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Abstract: The effect of HClO4 on the reactivity and selectivity of the catalyst systems 1,2/H2O2/AcOH,
based on nonheme iron complexes of the PDP families, [(Me2OMePDP)FeIII(µ-OH)2FeIII(MeOMe2PDP)](OTf)4

(1) and [(NMe2PDP)FeIII(µ-OH)2FeIII(NMe2PDP](OTf)4 (2), toward oxidation of benzylideneacetone
(bna), adamantane (ada), and (3aR)-(+)-sclareolide (S) has been studied. Adding HClO4 (2–10 equiv.
vs. Fe) has been found to result in the simultaneous improvement of the observed catalytic efficiency
(i.e., product yields) and the oxidation regio- or enantioselectivity. At the same time, HClO4 causes a
threefold increase of the second-order rate constant for the reaction of the key oxygen-transferring
intermediate [(Me2OMePDP)FeV=O(OAc)]2+ (1a), with cyclohexane at −70 ◦C. The effect of strong
Brønsted acid on the catalytic reactivity is discussed in terms of the reversible protonation of the
Fe=O moiety of the parent perferryl intermediates.

Keywords: C-H activation; oxidation; iron; intermediate; mechanism; non-heme

1. Introduction

High-valent iron-oxo complexes are generally accepted to be the key intermediates of
metalloenzyme-mediated oxidations in living nature, as well as in some bioinspired model
catalyst systems based on iron complexes and hydrogen peroxide [1–22].

For nonheme, iron-containing enzymes, both iron(IV)- and iron(V)-oxo species have
been proposed as active intermediates [11–23]. However, while the involvement of the
iron(IV)-oxo intermediates in enzymatic oxidations is firmly established, there are still no
experimental data witnessing the participation of the nonheme iron(V)-oxo intermediates
in these oxidations [18,19].

In contrast to enzymatic systems, for model nonheme iron-based systems, there
have been several examples of spectroscopically characterized iron(V)-oxo intermediates
relevant to catalytic transformations (Figure 1) [24–33]. The comparison of the reactivities of
nonheme FeIV=O and FeV=O species bearing the same macrocyclic ligand bTAML (Figure 1)
has shown that even after correcting for the pH difference, the second-order rate constant
for benzyl alcohol oxidation by Fe(V)=O at pH 7 is 2500 times higher than that for Fe(IV)=O
at pH = 12 [34]. The reactivity studies of FeV=O and FeIV=O species supported by the same
tetradentate N-donor PyNMe3 ligand (Figure 1) have shown that FeV=O accomplishes
hydrogen atom transfer (HAT) from C-H groups 4 to 5 orders of magnitude faster than
FeIV=O [35].

It was established that Brønsted and Lewis acids are able to enhance the oxidizing
power of nonheme FeIV=O complexes [36–44]. It was also shown that acids trigger O-O
bond heterolysis of nonheme FeIII(OOH) precursor species to facilitate the formation of the
active intermediates capable of hydroxylating strong C-H bonds [45,46]. However, those
intermediates (presumably FeV=O) have not been observed spectroscopically.

It was shown previously that the catalyst system 1/H2O2/AcOH, where 1 is the
[(Me2OMePDP)FeIII(µ-OH)2FeIII(MeOMe2PDP)](OTf)4 complex (Me2OMePDP is 3,5-Me2,4-OMe
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substituted (S,S)-PDP ligand) and AA is acetic acid, exhibits the oxoiron(V) intermediate
1a (g1 = 2.07, g2 = 2.01, g3 = 1.96) [47]. This intermediate can be assigned to the low-spin
[(Me2OMePDP)FeV=O(OAc)]2+ species on the basis of the identity of its EPR spectrum to that of
the FeV=O intermediate observed in the catalyst system [(MeO-PyNMe3)FeII(CF3SO3)2]/CPCA
(CPCA-cyclohexyl peroxycarboxylic acid) (Figure 1). The assignment of the FeV oxidation
state of the latter intermediate was supported by Mössbauer spectroscopy [32]. In the figure
above, 1a directly oxidizes alkenes [47], alkanes [48] and arenes [49] at −70 ◦C.

The system 2/H2O2/AA (2 is [(NMe2PDP)FeIII(µ-OH)2FeIII(NMe2PDP](OTf)4, complex
(NMe2PDP is 4-NMe2 substituted (S,S)-PDP ligand) displays the EPR spectrum of the high-
spin intermediate 2a (g1 = 4.30, g2 = 3.69, g3 = 1.96). In the figure above, 2a, which reacts
with cyclohexene and cyclohexane at −40 ◦C, has been assigned to the high-spin (S = 3/2)
oxoiron(V) species [(NMe2PDP)FeV=O(OAc)]2+ (Figure 1) [50–52].
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As was shown previously [47], the putative oxoiron(V) intermediate 
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([1] = 0.02 M) at low temperature (Figure 3a). 

Figure 1. Spectroscopically characterized oxoiron(V) complexes [24,26,31,32,47,51].

In this work, we scrutinized the effect of Brønsted acid (HClO4) on the oxidation
of C=C and C-H groups of various organic substrates (Figure 2) by the catalyst systems
1/H2O2/AA and 2/H2O2/AA. The observed correlations between the stability and reactiv-
ity of 1a and 2a and the chemo-, regio-, and stereoselectivities of the corresponding catalyst
systems are discussed.
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2. Results
2.1. Effect of HClO4 on the Catalyst Systems 1/H2O2/AA and 2/H2O2/AA: EPR Data

As was shown previously [47], the putative oxoiron(V) intermediate
[(Me2OMePDP)FeV=O(OAc)]2+ (1a) can be detected by EPR in the catalyst system 1/H2O2/AA
([1] = 0.02 M) at low temperature (Figure 3a).

The intermediate 1a is unstable and decays with the first-order rate constant
k1 = (1.8 ± 0.2) × 10−3 s−1 at −70 ◦C. This decay of 1a is accelerated by the addition of
cyclohexane. The corresponding second-order rate constant k2 for the reaction of 1a with
cyclohexane at −70 ◦C is (2 ± 0.4) × 10−3 M−1 s−1 [48]. Adding 2 equiv. (vs. Fe) of HClO4
to the catalyst system 1/H2O2/AA at −70 ◦C reduces the stability of 1a, resulting in a
threefold increase of the rate constant of 1a self-decay (k1 = (6 ± 0.5) × 10−3 s−1). It is
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worth noting that, while affecting the stability of 1a, adding HClO4 does not visibly change
the parameters of its EPR spectrum, which is evidence that HClO4 does not interfere with
the first coordination sphere of the central atom. Adding 5 equiv. (vs. Fe) of HClO4 to the
catalyst system 1/AcOOH/AA/C6H12 (1:3:10:10) at −70 ◦C increases by factor of 2.5 the
second-order rate constant k2 of the reaction of 1a with cyclohexane, demonstrating the
positive effect of HClO4 on the C-H oxidation reactivity of 1a.
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Figure 3. EPR spectrum (−196 ◦C) of the catalyst system 1/H2O2/AA = 1:3:5 ([1] = 0.02 M) in a
CH2Cl2/CH3CN (1.8:1 v/v) mixture recorded 3 min after mixing the reagents at −75 ◦C (a). EPR
spectrum (−196 ◦C) of the sample 1/H2O2//HClO4 = 1:3:2 ([1] = 0.02 M) in a CH2Cl2/CH3CN
(1.8:1 v/v) mixture recorded 6 min after mixing the reagents at −40 ◦C (b). The signals denoted by
symbol 1b belongs to the stable ferric complex [(Me2OMePDP)FeIII(OAc)]2+.

The catalyst system 1/H2O2/HClO4 = 1:3:2, containing no acetic acid, exhibits a novel
intermediate 1x. The EPR spectrum of 1x (g1 = 2.26, g2 = 2.04, g3 = 1.83, Figure 3b) markedly
differs from that of 1a (g1 = 2.07, g2 = 2.01, g3 = 1.96, Figure 3a). The intermediate 1x is more
stable than 1a and decays with the self-decay rate constant emphk = (1 ± 0.2) × 10−3 s−1

only at −40 ◦C, while 1a decays with a comparable rate at −70 ◦C [48]. The EPR pa-
rameters of 1x (g1 = 2.26, g2 = 2.04, g3 = 1.83) are rather close to those of activated
bleomycin (g1 = 2.26, g2 = 2.17, g3 = 1.94) [49], which is a well-established ferric hydroper-
oxo complex. The intermediate 1x could be assigned to a ferric hydroperoxo complex
[(Me2OMePDP)FeIII(OOH)(CH3CN)]2+; In the presence of acetic acid, 1x would rapidly
exchange its CH3CN with AcO− and further give 1a. In agreement with its ferric hy-
droperoxo nature, 1x is inert toward cyclohexane at −40 ◦C (whereas 1a reacts with this
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substrate even at −70 ◦C). These data suggest that additives of HClO4 can affect the
catalytic properties of the system 1/H2O2/AA by enhancing the reactivity of the oxidiz-
ing intermediate [(Me2OMePDP)FeV=O(OAc)]2+ (1a). The contribution of the intermediate
[(Me2OMePDP)FeIII(OOH)(CH3CN)]2+ (1x) to the catalytic reaction should not be significant,
since 1x cannot compete with 1a in aliphatic C-H oxidations.

Attempts to detect reactive iron-oxygen intermediates in the catalyst system 2/H2O2/HClO4
using EPR spectroscopy were unsuccessful, whereas intermediate 2a could be readily ob-
served in the catalyst system 2/H2O2/AA at −40 ◦C [53,54]. Previously, it was established
that the active species of the catalyst system 2/H2O2/AA = 1:3:10 was the high-spin
(S = 3/2) iron-oxygen intermediate with a proposed structure [(NMe2PDP)FeV=O(OAc)]2+

(2a) (g1 = 4.36, g2 = 3.69, g3 = 1.96) (Figure 4a) [50–54]. The intermediate 2a decays with
the rate constant k = (2 ± 0.2) × 10−3 s−1 at −40 ◦C [52]. Like in the case of 1a, the
presence of HClO4 does not alter the EPR spectrum of 2a (Figure 4b). However, adding
HClO4 (2 equiv. vs. Fe) accelerates the self-decay of 2a (k = (5 ± 0.5) × 10−3 s−1 at −40 ◦C,
([HClO4] = 0.08 M). The high-spin intermediate 2a is less reactive toward C=C and C-H
groups than the low-spin intermediate 1a: while 1a reacts with cyclohexene and cyclo-
hexane at −70 ◦C [48], 2a displays comparable reactivity toward these substrates only at
−40 ◦C [52,53].
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Figure 4. EPR spectrum (−196 ◦C) of the catalyst system 2/H2O2/AA = 1:3:10 ([2] = 0.02 M) in a
1:1.8 CH3CN/CH2Cl2 mixture, recorded 1.5 min after mixing the reagents at −75 ◦C (a). EPR
spectrum (−196 ◦C) of the sample in “a,” recorded 1.5 min after the addition of 2 equiv. of HClO4 (b).

2.2. Enantioselective Oxidation of Benzylideneacetone by the Catalyst Systems 1/H2O2/AA
and 2/H2O2/AA

The catalyst systems 1/H2O2/HClO4, 1/H2O2/AA, and 1/H2O2/AA/HClO4 have
been compared in the enantioselective oxidation of benzylideneacetone (bna) (Table 1). It
can be seen that the enantioselectivities of these catalyst systems are rather close (34–36% ee,
entries 1–3, Table 1). This result has been rather unexpected because different intermediates
were detected in the catalyst systems 1/H2O2/HClO4 and 1/H2O2/AA (1x and 1a, respec-
tively). Apparently, 1x rapidly converts into the intermediate [(Me2OMePDP)FeV=O(S)]2+

(1a′, where S = CH3CN or H2O) under the conditions of the catalytic experiment (0 ◦C). We
believe that intermediates [(Me2OMePDP)FeV=O(OAc)]2+ (1a) and 1a′ have close structures
and therefore, should display close epoxide yields and enantioselectivities in bna oxidation
(Table 1).

It is worth noting that the yield of the oxidation product is reasonably higher for the
1/H2O2/AA/HClO4 system than for the systems 1/H2O2/HClO4 and 1/H2O2/AA (89%
vs. 52–61%, entries 1 and 2 vs. entry 3, Table 1). The likely reason of this difference is the
HClO4-induced reactivity enhancement of the intermediate 1a, operating in the system
1/H2O2/AA/HClO4.
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Table 1. The effect of HClO4 on the asymmetric epoxidation of benzylideneacetone with H2O2 in the
presence of complexes 1 and 2 a.
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Entry Catalyst Carboxylic Acid Strong Acid Epoxide Yield (%) ee (%)

1 1 — HClO4 52 34
2 1 AA — 61 35
3 1 AA HClO4 89 36
4 1 EHA — 44 63
5 1 EHA HClO4 13 66
6 2 — HClO4 12 46

7 b 2 AA — 11 59
8 2 AA HClO4 5 51
9 2 EHA — 58 85

10 2 EHA HClO4 2 — c

a At 0 ◦C, [catalyst]:[substrate]:[H2O2]:[acetic acid]:[HClO4] = 1 µmol:100 µmol:200 µmol:55 µmol:10 µmol; oxidant
was added by a syringe pump over 30 min, and the mixture was stirred for an additional 2.5 h, followed by NMR
and HPLC analysis. b From ref. [54]. c Not measured.

Replacing acetic acid with 2-ethylhexanoic acid (EHA) leads to a larger difference
between the enantioselectivities of the systems 1/H2O2/HClO4 and 1/H2O2/EHA/(HClO4)
(Table 1, entries 4 and 5 vs. 1), thus clearly witnessing that carboxylic acid is present in the
structure of the active perferryl species at the step of enantioselective oxygen transfer in
both systems (1/H2O2/EHA and 1/H2O2/EHA/HClO4). The unexpectedly low epoxide
yield in the latter case (Table 1, entry 5) may reflect the possibility that the effect of HClO4 on
the intermediate [(Me2OMePDP)FeV=O(OC(O)C7H15)]2+ (1aEHA) [55] is more destabilizing
than activating towards selective epoxidation, thus resulting in rapid catalyst degradation
after only a few catalytic turnovers.

The epoxide yield in the catalyst system 2/H2O2/AA/bna is much lower than that in
the catalyst system 1/H2O2/AA/bna (11% vs. 61%, entry 7, Table 1 vs. entry 2, Table 1),
which most likely reflects a higher contribution of unproductive H2O2 decomposition in
the case of 2/H2O2/AA/bna, operating via the less reactive intermediate 2a. The lower
reactivity of 2a compared to 1a is in line with the higher bna epoxidation enantioselectivity
of the system 2/H2O2/AA, compared to the 1/H2O2/AA system (59% ee vs. 35% ee,
entry 7, Table 1 vs. entry 2, Table 1). Adding HClO4 deteriorates the bna epoxidation
enantioselectivity (from 59% to 51% ee) and reduces the epoxide yield (cf. entry 8 vs. 7,
Table 1) at the same time. If one uses EHA instead of AA, the drop of the epoxide yield is
more pronounced (from 58% to only 2%, cf. entry 10 vs. 9, Table 1). This negative effect is
even more significant than in the system 1/H2O2/EHA/(HClO4)/bna (cf. entries 4 and 5
of Table 1).

Overall, adding HClO4 (2 equiv. vs. Fe) to the system 1/H2O2/AA/bna has been
shown to improve the epoxide yield and at the same time, the epoxidation enantioselectivity,
whereas for the system 2/H2O2/AA/bna, this trend is not the case.

2.3. Regioselective Oxidation of Adamantane by the Catalyst Systems 1/H2O2/AA and 2/H2O2/AA

The systems discussed in the previous section have been compared in the regiose-
lective oxidation of adamantane (ada) (Table 2). Like with bna epoxidation, the system
1/H2O2/AA/HClO4 demonstrates higher conversion in ada oxidation than the systems
1/H2O2/AA and 1/H2O2/HClO4 (72.1% vs. 59.2 and 17.5%, entry 3 vs. entries 2 and
1, Table 2). Noticeably, the adamantane oxidation regioselectivity (reflected by normal-
ized 3◦/2◦ ratio) is higher for the catalyst systems 1/H2O2/AA and 1/H2O2/AA/HClO4
(40–42 vs. 18, entries 3 and 2 vs. entry 1, Table 2), which behavior is similar to the pro-
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gressive bna epoxidation enantioselectivity enhancement when passing from the system
1/H2O2/HClO4 to 1/H2O2/AA and further to 1/H2O2/AA/HClO4 (Table 1).

Table 2. The effect of HClO4 on the regioselective oxidation of adamantane with H2O2 in the presence
of complexes 1 and 2 a.
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Entry Catalyst Carboxylic
Acid
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Acid

Conversion
(%)

1-ol:2-ol:2-
one 3◦/2◦ b

1 1 — HClO4 17.5 15.0:1.8:0.7 18.0
2 c 1 AA — 59.2 55.1:1.7:2.4 40.0
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followed by GC analysis. b 3◦/2◦ = 3 × [1-adamantanol]/([2-adamantanol] + [2-adamantanone]). c From ref. [53].

The catalyst system 2/H2O2/HClO4 oxidizes adamantane with low conversion (9.8%,
entry 4, Table 2), much lower than for the system 2/H2O2/AA (48.4%, entry 5, Table 2).
Like for the system 1/H2O2/AA (cf. Table 2), adding HClO4 to the 2/H2O2/AA noticeably
improves the conversion of adamantane oxidation (from 48.4% to 57.9%, entries 5 and
6, Table 2). The oxidation regioselectivity (3◦/2◦ ratio) also increases when passing from
the system 2/H2O2/HClO4 (3◦/2◦ = 14.3) to the system 2/H2O2/AA (3◦/2◦ = 25.4) and
further to 2/H2O2/AA/HClO4 (3◦/2◦ = 38.8) (entries 4–6, Table 2).

In fact, the above data demonstrate that HClO4 positively affects both the C-H oxidation
regioselectivity and the product yield in the systems 1 or 2/H2O2/AA/HClO4/adamantane
(Table 2), which holds considerable practical promise. Interestingly, this increase of regios-
electivity is accompanied by the reactivity enhancement of the corresponding perferryl
intermediates towards C-H oxidation (of cyclohexane, see Section 2.1). Even though it
seems counterintuitive, this apparent violation of the “reactivity-selectivity” principle in
C-H oxidation is not unusual for catalyst systems based on biomimetic catalysts of the
Fe(PDP) family [50,51,53].

2.4. Chemo- and Regioselective Oxidation of (+)-Sclareolide by the Catalyst Systems 1/H2O2/AA
and 2/H2O2/AA

Previously, (3aR)-(+)-sclareolide (S) was identified as, so far, the only substrate for
which a uniform reactivity-selectivity correlation in C-H hydroxylations, mediated by
iron-based catalysts of the Fe(PDP) family, has been documented [50,51]. The structures of
the previously identified products of S oxidation are shown in Figure 5.

To probe the effect of HClO4 on the chemo- and regioselectivity of the catalyst sys-
tems 1/H2O2 and 1/H2O2/AA in the oxidation of S, the following conditions were used:
1/H2O2/HClO4/S = 1:350:6:300; 1/H2O2/AA/S = 1:350:250:300; and 1/H2O2/AA/HClO4/S
= 1:350:250:6:300. The results are shown in Table 3. The addition of HClO4 to the catalyst
system 1/H2O2/AA dramatically improves the conversion of S (from 20.6 to 50%, entries 2
and 3, Table 3), which is accompanied by an increase of C2 regioselectivity (from 50.9 to
56.5%, entries 2 and 3, Table 3). At the same time, the C2 hydroxylation chemoselectivity
decreases (cf. S2(eq)-OH/S2=O ratio drops from 1.57, entry 2, to 0.50, entry 3). Apparently,
this drop is caused simply by a more pronounced ketonization of the C2 methylenic group
at the much higher conversion. The catalyst system 1/H2O2/HClO4/S = 1:350:6:300 shows
poor conversion, which observation is similar to that for the system 1/H2O2/HClO4/ada
(cf. entry 1 of Table 2).
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Table 3. The effect of HClO4 on the product distribution of oxidation of (3aR)-(+)-sclareolide with
H2O2 in the presence of complexes 1 and 2.
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Conv
of S
(%)

Products Distribution (%) Regioseletivity (%)

S3=O S2=O S1=O S2(eq)-OH S3(eq)-OH S3(ax)-OH S1(eq)-OH S1(ax)-OH S7(eq)-OH S2(eq)-OH−3=O C1 C2 C3 C7

1 a 1 9.6 24.0 18.3 15.9 27.7 3.0 3.2 3.8 — 3.8 — 19.7 46.0 30.5 3.8
2 b 1 20.6 24.3 19.8 12.6 31.1 2.4 2.4 3.0 0.5 3.0 0.9 16.1 50.9 29.1 3.0
3 c 1 50 28.9 37.6 12.9 18.9 — 0.9 — — 0.8 — 12.9 56.5 29.8 0.8
4 d 2 9.4 19.1 10.6 4.3 53.2 3.2 3.2 2.1 1.0 3.3 — 7.4 63.8 25.5 3.3
5 e 2 29 30.3 24.8 7.7 34.8 — — — — 2.4 — 7.7 59.6 30.3 2.4

Reaction conditions: a 1/H2O2/HClO4/S = 1:350:6:300; b 1/H2O2/AA/S = 1:350:250:300; c 1/H2O2/AA/HClO4/S =
1:350:250:6:300; d 2/H2O2/AA/S = 1:350:250:300; e 2/H2O2/AA/HClO4/S = 2:350:250:6:300. Solvent CH3CN;
the oxidant was added by a syringe pump over 30 min at 0 ◦C, and the mixture was stirred for an additional 2.5 h
at 0 ◦C, followed by a workup and a NMR analysis.

The catalyst system 2/H2O2/AA/S = 1:350:250:300 demonstrates high regioselectivity
towards the C2-methylenic site of S (63.8%, entry 4, Table 3). However, in contrast to the
system 1/H2O2/AA/S (see above), adding HClO4 to the sample 2/H2O2/AA/HClO4/S =
1:350:250:6:300 results in a minor but noticeable drop of the C2 regioselectivity (59.6%,
entry 5, vs. 63.8%, entry 4 of Table 3). At the same time, the C3 selectivity increases by ca.
5 percent points. In the case of 1/H2O2/AA/S (see above), adding HClO4 significantly
improves the substrate conversion (29% vs. 9.4%, entries 5 and 4, Table 3).
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3. Discussion

It is particularly interesting to rationalize the molecular mechanism of the simul-
taneous positive effect of HClO4 on (1) the C-H oxidation reactivity, (2) product yield,
and (3) oxidation regioselectivity of nonheme catalyst systems based on Fe complexes
of the PDP family. Previously, it was established that Brønsted acids (such as HOTf and
HClO4) and Lewis acids (such as Sc3+) are able to enhance the oxidizing power of nonheme
FeIV=O complexes [36–44]. In some cases, this reactivity enhancement was discussed in
terms of acid-triggered O-O bond heterolysis of a nonheme FeIII(OOH) species, to facilitate
formation of the active intermediates capable of hydroxylating strong C-H bonds [45,46].
However, in our case, this explanation is unsuitable, since the addition of HClO4 to the
intentionally generated key perferryl intermediates [(Me2OMePDP)FeV=O(OAc)]2+ (1a) and
[(NMe2PDP)FeV=O(OAc)]2+ (2a) has been shown to increase their self-decay rates and
reactivity to cyclohexane (see Section 2.1).

Alternatively, it has been shown that strong acid (HOTf) can protonate the chelating
ligand of the nonheme complex [(TAML)FeV=O]− at remote positions, thus increasing
the electrophilicity of the nonheme iron(V) oxo complex and enhancing its reactivity in
oxygen transfer (OT) and electron transfer (ET) reactions [56]. Strictly speaking, accepting
such an explanation in our case would have left the question open, how the increased
electrophilicity (and hence reactivity) fits together with increased oxidation regio- and
enantioselectivity. Nevertheless, we have considered the hypothesis that HClO4 protonates
one of the remote NMe2 groups of the active species [(NMe2PDP)FeV=O(OAc)]2+ (2a), and
calculated the protonated state by DFT at the B3LYP/def2-TZVPP (for Fe)/6-311G(d) (for
other atoms) level of theory (see Supporting Information for details).

One can see that NMe2 mono-protonation is a moderately endergonic process
(Figure 6), which in principle, might account for the enhanced electrophilicity of
[(HNMe2PDP)FeV=O(OAc)]3+ (2aNH+). However, the calculated Gibbs energies suggest
that the equilibrium constant for its formation

Keq =

[(HNMe2PDP
)
FeV = O(OAc)3+

][
ClO−

4
][

(HNMe2PDP)FeV = O(OAc)2+
]
[HClO4]

(1)

should not exceed 1 × 10−2 (at T = 273 K), which apparently rules out significant contribu-
tion of 2aNH+ to the catalytic reaction. Furthermore, as mentioned above, this hypothesis
does not bring additional understanding to the selectivity enhancement upon protonation.

On the other hand, one could consider protonation of the terminal oxygen atom of
[(NMe2PDP)FeV=O(OAc)]2+ (2a) with HClO4 to form [(NMe2PDP)FeIV-OH(OAc)]3+. Related
models were invoked to explain the modulation of the catalytic properties of the ferryl
complex[(N4Py)FeIV(O)]2+ by the additives of HOTf and HClO4 [40,41]. Such protonation
has been found to be exergonic (for both the S = 3/2 and S = 1/2) spin states (Figure 6),
thus suggesting that adding HClO4 should convert 2a into predominantly [(NMe2PDP)FeIV-
OH(OAc)]3+ (Supplementary Materials Figure S2). The latter species, owing to being
protonated, may be expected to possess higher electrophilicity than the parent intermediate
[(NMe2PDP)FeV=O(OAc)]2+ (2a), yet perhaps be incapable of breaking C-H bonds directly.
We believe that [(NMe2PDP)FeIV-OH(OAc)]3+ (2aOH+) could actually be considered as a
reservoir of the active species. Being in fast dynamic equilibrium with the parent perferryl
intermediate 2a, the protonated reservoir species 2aOH+ effectively “stabilizes” (in terms of
decreasing free energy) the parent intermediate 2a. This stabilization, in accordance with
the Hammond−Leffler principle, should lead to more product-like transition states, thus
resulting in higher oxidation selectivity.

In Supplementary Materials Figure S2, selected partial bond orders and spin densi-
ties for the intermediates 4[(NMe2PDP)FeIV-OH(OAc)]3+ (42aOH+) and 2[(NMe2PDP)FeIV-
OH(OAc)]3+ (22aOH+) are presented and compared with those of the parent intermediate
[(NMe2PDP)FeV=O(OAc)]2+ (2a) [50]. The electronic structures of the protonated-at-terminal
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oxygen intermediates 42aOH+ are best described as iron(IV)-hydroxo complexes, with the
S = 1 at the FeIV center, coupled with the S = 1/2 located at the ligand, ferromagnetically in
the case of 42aOH+ or antiferromagnetically in the case of 22aOH+

.
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Previously, it was reported that the protonation of the [(N4Py)FeIV(O)]2+ complex,
with HClO4 at the terminal Fe=O, eliminates the primary KIE for C-H bond breaking
(mesitylene/d12-mesitylene: kH/kD drops from 31 to 1.0), which was interpreted as a
changeover of the mechanism from direct hydrogen atom transfer (HAT) to proton-
coupled electron transfer (PCET) [40]. We have compared competitive oxidations of
cyclohexane/d12-cyclohexane in the absence and in the presence of HClO4 and witnessed
similar KIE values in all cases, which is characteristic of metal-mediated, rate-limiting C-H
bond breaking (Supplementary Materials Table S1). This result indicates that in the case of
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the intermediates 1a and 2a, adding HClO4 does not lead to a mechanism changeover, thus
additionally corroborating our proposal of the role of their protonated forms, 1aOH+ and
2aOH+, as reservoirs of the true active species.

4. Materials and Methods
4.1. Materials

All chemicals and solvents were purchased from Aldrich, Acros Organics or Alfa Ae-
sar and were used without additional purification. Iron complexes [(Me2OMePDP)2FeIII

2(µ-
OH)2](OTf)4 (1) [47] and [(NMe2PDP)2FeIII

2(µ-OH)2](OTf)4 (2) [52] were prepared as described.

4.2. Instrumentation

EPR spectra (−196 ◦C) were measured in 3 mm quartz tubes on a CMS 8400 EPR
spectrometer at 9.4–9.5 GHz, a modulation frequency of 100 kHz, and a modulation
amplitude of 5 G. Experiments were conducted in a quartz finger Dewar filled with liquid
nitrogen. EPR signals were quantified by double integration, with a frozen solution of
chromium(III) acetylacetonate as a standard at −196 ◦C.

NMR spectra were measured on a Bruker Avance 400 NMR spectrometer at
400.13 MHz (1H) and 100.61 MHz (13C) in 5 mm and 10 mm cylindrical glass tubes at
room temperature, using CDCl3 as the solvent.

The epoxide yield and enantiomeric excess values were measured on a Bruker Avance
400 NMR spectrometer and Shimadzu LC-20 chromatograph (with Chiralcel OB-H chiral
stationary phase), respectively, as previously reported [57]. Experimental uncertainty of ee
measurements did not exceed ± 1%. The yields of adamantane oxidation products were
determined using a DB-WAX capillary column [30 m × 0.25 mm × 0.25µm, He carrier
gas] on an Agilent 6890N gas chromatograph with a flame-ionization detector, with an
uncertainty of 2% [58].

4.3. Sample Preparation for EPR Measurements

Using a gas-tight microsyringe connected with a polyethylene capillary, an appro-
priate amount of H2O2 in 0.05 mL of a 1.8:1 CH2Cl2/CH3CN mixture was added to the
solution (0.15 mL) of the ferric complex and acetic acid at −70 ◦C directly in a quartz
EPR tube (d = 3 mm). After stirring for 3 min with a polyethylene capillary at the required
temperature, the sample was frozen by immersion in liquid nitrogen, and the EPR spectrum
was measured at −196 ◦C.

4.4. General Catalytic Oxidation Procedure

The organic substrate and carboxylic acid were added to the solution of the iron
complex in CH3CN (0.4 mL), and the mixture was thermostated at 0 ◦C. Then, a calculated
amount of 30% H2O2 was injected by a syringe pump over 30 min upon stirring at 0 ◦C.
The resulting mixture was stirred for 2.5–5h at 0–5 ◦C (see Tables 1–3 for details). Iron
was removed by short-column purification (eluent: acetone). Volatiles were evaporated,
and the reaction mixtures were analyzed by NMR and HPLC (for Table 1, refs. [54,57] for
details), GC (for Table 2, ref. [53] for details), or NMR (for Table 3, ref. [51] for details). In
the absence of either the catalyst or H2O2, the oxidations did not occur.

5. Conclusions

The effect of strong Brønsted (HClO4) acid on the reactivity and selectivity
of the catalyst systems 1 and 2/H2O2/AcOH, based on nonheme iron complexes
of the PDP family, [(Me2OMePDP)FeIII(µ-OH)2FeIII(MeOMe2PDP)](OTf)4 (1) and
[(NMe2PDP)FeIII(µ-OH)2FeIII(NMe2PDP)](OTf)4 (2), toward benzylideneacetone (bna),
adamantane (ada), and (3aR)-(+)-sclareolide (S) has been examined. Adding HClO4 to the
catalyst systems 1 and 2/H2O2/AcOH results in an enhancement of the catalytic efficiencies
(turnover numbers or product yields) of these systems in C-H oxidation reactions and at
the same time, increases the oxidation regioselectivity.
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For the system 1/H2O2/AcOH, a similar, simultaneous increase of catalytic efficiency
and (enantio)selectivity upon addition of HClO4 has been documented in the asymmetric
epoxidation of bna. EPR spectroscopic monitoring has witnessed a threefold increase of
reactivity (second-order rate constant) of the intermediate [(Me2OMePDP)FeV=O(OAc)]2+

(1a) towards cyclohexane at −70 ◦C upon the addition of HClO4. At the same time, the
spectral parameters of 1a did not noticeably change, thus witnessing that HClO4 does not
affect the first coordination sphere of the central atom. DFT modeling corroborates the
hypothesis that the positive effect of strong acid could be due to the protonation of the
terminal Fe=O moiety of the parent perferryl intermediates to form species of the type
[(L)FeIV-OH(OAc)]3+, which should be more electron-deficient than the parent perferryl
species [(L)FeV=O(OAc)]2+, yet may be not capable of breaking strong aliphatic C-H bonds
directly. Instead, they could play the role of the reservoir of the active species, thus
effectively stabilizing the active perferryl intermediates. This stabilization would lead to
more product-like transition states, thus ensuring higher oxidation selectivity, whereas
the increased electrophilicity of [(L)FeIV-OH(OAc)]3+ leads to a higher apparent reactivity
toward C(sp3)-H groups of aliphatic substrates.

We believe that the above approach to the improvement of the catalytic reactivity of
catalyst systems, based on the complexes of the PDP family, holds considerable promise for
the future, and the proposed model of the effect of HClO4 would contribute to disclosing
the molecular mechanisms of the action of strong Brønsted acids on the catalytic reactivity
of nonheme systems, thus extending the existing mechanistic landscape. Related studies,
focused on establishing the peculiarities of the effect of Lewis acids on similar iron-based
catalyst systems, are underway in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal12090949/s1, computational details, Cartesian coordinates and com-
puted energies of the intermediates, Figure S1: Optimized geometries and relative free energies
(kcal/mol) of the non-protonated intermediates of the type {2a+HOAc} as well as protonated at
terminal oxygen {2aNH++AcO−}-on the S = 3/2 (red) and the S = 1/2 (black) energy surfaces. C grey,
H light grey, N violet, O red, Cl green, Fe orange; Figure S2: Selected computed partial bond orders
and spin densities, and formal structural representations for the densities (in numbers of spins) for the
intermediates 4[(NMe2PDP)FeIV-OH(OAc)]3+ (42aOH+) and 2[(NMe2PDP)FeIV-OH(OAc)]3+ (22aOH+),
compared with those for the parent intermediate [(NMe2PDP)FeV=O(OAc)]2+ (2a). Bond orders and
spin densities and are in black and red, respectively; Table S1: Kinetic isotope effects for the oxidations
of cyclohexane/d12-cyclohexane on catalysts 1 and 2 in the absence and in presence of HClO4

a.
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