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Abstract: The one-pot synthesis strategy of Au@Pd dendrites nanoparticles (Au@Pd DNPs) was sim-
ply synthesized in a high-temperature aqueous solution condition where cetyltrimethylammonium
chloride (CTAC) acted as a reducing and capping agent at a high temperature. The Au@Pd DNPs
with highly monodisperse were shown in high yields by the Au:Pd rate. The nanostructure and
optical and crystalline properties of the Au@Pd DNPs were characterized by UV–vis spectroscopy,
transmission electron microscopy (TEM), and X-ray diffraction. The Au@Pd DNPs showed an effi-
cient electrochemical catalytic performance rate toward the ethanol oxidation reaction (EOR) due to
their nanostructures and Au:Pd rate.

Keywords: CO stripping curve; one-pot synthesis strategy; catalysts of electrocatalytic performance

1. Introduction

In the past few decades, nanoparticles (NPs) have attracted attention because of
their unique properties and applications [1–5]. In particular, the applications of NPs have
been used in various products and reactions, such as fuel cells, portable devices, organic
reactions, sensors, and drug delivery [6–11]. In particular, the fuel cells have rapidly
increased in fuel cell development using hydrogen, ethylene glycol, methanol, and ethanol
as alkaline electrolytes for decades. In addition, the advantage of a direct ethanol fuel cell
(DEFC) is that it can produce ethanol in large amounts, it is a renewable energy resource,
and it has low toxicity, and this development is increasing due to green energy. The
oxidation of ethanol involves twelve electrons per molecule, resulting in higher energy
density compared to methanol [12–14]. It has been reported that noble metal NPs have high
activity as catalysts for ethanol oxidation reactions [15–18]. Although noble metal NPs are
not economically efficient, they are still widely used in fuel cells or photoelectron catalysts
because they are easy to control the shape and durability of NPs [15,16]. Noble metal NPs
such as Pd, Au, Pt, and Pt have been used due to stability, and the function of the catalysts
has been improved by the controlled shape and size of NPs [19–24]. Among various noble
metals, Pd is used in fuel cells for formic acid and alcohol oxidation, and it is promising as
an eco-friendly energy [25–28]. However, there is a limit to increasing the surface area or
energy of Pd NPs. Furthermore, Pd has a disadvantage in that the stability of the catalyst is
low due to oxidation reaction [29–31]. To compensate for this, alloy and core–shell structure
nanoparticles were synthesized by complementing gold with excellent stability, and it
is reported that catalyst stability and reactivity of the catalyst are improved in the fuel
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cell reaction [31–34]. In particular, synthesis of the core–shell structure is a method of
forming the core first and then the shell through a step reaction, so the experiment method
is complicated. Therefore, the method to expand the potential application of core–shell
NPs is the development of facile and simple strategic synthesis [35–37].

Here, we report that the one-pot synthesis of bimetallic Au@Pd DNPs is presented.
The one-pot synthesis of the Au core and Pd shell was reduced under an aqua solution, and
90 ◦C temperature conditions resulted in high-yield Au@Pd DNPs. Furthermore, DNPs
with controlled branches and muti-arms have been attractive research because of their
unique form and enhanced catalytic performance. We measured the electrocatalytic activity
of ethanol oxidation with Au@Pd DNPs that controlled the shell by Pd ratio.

2. Experimental Section

Chemicals: Gold (III) choride hydrate (HAuCl4 xH2O; 99%), Potassium (II) tetra
chloride, (K2PdCl4; 98%), CTAC (Aldrich, solution in water, 25 wt%) were purchased from
Aldrich. Other chemicals, unless specified, were reagent grade, and deionized water with a
resistivity of greater than 18.0 MΩ·cm was used in the preparation of aqueous solutions.

Preparation of Nanoparticles

Pd: DNPs: In a typical synthesis of Pd DNs, 0.8 mL of 5 mM aqueous solution of
K2PdCl4 was added to 5 mL of 30 mM CTAC. The whole system was sealed, heated, and
maintained at 90 ◦C in a conventional forced-convection drying oven for 4 h.

Au@Pd: DNPs: In a typical synthesis Au@Pd DNs, total of 0.8 mL of 5 mM aqueous
solution of HAuCl4 and K2PdCl4 (Au:Pd 3:5, 1:1, 3:5) were added to 5 mL of 30 mM
CTAC. The whole system was sealed, heated, and maintained at 90 ◦C in a conventional
forced-convection drying oven for 4 h.

Au NPs: In a typical synthesis of Au NPs, 0.8 mL of 5 mM aqueous solution of HAuCl4
was added to 5 mL of 30 mM CTAC. The whole system was sealed, heated, and maintained
at 90 ◦C in a conventional forced-convection drying oven for 4 h.

The DNPs and NPs were washed two times with ethanol and deionized water by
centrifugation (10,000 rpm for 5 min). In order to confirm the CTAC in the sample before
and after centrifugation, sample image and IR were measured to confirm that almost no
CTAC remained (Figure S1).

Characterization of nanoparticles: The extinction spectra of Pd, Au@Pd DNPs, and
Au NPs were measured by UV-vis absorption spectrometer (SINCO S-3100). TEM images
of samples were shown with a TEM (JEOL JEM-2010) operating at 300 kV after placing a
drop of hydrosol on carbon-coated Cu grids (200 mesh). For immobilization of Pd, Au@Pd
DNPs, and Au NPs, the substrate was washed with triply distilled water and dried. XRD
patterns of samples were obtained with a Bruker AXS D8 DISCOVER diffractometer using
Cu Kα (0.1542 nm) radiation. The chemical composition surface of the Au@Pd DNPs was
indicated by XPS (THERMO Fisher Scientific NEXSA G2 spectrometer), using an Al K X-ray
source (1486.6 eV) and a hemispherical electron analyzer. Inductively coupled plasma
optical emission spectrometry (ICP-OES, Thermo Fisher Scientific, iCAP PRO XP Duo) were
measured amounts of Au and Pd. IR data measured Thermo Scienific (Nicolet summit).

Electrochemical Measurements: Pd, Au@Pd DNPs, and Au NPs were measured by
a CH Instruments model 708C potentiostat. Cyclic voltammetry (CV) and chronoamper-
ometry (CA) was used to system of a proper three-electrode cell with counter, reference,
and working electrodes of Pt wire, Ag/AgCl (in saturated 3 M KCl), and carbon electrode.
Before these catalysts were loaded, the glassy carbon electrode (GCE) was polished with
alumina powder and washed thoroughly with Milli-Q water and ethanol. A total of 0.1 M
KOH with electrolyte solution were purged with N2 gas for 30 min. A total of 4 µL of cata-
lyst aqueous solution (metal loading 1 µg: 0.25 mg mL−1) was dropped onto the GCE before
CV measurements. After being dried with these products, 4 µL of 0.05 wt% Nafion solution
was dropped on these samples, and this was dried in 50 ◦C oven. After the parched GCE
was washed with acetone, water, and ethanol, the product was electrochemically cleaned
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by 50 potential cycles at a scan rate of 50 mV s−1 form −0.8 to 0.3 V versus Ag/AgCl
in an alkaline electrolyte solution (KOH) to eliminate capping agents on the surfaces of
catalyst [38]. The ECSA was estimated by the following equation: ECSA = Qo/qo, where
Qo is the surface charge that can be obtained from the area under the CV trace of oxygen
reduction, and qo is the charge required for reduction of a monolayer of oxygen on the Au
and Pd (400 µC/cm2 and 424 µC/cm2 ref.: Woods, R. In Electroanalytical Chemistry: A
Series of Advances (vol.9); Bard, A. J., Ed.; Marcel Dekker: New York, 1974; pp. 1–162).

3. Results and Discussion

Au@Pd DNPs were prepared from the aqueous solutions of K2PdCl4 and HAuCl4 with
CTAC as a reducing agent and surfactant. It has been reported that CTAC, polyvinylpyrroli-
done (PVP), and sodium citrate (SC) act as reducing agents and capping agents under
high-temperature conditions. The reduction of CTAC reported the presence of a new peak
at 1388 cm−1 in the CTAC-NPs spectrum that can be assigned to the N=O vibration that
indicates the appearance of the nitroso group through the oxidation of CTAC [39]. When
synthesizing Pd, Au@Pd DNPs, and Au NPs, the chemical agent of CTAC was used as a
bot in order to confirm the nanostructure of DNPs; these were verified through various
analyses (Figure S1).

The HAADF-STEM images of Au@Pd DNPs exhibited a dark contrast at the outside
of DNPs and a bright contrast at the center of DNPs. HAADF-STEM-EDS mapping images
of prepared DNPs indicate that the DNPs had an Au@Pd core–shell structure with a thin
Pd shell at the outside surface (Figure 1c,f,i and Figure S2). Furthermore, the Pd shell with
lattice spacing in dendrites regions corresponds to the 111 planes of Pd (Figure 1b,e,h). h
a reductant and surfactant in 90 ◦C conditions. The dendritic shell control of Au3@Pd5,
Au1@Pd1, and Au5@Pd3 DNPs was possible to synthesize by the Pd ratio. The size of
Au3@Pd5, Au1@Pd1, and Au5@Pd3 DNPs measured as edge 35.6 ± 2.3 nm, 40.3 ± 3.2 nm,
and 43.3 ± 2.8 nm by TEM images, respectively. When the Au3@Pd5, Au1@Pd1, and
Au5@Pd3 DNPs with dendrites of Pd shell were measured by TEM, the shell length of
these DNPs were 7.8 ± 1.4, 6.2 ± 1.2, and 5.8 ± 1.1 nm (Figure 1a,d,g). Furthermore,
the corresponding fast Fourier transform (FFT) pattern further corroborates the single
crystallinity of the Au3@Pd5, Au1@Pd1, and Au3@Pd3 DNPs (Figure S3) [40–42].
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Figure 1. TEM, HRTEM and HAADF-STEM image and corresponding EDS elemental mapping
images of Au3@Pd5 DNPs (a–c), Au1@Pd1 DNPs (d–f) and Au5@Pd3 DNPs (g–i).

In order to confirm of Au@Pd DNPs structure, Au3@Pd5DNPs represented a core–shell
structure by line mapping of HAADF-STEM image and cross-sectional compositional line
profiles (Figure S2). When synthesizing only Au and Pd NPs, the shape of Pd NPs had a
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dendritic structure, and 2.24 Å of (111) lattice distance plane was confirmed by HRTEM
(Figure 2).
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Figure 2. TEM and HR TEM images of (a) Pd DNPs, (b) Pd DNPs and TEM image of (c) Au NPs.

The optical properties of Pd, Au@Pd DNPs, and Au NPs were measured by UV-
vis spectroscopy. Figure 3a,c show the images before, and the absence of a peak at 310
and 407 nm correspond to unreduced Au (III) and Pd (II) + CTAC complex, respectively,
indicating a complete reduction of metal ions [43]. Figure 3b,d show the post-reaction
images and Uv-vis spectra of Au, Pd, and Au@Pd DNPs. In Figure 3, the absorbance
at 500–600 nm indicates that the core is Au NPs, and the absorbance of Au5@Pd3 DNPs
increased because the Au ratio increased [44,45]. Au NPs exhibit characteristic surface
plasmon adsorption from 600 to 800 nm, while Pd DNPs exhibit overall adsorption with a
broad spectrum.
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The behavior of single metal NPs was found to be different from that of the bimetal-
lic core–shell structure. The characteristic absorbance band of Au NPs appearing at
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600–800 nm exits at 560 nm because the core–shell NPs have a smaller size than only
Au NPs synthesized with Au. UV-vis spectral properties of the Pd, Au@Pd DNPs NPs, and
Au NPs have different optical properties depending on their Pd shell thickness, and the
size and shape are very different absorbance (Figure 3b).

To confirm the crystalline of their NPs, the X-ray diffraction (XRD) pattern of Pd,
Au3@Pd5, Au1@Pd1, and Au5@Pd3 DNPs and Au NPs indicated two diffraction peaks
in the range of 30◦ < 2θ < 60◦ which can be indexed to diffraction from the (111) and
(200) of the face-centered cubic (fcc) structure of metallic Pd and Au@Pd DNPs and Au
NPs (Figure 4).
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Figure 4. XRD data of Pd, Au3@Pd5, Au1@Pd1, Au3@Pd3 DNPs and Au NPs.

An electrochemical catalyst test was conducted using their NPs with excellent crys-
tallinity. In particular, the electrochemical oxidation reaction of ethanol with Pd-base was
chosen as a reaction because of having effective catalytic properties toward ethanol oxida-
tion in alkaline electrolytes and the function of lowering the Pd-CO bonding [45–47]. There-
fore, we investigated the electrocatalytic activities of the various prepared Pd, Au3@Pd5,
Au1@Pd1, Au5@Pd3 DNPs, and Au NPs in alkaline conditions. The CV profiles present var-
ious catalysts in a 0.1 M KOH electrolyte solution with a scan rate = 50 mV s−1 (Figure 5a).
The current densities of five catalysts were normalized to the electrochemical surface area
(ECSA), which was calculated by measuring the Coulombic charge for the reduction of Pd
or Au oxide with Pd, Au3@Pd5, Au1@Pd1, Au5@Pd3 DNPs, and Au NPs.

Figure 5a confirms that the shell of Au@Pd DNPs is actually composed of Pd, similar
in −0.3 V to the reduction peak position of Pd oxide toward Pd DNPs. Notably, Fig-
ure 5b,c indicate specific and mass anodic peaks in the forward and reverse sweeps for
the five samples during the ethanol oxidation [48–50]. Au3@Pd5 DNPs exhibit that the
current density of the anodic peak increased outstandingly compared to other catalysts in
the forward peak. The ECSA-normalized current densities and the corresponding mass
activities of Pd, Au3@Pd5, Au1@Pd1, Au5@Pd3 DNPs and Au NPs in the forward scan
(50 mV/s) were 1.21 ± 0.52, 3.59 ± 0.42, 1.41 ± 0.56, 1.36 ± 0.22 and 0.42 ± 0.08 Acm−2

and 1365 ± 175, 2268 ± 182, 1493 ± 127, 1452 ± 118, 957 ± 94 and 280 ± 25 mA/mg,
respectively (Figure 5b–d). These results indicated that Au@Pd DNPs have been clear
to electrocatalytic activity toward ethanol oxidation due to their exposed dendritic Pd
amounts as well as Au core. To find the durability of catalysts, we conducted a CA measure-
ment at −0.1 V versus Ag/AgCl, and specific and mass CA curves of Au@Pd DNPs have
markedly enhanced stability due to the Au core in a 0.5 M KOH solution containing 0.5 M
ethanol (Figure 5d,f). Compared with other reported catalysts, the Au3@Pd5 DNPs show
superiority (Table S1, [51–60]). In general, the electrocatalytic properties in NPs are highly
dependent on their geometry and surface electronic structure. In order to investigate the
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true role of the core and shell of Au@Pd DNPs in enhancing EOR performance, the catalysts
of Pd, Au3@Pd5, Au1@Pd1, Au5@Pd3 DNPs, and Au NPs were investigated by XPS.
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The high-resolution Au 4f and Pd 3d spectra of all catalysts show two peaks assigned
to 4f7/2 and 4f5/2 in Au, and Pd 3d5/2 and 3d3/2 in Pd, respectively (Figure 6). The two
peaks of the Au@Pd catalysts are shifted to lower binding energies than those of pure Au
NPs, indicating an electron transfer from contacted Pd to Au. The shift was induced by
the higher electronegativity of Au with 2.54 than Pd with 2.2 [61,62]. The two peaks in
Figure 6a represent Pd 3d5/2 and 3d3/2 trajectories in the high-resolution spectrum. The
high-resolution Pd 3d spectra appeared clearly at higher binding energy for the catalysts
of Au@Pd DNPs than for the Pd DNPs (Figure 6a). The Au 4f and 3d binding energy of
Au@Pd DNPs were lower or higher than Au NPs and Pd DNPs, respectively. As-prepared
Au@Pd DNPs and Pd DNPs and Au NPs suggest that both migrations of Au core atom
and dissolution of Pd shell atoms induce additional lattice tensile strain in formed Au and
Pd. Therefore, the catalytic performance of Au@Pd DNPs in EOR was improved compared
to Pd DNPs and Au NPs.

CO anti-poisoning tests were conducted to clarify the Au3@Pd5 DNPs with enhanced
EOR performance. In order to clarify the enhanced EOR performance of Au1@Pd1 DNPs,
the anti-poisoning test was also performed. CO is widely regarded as an intermediate for
EOR, where Pd-based catalysts mimic the adsorption of CH3COads [61–63]. We performed
CO stripping of the catalyst to confirm the reaction of COads and OHads at the adsorbed
interface. Among the products of catalytic decomposition, CO strongly binds with the
catalyst at low potentials, blocking the activity of the catalyst.
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and Au NPs.

We were subjected to CO stripping voltammetry with various catalysts in 0.1 M KOH
solution. We adsorbed CO on the metal surface while bubbling it in a one atm electrolyte
solution for 20 min. The electrolyte solution was purged with high-purity N2 to replace CO in
the solution and adsorb CO on the Pd surface. The scan rate of 20 mV s−1 was performed
between −0.8 and 0.3 V to induce CO oxidation of the catalysts. The first voltammetry
scan was recorded after CO removal to confirm the removal of CO from Pd. It is possible
to improve stability and activity by reducing the strength of CO adsorption through the
synergistic effect between Au and Pd. In this regard, the CO stripping test was performed
on the CO removal ability of catalysts. Figure 7 shows the voltammetry of various catalysts
tested by CO stripping in KOH. Among the various catalysts, Au3@Pd5 DNPs showed the
most negative potential value of −0.120 V and were most effective and indicated the weak
peak intensity with the second curve because CO is easily removed. In addition, DNPs with
different ratios of Au5@Pd5 and Au7@Pd3 DNPs showed more negative potential values than
Pd DNPs (Figure 7). Therefore, it was possible to prove the reason for the catalyst of enhanced
Au@Pd DNPs in EOR by the CO stripping and XPS binding energy with Au and Pd.
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4. Conclusions

In summary, in order to increase the stability of Pd, we synthesized bimetal NPs by
adding Au with excellent durability. In addition, we have developed a facile one-pot
synthesis of Au@Pd DNPs in an aqua solution that can be easily synthesized in an aqua
solution rather than the existing method of core–shell by a step reaction using seed with
small nanoparticles.

The morphological and compositional structures of Au@Pd DNPs were dependent
on CTAC with reducing agent and surfactant role. Au3@Pd5 DNPs showed outstanding
electrocatalytic performance toward EOR in alkaline conditions because it was confirmed
that they had a weak strength for CO adsorption through CO striping and XPS data. In the
future, we expect these catalysts to be widely used for their easy synthesis and application
in fuel cells.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13010011/s1, Figure S1: Before and after CTAC removal
image of (a) Au3@Pd5 DNPs and (b) IR data of CTAC-Au3@Pd5 DNPs. Figure S2: (a) HAADF-
STEM image and (b) cross-sectional compositional line profiles of Au3@Pd5 DNPs. Figure S3: FFT
pattern images of (a) Au3@Pd5, (b) Au1@Pd1 and (c) Au3@Pd3 DNPs. Table S1: Comparison of
electrocatalytic activities of various catalysts for EOR in alkaline media.
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