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Abstract: The transition metal-based catalysts have excellent electrochemical oxygen evolution reac-
tion catalytic activity in alkaline electrolytes, attracting a significant number of researchers’ attention.
Herein, we used two-step hydrothermal and solvothermal methods to prepare a Ni(OH)2/MoS2/NF
electrocatalyst. The electrocatalyst displayed outstanding OER activity in 1.0 M KOH electrolyte with
lower overpotential (296 mV at 50 mA·cm−2) and remarkable durability. Comprehensive analysis
shows that reinforcement of the catalytic function is due to the synergistic effect between Ni(OH)2

and MoS2, which can provide more highly active sites for the catalyst. This also provides a reliable
strategy for the application of heterogeneous interface engineering in energy catalysis.

Keywords: oxygen evolution reaction; solvothermal; Ni(OH)2/MoS2; heterostructures; synergistic
effect; electrocatalyst

1. Introduction

The increasing use of energy consumption and serious environmental pollution have
forced us to look for renewable energy [1,2]. Hydrogen is considered a promising energy
source because of its low cost, sustainability and high energy density [3,4]. Currently, hydro-
gen production by electrolysis of water is considered to be the most efficient method [5,6].
The water splitting process can be divided into two reactions: oxygen evolution reaction
(OER) and hydrogen evolution reaction [7,8]. However, the OER involves four electron and
proton transfer processes, more energy needs to be expended than HER [9,10]. In general,
catalysts can effectively lower the energy barrier required for the reaction [11]. For example,
Pt-based catalysts, Ir-based catalysts and other noble metal catalysts have excellent catalytic
activity. Nevertheless, noble metal catalysts are expensive due to their limited reserves
on the Earth, which restrict their large-scale commercial applications [12,13]. Therefore,
there is a need to develop highly active, inexpensive, durable and stable metal-based
catalysts [14,15].

Transition metal hydroxides have the advantages of simple synthesis, low production
cost and excellent electrochemical performance [16,17]. Nickel hydroxides are considered
to be a good catalyst for water electrolysis [18]. However, the poor electronic conductivity
and slow ion transfer rate of single transition metal hydroxides hinder further performance
optimization [19,20]. Transition metal dihalide (MX2, M stands for transition metal, X
stands for chalcogenides S, Te or Se) have attracted enormous attention due to their high
electrochemical performance [21]. MoS2 is deemed to a promising non-noble metal cata-
lyst [22,23]. MoS2 possess a lamellar configuration with feeble interlayer van der Waals
forces [24]. At present, MoS2 is widely used as an electrocatalyst for hydrogen production
because of its excellent HER performance [25]. Theoretical calculation shows that the MoS2
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active sites for HER are at the edge [26]. A large number of unsaturated sulfur atoms at the
edge can easily adsorb H, generating hydrogen on the surface of MoS2 [21,27]. Similarly,
the OER active center of MoS2 is also located at the edge [28]. It has been reported that
MoS2 can be used to enhance the OER activity through heteroatom-doping, changing the
electronic structure, and constructing a hetero-cooperative interface [6,29–31]. Moreover,
the intrinsic conductivity and surface electronic structure of electrocatalysts determine the
level of electrochemical activity [32]. In general, the heterostructures formed can adjust
their electronic configuration and thus improve electrical conductivity [19–23,33,34].

Based on the above understandings, in this paper, a Ni(OH)2/MoS2/NF composite
electrode was constructed using the two-step hydrothermal and solvothermal methods
for OER. The 50 and 100 mA·cm−2 current density correspond to the 296 and 314 mV
overpotential. The prominent electrochemical function comes from the self-supporting
effect of NF and the synergistic effect of the formed heterostructures. It provides an idea for
the subsequent preparation of non-noble metal catalysts with heterostructures structures
for OER.

2. Results

Here, the Ni(OH)2/MoS2/NF composite electrode was fabricated using the two-step
hydrothermal/solvothermal method, as shown in Figure 1. Ni(OH)2 three dimensional
arrays were anchored on NF by simple hydrothermal method. Further, the MoS2 substance
was grown on Ni(OH)2 nanosheets through the secondary solvothermal process. The
specific experimental process can be seen in the Supplementary Materials. The Ni(OH)2
nanosheets were grown directly on the NF, avoiding use of binders and providing more
active area. Additionally, the Ni(OH)2 nanosheets are overlapped, providing more load
position for the granular MoS2 [35]. The heterostructures can not only enhance the catalytic
activity of the catalyst by electron transfer between different components, but also increase
the number of active centers [36,37]. The XRD measurement peaks of the powders collected
in the first step belonged to Ni(OH)2 powders, corresponding to JCPDS NO. 38-0715
(Figure S1), indicating that Ni(OH)2 was successfully prepared. The XRD measurement
peaks of the powders collected in the second step belonged to the MoS2 phase. The peak at
(002) is significantly shifted compared to the standard card, probably because of a small
change in the interlayer spacing [29].
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Figure 1. Schematic illustration of the synthesis.

The microstructure of the electrode was investigated by scanning electron microscopy
(SEM) and transmission electron microscopy (TEM). NFs are interconnected three-
dimensional network structures and have a smooth surface (Figure S3). Ni(OH)2/NF
exhibits a layer-by-layer stack of thin nanosheet structures (Figure S4). The MoS2/NF
electrode exhibits flower-like structure assembled by uniformly distributed nanosheets
(Figure S5). Figure 2a and Figure S6 show that the Ni(OH)2/MoS2/NF composite elec-
trode has the structure of Ni(OH)2 and MoS2, which can preliminarily determine the
required composite electrode. Apparently, the small MoS2 assemblies grows on the large
two-dimensional Ni(OH)2 lamellar structure, which can provide many composite inter-
faces and thus enhance the synergistic effect of the heterostructure [38,39]. We can adjust
the proportion of components to prepare catalytic samples with different proportions
(Figure S7). Figure 2b exhibits the TEM image of Ni(OH)2/MoS2/NF. Ni(OH)2 is a lami-
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nated structure and MoS2 assemblies are covered on the nanosheets. It can be measured
from Figure 2c that the lattice spacing of 0.405 nm and 0.610 nm correspond to the (006)
crystal face of Ni(OH)2 and (002) crystal face of MoS2, respectively. The results further
prove that we have obtained the electrode with heterogeneous Ni(OH)2 and MoS2 structure.
Figure 3 is an elemental mapping images of duan electrode, in which Ni, Mo, S and O
elements are evenly distributed in the composite structure. Meanwhile, combing the SEM
image and TEM image, successful preparation of integrated electrodes was demonstrated.
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Figure 2. (a) SEM image, (b) TEM image, (c) HR-TEM image of the Ni(OH)2/MoS2/NF electrocatalysts.

The OER performance of composite electrodes was tested. Simultaneously, the cat-
alytic ability of Ni(OH)2/NF, MoS2/NF and bare NF were contrasted (see Supplementary
Materials for details). The polarization curve results show that the dual Ni(OH)2/MoS2/NF
electrode has the best OER catalytic activity contrasted with other comparative electrodes
(Figure 4a). Figure 4b shows that the overpotential of each electrode at 50 and 100 mA·cm−2

current outputs. Generally speaking, the lower the overpotential, the better the cat-
alytic performance [36]. Compared with the individual Ni(OH)2 or MoS2 catalyst, the
Ni(OH)2/MoS2/NF exhibits the smallest overpotentials (296 mV at 50 mA·cm−2 current
output, 314 mV at 100 mA·cm−2). Furthermore, the overpotential is smaller in contrast
with many reported water oxidation electrocatalysts, such as Ti@NiCo2O4 (353 mV at
10 mA·cm−2), CoCr LDH (340 mV at 10 mA·cm−2) and Ni/NiO (470 mV at 10 mA·cm−2),
for details see Supplementary Table S1 and Figure 5.
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Figure 4. (a) The iR-corrected polarization curves (b) a comparison of the corresponding over-
potentials at 50 mA·cm−2 and 100 mA·cm−2 current outputs, (c) the electrochemical impedance
spectroscopy (d) corresponding Tafel plot of the Ni(OH)2/MoS2/NF, MoS2/NF, Ni(OH)2/NF and
bare NF electrodes.



Catalysts 2022, 12, 966 5 of 11

Catalysts 2022, 12, x FOR PEER REVIEW 5 of 11 
 

 

Electrochemical impedance spectroscopy (EIS) can describe the interface properties 
between electrode and the electrolyte, and it is a powerful means to indicate interfacial 
charge transfer. The size of the arc in the EIS is related to the electrode surface charge 
transfer resistance. The small arc radius in the EIS represents the small charge transfer 
resistance of the catalytic electrode, and also represents the fast dynamic response [40,41]. 
As show in Figure 4c, the arc size of the dual electrode is smallest, indicating its robust 
catalytic reaction kinetics. The small Tafel slope means a favorable electron transfer rate 
and a faster water oxidation rate [42]. As shown in Figure 4d, the Ni(OH)2/MoS2/NF pos-
sesses the smallest Tafel slope (63 mV·dec−1), indicating the robust catalytic kinetics of wa-
ter oxidation [43]. 

 
Figure 5. The comparison of OER performance for some representative non-noble electrocatalysts. 

Stability is an indicator of whether the catalyst can be used commercially on a large 
scale [44]. The stability of the composite electrode was tested using multi-step potential 
and multi-step current methods, as shown in Figure 6a,b, the Ni(OH)2/MoS2/NF has ex-
cellent stability. Cyclic voltammetry (CV) is an important standard to verify the durabil-
ity. Figure 6c depicts the polarization curves before and after 500 CV cycles. It can be seen 
that the polarization curve does not change significantly. The EIS spectra in Figure 6d also 
exhibit the same result, indicating that the catalytic electrode has excellent stability. In the 
meantime, the chronoamperometric test was performed on the composite electrode. After 
15 h of operation at constant potential, the composite electrode did not appear to have 
obvious decay (Figure S8). We studied the morphology and structure of the electrode be-
fore and after the test, and the morphology and electronic structure of the electrode can 
be maintained well after a long time running (Figures S9 and S10). 

Figure 5. The comparison of OER performance for some representative non-noble electrocatalysts.

Electrochemical impedance spectroscopy (EIS) can describe the interface properties
between electrode and the electrolyte, and it is a powerful means to indicate interfacial
charge transfer. The size of the arc in the EIS is related to the electrode surface charge
transfer resistance. The small arc radius in the EIS represents the small charge transfer
resistance of the catalytic electrode, and also represents the fast dynamic response [40,41].
As show in Figure 4c, the arc size of the dual electrode is smallest, indicating its robust
catalytic reaction kinetics. The small Tafel slope means a favorable electron transfer rate
and a faster water oxidation rate [42]. As shown in Figure 4d, the Ni(OH)2/MoS2/NF
possesses the smallest Tafel slope (63 mV·dec−1), indicating the robust catalytic kinetics of
water oxidation [43].

Stability is an indicator of whether the catalyst can be used commercially on a large
scale [44]. The stability of the composite electrode was tested using multi-step potential
and multi-step current methods, as shown in Figure 6a,b, the Ni(OH)2/MoS2/NF has
excellent stability. Cyclic voltammetry (CV) is an important standard to verify the durability.
Figure 6c depicts the polarization curves before and after 500 CV cycles. It can be seen
that the polarization curve does not change significantly. The EIS spectra in Figure 6d also
exhibit the same result, indicating that the catalytic electrode has excellent stability. In
the meantime, the chronoamperometric test was performed on the composite electrode.
After 15 h of operation at constant potential, the composite electrode did not appear to
have obvious decay (Figure S8). We studied the morphology and structure of the electrode
before and after the test, and the morphology and electronic structure of the electrode can
be maintained well after a long time running (Figures S9 and S10).
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impedance spectra of Ni(OH)2/MoS2/NF electrode before and after 500 cycles of cyclic voltammetry.

3. Discussion

The element valence states were analyzed using X-ray photoelectron spectroscopy
(Figure S11). To ulteriorly comprehend the reason of activity enhancement, the XPS spectra
of single component and composite electrodes were compared, as shown in Figure 7. In
the XPS spectrum of Ni 2p, there are two main peaks (855.4 and 873 eV), corresponding to
Ni 2p3/2 and Ni 2p1/2 of Ni2+ (Figure S11b) [45]. This result further confirms the existence
of Ni(OH)2 [46]. Moreover, compared with the Ni(OH)2 electrode, the peaks of Ni 2p3/2
and Ni 2p1/2 in composite electrode are shifted to higher energy. Figure 7b is the XPS
spectrum of Mo 3d. The peak at 232.56 eV is Mo 3d3/2 orbital. The peak at 234.84 eV is
assigned to Mo6+ (Figure S11c) [47]. Comparing the Mo 3d of MoS2/NF and the combined
electrode, it can be seen that the peak of Mo 3d3/2 has shifted to a lower energy. The phe-
nomenon of peak shift indicates that the electron density of Ni and Mo ions has changed,
and electron transfer has occurred in Ni(OH)2/MoS2/NF electrode [48]. According to the
change of electron density, we can preliminarily determine that part of electron transfer
from Ni(OH)2 to MoS2 occurred at the interface of the composite electrode [49]. The repre-
sentative peaks (160.92 eV and 162.03 eV) correspond to S 2p3/2 and S 2p1/2. The nearby
peak at 163.00 eV is S2

2−, indicating the existence of MoS2. More importantly, the peak
(168.90 eV) proves the existence of the S-Ni bond. [50]. This result strongly suggests an inter-
face between Ni(OH)2 and MoS2. The C 1s and O 1s peaks in the composite electrode were
also analyzed and the results were presented in the Supplementary Material (Figure S11e,f).
These results all indicate electron redistribution at the interface of the catalytic electrode,
which can effectively expedite the rate of the reaction process and achieve higher catalytic
activity. Furthermore, the electrochemical active area was measured (Figure S12). It was
found that the Ni(OH)2/MoS2/NF composite electrode has a larger active area than the
Ni(OH)2 electrode.
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4. Materials and Methods
4.1. Materials

Nickel nitrate hexahydrate (Ni(NO3)2·6H2O), urea (CO(NH2)2) and ammonium flu-
oride (NH4F) were purchased from Tianjin Damao Chemical Reagent Factory (Tianjin,
China). Ammonium tetrathiomolybdate ((NH4)2MoS4) and DMF were purchased from
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Nickel foam (NF) was used
as the substrate. The thickness of the NF is about 1 mm. NF was firstly washed with HCl
solution under ultrasonic, ethanol and water several times to remove the surface impurities.
All the chemicals were used without further purification.

4.2. Materials Synthesis

Synthesis of Ni(OH)2/NF. An aqueous solution (25 mL) containing 1.5 mmol
(0.436 g) Ni(NO3)·6H2O, 7.5 mmol (0.455 g) CO(NH2)2 and 4 mmol (0.148 g) NH4F was
treated with ultrasound to accelerate dissolution. Then, the solution was encapsulated
into the 50 mL PTFE-lined stainless steel reactor, and the pre-treated Ni foam was placed
against the inner wall of the reactor. The reaction temperature and time were set as 120 ◦C
and 4 h, respectively. At the end of the reaction, the nickel substrate was cleaned and dried.
Powder samples from the bottom of the reactor were also collected.

Synthesis of Ni(OH)2/MoS2/NF. An amount of 0.021 g (NH4)2MoS4 and 35 mL DMF
were added into a 50 mL PTFE-lined stainless steel reactor. Then, Ni(OH)2/NF was placed
against the inner wall of the reactor. The reaction temperature and time were set as 200◦C
and 10 h, respectively. The MoS2/NF electrode was prepared by the similar method. When
the quantity of (NH4)2MoS4 was set to 0.013 g and 0.030 g, the obtained samples were
labeled as Ni(OH)2/MoS2/NF-13 and Ni(OH)2/MoS2/NF-30.

4.3. Materials Characterizations

XRD pattern measurements were performed using a Bruker D8 X-ray diffractome-
ter (Bruker AXS GmbH, Karlsruhe, Germany) using Cu Kα radiation (40 kV, 30 mA,
λ = 1.5406 Å). The SEM images were collected on JSM-7610F (JEOL, Tokyo, Japan) scanning
electron microscope at 10 kV. TEM and HRTEM images were performed using a JEM-F200
(JEOL, Tokyo, Japan) microscope. XPS measurements were performed using the Axis Ultra
DLD (Kratos, Stretford, UK) X-ray photoelectron spectrometer.

4.4. Electrochemical Characterizations

Electrochemical tests were all acquired on a CHI-660E electrochemical workstation
(CHI Instruments, Shanghai, China) using a standard three-electrode system. Ni(OH)2/
MoS2/NF electrodes, carbon rods and a Hg/HgO electrode served as work electrodes,
counter electrode and reference electrode, respectively. The electrolyte was 1.0 M KOH. The
linear sweep voltammetry (LSV) curve was scanned at a rate of 10 mV/s and calibrated
using iR correction. The measurement frequency range for electrochemical impedance spec-
troscopy (EIS) was 0.1 to 105 Hz. The Overpotential η (mV) = ((E vs. RHE) − 1.23) × 1000.
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The potential was converted to the potential versus the reversible hydrogen electrode (RHE)
using the relationship, ERHE = EHg/HgO + E0

Hg/HgO + 0.059 pH. E0
Hg/HgO = 0.098V (25 ◦C).

5. Conclusions

In summary, we constructed a Ni(OH)2/MoS2/NF composite electrode with het-
erostructures using two-step hydrothermal/solvothermal methods. The Ni(OH)2/MoS2/
NF electrode displayed excellent oxygen evolution reaction performance. The Ni(OH)2/
MoS2/NF possesses lower overpotential (296 mV at 50 mA·cm−2) and Tafel slope
(63 mV·dec−1). The good OER performance is ascribed to the synergistic effect of composite
interface, which accelerates the electron transport and increases the OER rate of the water
splitting process. The method can be applied to other interface engineering to design OER
catalytic electrodes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12090966/s1, Figure S1. The XRD pattern of Ni(OH)2 pow-
der. Figure S2. The XRD pattern of MoS2 powder. Figure S3. High resolution scanning electron
microscopy with NF at different magnifications. Figure S4. High resolution scanning electron
microscopy of Ni(OH)2/NF at different magnifications. Figure S5. High resolution scanning elec-
tron microscopy of MoS2/NF at different magnifications. Figure S6. High resolution scanning
electron microscopy of Ni(OH)2/MoS2/NF at different magnifications. Figure S7. Scanning elec-
tron microscopy images of (a) Ni(OH)2/MoS2/NF-13 and (b) Ni(OH)2/MoS2/NF-30 electrodes.
Figure S8. The chronoamperometry measurement of Ni(OH)2/MoS2/NF composite electrodes.
Figure S9. High-resolution XPS (a) Ni 2p, (b) Mo 3d, (c) S 2p and (d) O 1s of Ni(OH)2/MoS2/NF
electrode before and after long-time stability test. Figure S10. The SEM image of Ni(OH)2/MoS2/NF
electrode after long-time stability test. Figure S11. (a) XPS survey spectra, (b) Ni 2p, (c) Mo 3d,
(d) S 2p, (e) C 1s and (f) O 1s of Ni(OH)2/MoS2/NF electrode. Figure S12. CV curves of the (a)
Ni(OH)2/NF and (b) Ni(OH)2/MoS2/NF electrodes measured at different scan rates from 20 to
100 mV s−1 in a potential window without faradaic processes. (c) Plots of the current density vs.
the scan rates for Ni(OH)2/NF and Ni(OH)2/MoS2/NF electrodes. Table S1. Comparison of OER
performance of Ni(OH)2/MoS2/NF catalyst with other reports. References [51–62] are cited in the
Supplementary Materials.
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