (Figure 5d), suggesting that the
introduction of TiO2 contributes to the optimized electronic structure. In addition, the
TiO2@FNS core-branch electrode shows a remarkable long-term durability with no obvious
fluctuation of overpotential and maintains a current density of 10 mA cm−2 in the HER
over a 10 h durability test (Figure 5e). Furthermore, TiO2@FNS electrode still remains
intact core-branch structure and intrinsic element composition after a 10 h test (Figure
S1), demonstrating its high structural stability. Such excellent HER activity and structural
stability of TiO2@FNS branch nanoflake arrays are owing to the increased specific surface
area and the introduced TiO2 coating.
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Figure 5. (a) LSV curves and (b) the ratio of current density with various scan rates of TiO2, FNC,
FNS, TiO2@NS and TiO2@FNS samples. (c) HER performance comparison of different materials.
(d) EIS of TiO2, FNC, FNS, TiO2@NS and TiO2@FNS samples. (e) Cycling performance of TiO2@FNS
electrode at 10 mA cm−2.
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2.3. DFT Calculation

In order to obtain a deep understanding of superior HER activity for TiO2@FNS, we
use the DFT calculation to investigate its water adsorption property and H proton adsorp-
tion/desorption property. It is well known that the adsorption energy of water molecules
and H protons are the critical descriptors for HER in alkaline electrolyte. Figure 6a,b shows
the water and H proton adsorption model of FeNi2S4, respectively. As shown in Figure 6c,
the FeNi2S4 exhibits a water molecule adsorption energy of −0.13 eV, larger than the
monometallic Ni3S2 (−0.09 eV). In addition, compared with monometallic Ni3S2 (1.01 eV),
the FeNi2S4 also possesses a smaller H proton adsorption energy of 0.82 eV (Figure 6d).
These results reveal that bimetallic FeNi2S4 can promote the dissociation of water molecule
and the desorption of H, thereby displaying a higher intrinsic HER catalytic activity.
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3. Materials and Methods
3.1. Synthesis of TiO2@FNS Arrays on Ni Foam

First, the growth precursor of Fe2Ni2CO3(OH)8 (FNC) nanosheet arrays were prepared
by a simple hydrothermal method. Here, 3 mmol Fe(NO3)2, 6 mmol NH4F and 15 mmol
urea were dissolved in 80 mL deionized water to form a homogeneous solution. Moreover,
the Ni foam was used as the substrate and Ni source. Then, the above solution and Ni foam
were transferred into a Teflon-linked steel autoclave and kept at 120 ◦C for 8 h to form
FNC nanosheet arrays. Then the obtained FNC nanosheet arrays were placed in the ALD
reactor (ALD PICOSUN P-300F, Espoo, Finland) with TiCl4 and H2O as the titanium source
and O source, respectively. The TiO2 was deposited at 120 ◦C for 140 cycles. Argon was
used as the carrier gas. Then, the obtained TiO2@FNC film underwent a low-temperature
sulfurization process by immersing into 0.1 M Na2S solution at 90 ◦C for 12 h to form the
final TiO2@FNS branch nanoflake arrays. For comparison, the pure FNS nanosheet arrays
were fabricated by the same sulfurization procedure as above without TiO2 layer.

3.2. Characterization

The morphology and microstructure of all the samples were characterized by field
emission scanning electron microscope (FESEM, Hitachi SU8010, Tokyo, Japan) and trans-
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mission electron microscope (TEM, JEOL 2100F, Tokyo, Japan). X-ray diffraction (XRD)
reactor with Cu Kα radiation (Rigaku D/Max-2550, Shimadzu, Kyoto, Japan) was used to
monitor the phase of all the samples. X-ray photoelectron spectroscopy was also performed
to study the valence of samples by using an Al Kα source of 1486.6 eV (Thermo Fisher
Scientific, Waltham, MA, USA).

3.3. Electrochemical Measurements

All samples were used as the test electrode directly and the electrochemical measure-
ments were conducted in a three-electrode configuration at room temperature with Pt foil
and saturated calomel electrode (SCE) as the contrast and reference electrode, respectively.
One (1) M KOH solution was used as the electrolyte. The E(SCE) was turned into E(RHE)
based on the following equation: E(RHE) = E(SCE) + 1.0714 V. Electrodes were first scanned
by CV test at a scan rate of 100 mV s−1 over 10 cycles to stabilize the current. Linear
sweep voltammetry (LSV) tests were tested at a scan rate of 1 mV s−1. Tafel plots were
obtained from LSV curves. The stability test was performed at a constant current density
of 10 mA cm−2. The above test results were obtained by iR-compensation. The effective
electrochemical active surface area (ECSA) value was equal to half of the slope value,
which was obtained according to a function relationship between the measured current
and scan rates.

3.4. Computational Methods and Models

Density functional theory (DFT) calculations were performed using the quantum
espresso (QE) [43,44] based on the pseudopotential plane wave (PPW) method. The
Perdew-Bueke-Ernzerhof (PBE) functional [45] was used to describe exchange-correlation
effects of electrons. We have chosen the projected augmented wave (PAW) potentials [46,47]
to describe the ionic cores and take valence electrons into account using a plane wave basis
set with a kinetic energy cutoff of 500 eV.

4. Conclusions

In summary, we have demonstrated a simple approach using ALD and sulfurization
to fabricate a novel TiO2@FNS branch nanoflake arrays on a large scale, in which the
TiO2 coating provides a key for enhancing the HER performance of integrated electrode.
Due to the increased specific surface area and improved structural stability, the obtained
TiO2@FNS branch nanoflake arrays exhibit noticeable HER activity in alkaline medium
with a low overpotentials (97 mV at 10 mA cm−2), much superior to FNS and other reported
electrocatalysts. We believe our work will give valuable insights for developing superior
HER catalysts and beyond.
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//www.mdpi.com/article/10.3390/catal13010174/s1, Figure S1. (a) SEM image and (b) XPS survey
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