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Supplementary text 

1. Chemicals 

Nickel acetylacetonate (Ni(acac)2, AR, Aladdin); nickel nitrate hexahydrate (Ni(NO3)3∙6H2O, 

AR, Aladdin); molybdenum(Ⅵ) oxide (MoO3, AR, 99.5%, Aladdin); potassium hydroxide (KOH, 

AR, 85%, Aladdin); 1-butylamine (C4H11N, AR, 99.99%, Aladdin); N, N-dimethylformamide (DMF, 

AR, 99.5 wt.%, Ghtech); potassium thiocyanate (KSCN, AR, 98.5 wt.%, Aladdin). All chemicals 

were used without any further purification. 

2. Materials Preparation 

2.1 Synthesis of 1T-MoS2/NiS heterostructure 

Synthesis of Ni nanosheet skeleton: The Ni nanosheet was synthesized as reported in the previous 

work.[1] Typically, 100 mg nickel acetylacetonate was dissolved in a mixture of 20.0 mL N, N-

dimethylformamide, 1.0 mL 1-butylamine, and 4.0 mL deionized water. Then, transfer the above 

solution to a 50 mL para-polyphenyl (PPL) lined autoclave and react at 200 oC for 48 h. Finally, the 

gray-black powders were collected by centrifugation, washed with deionized water, and dried in a 

vacuum oven at 60 °C for 12 h to obtain the Ni nanosheet. 

Synthesis of 1T-MoS2/NiS heterostructure: 0.5 mmol Ni nanosheets as the framework, 1 mmol 

MoO3, and 2.5 mmol KSCN were dissolved in a mixed solution of a certain proportion of ethanol and 

deionized water (Vethano l: Vwater = 1:4) under ultrasonic stirring for 60 min at room temperature to form 

a uniform solution. Then, transfer the above solution to a 50 mL polytetrafluoroethylene-lined reactor 

and react at 180 °C for 24 h. Finally, the gray-black powder was collected by centrifugation, washed 

with deionized water, and vacuum dried at 60 °C for 12 h to obtain the 1T-MoS2/NiS heterostructure. 

2.2 Synthesis of 2H-MoS2 and 1T-MoS2 

The 2H-MoS2 was synthesized using the same procedure as the 1T-MoS2/NiS heterostructure 
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without Ni nanosheets. 

The 1T-MoS2 was synthesized as reported in the previous work.[2] The process was as follows: 

2H-MoS2 was immersed in n-butyllithium solution at room temperature for 48 h. The nanostructures 

were exfoliated by reacting the intercalated lithium with excess water to produce H2 gas and separated 

the 2D nanosheets, the resulting material was named 1T-MoS2. 

3. Physicochemical Characterization 

The morphologies and microstructures were characterized by the scanning electron microscope 

(SEM, ZEISS Merlin, at 10 kV) and transmission electron microscope (TEM, JEM 2100, at 200 kV). 

The X-ray photoelectron spectroscopy (XPS) was carried out with a multi-technique system using an 

Al monochromatic X-ray at a power of 350 W (Thermo Scientific ESCALAB 250Xi). Atomic Force 

Microscope (AFM, Multimode 8, Bruker) was used to probe the thickness of materials. The X-ray 

diffraction (XRD) patterns were obtained using a Rigaku MiniFlex 600 X-ray diffractometer (Cu Kα 

radiation, λ = 1.54178 Å). 

4. Electrochemical Measurements 

The electrochemical hydrogen evolution reaction (HER) was performed in an Ar-saturated 1.0 

M KOH solution at room temperature with a standard three-electrode system using a CHI730E 

electrochemical workstation. The working electrode was prepared as follows: 10 mg of powder is 

dispersed in 1.0 mL of Nafion/ethanol (0.84 wt.% Nafion) by ultrasonication for 30 min to obtain a 

homogeneous ink; then 50 μL of homogeneous ink was evenly drop-cast onto a carbon paper (1 × 1 

cm2, catalyst loading: 0.5 mg cm−2). For comparison, the electrocatalytic activity of a commercial 40 

wt.% Pt/C (HiSPEC4000, Johnson Matthey) for HER was evaluated at a metal loading of 20 μg cm−2. 

The SCE was used as a reference electrode and Au mesh was used as the counter electrode. 

The linear sweep voltammograms (LSVs) were recorded from -0.60 to 0.05 V vs. reversible 
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hydrogen electrode (RHE) with a scan rate of 5 mV s−1 in Ar-saturated 1.0 M KOH. The 

electrochemical impedance spectroscopy (EIS) was obtained in a frequency range from 100 kHz to 

100 mHz with an amplitude of 5 mV at an applied potential of -0.05 V vs. RHE. Tafel slopes were 

derived from the LSV curves by fitting the data based on the Tafel equation: η = a + b⋅log j (η is the 

overpotential, j is the current density, and b is the Tafel slope). The long-term stability testing was 

performed at a constant potential set at -0.12 V vs. RHE. All the electrochemical results were without 

iR-correction. 

All the electrode potentials were calibrated to the RHE potential based on the Nernst equation 

ERHE = ERef + 0.0591 V × pH  ( ERef  refers to the standard electrode potential of the reference 

electrode). 

5. Computational Details 

The DFT calculations were performed in the Quickstep code of the CP2K package based on the 

Gaussian and plane waves method (GPW). The Gaussian-type basis set was used to represent the 

Kohn-Sham orbitals and the plane-wave basis set was used to re-expand electron density in reciprocal 

space. The Gaussian basis set was molecularly optimized triple-zeta valence doubly polarized 

(TZV2P-MOLOPT) to describe the wave functions of H 1s1, O 2s22p4, S 3s23p4, Ni 3s23p63d84s2, and 

Mo 4s24p64d55s1 electrons, with a plane wave energy cut-off of 500 Ry, and norm-conserving 

Goedecker-Teter-Hutter (GTH) pseudopotentials were used to represent the rest core electrons of all 

elements. Perdew-Burke-Ernzerhof (PBE) functional was used to describe the nonlocal exchange and 

correlation energies. The Grimme D3 correction was applied in all calculations to correct the 

dispersion energy. The matrix diagonalization algorithm was selected to optimize the wave function 

and Fermi smearing with the electronic temperature of 300 K was selected to facilitate the self-

consistent field (SCF) convergence. 
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During the calculation, the surface structure used is 1T-MoS2 (002) with a 2-layer structure of a 

3×3 supercell, and no atoms are fixed during the calculation. The supercell of 1T-MoS2/NiS 

composed of a 1-layer MoS2 unit and 3-layer NiS unit is selected, and all the atoms of the NiS layer 

are fixed in the calculation process. 
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Supplementary figures 

The microscopic morphology of the Ni nanosheets framework was characterized by scanning 

electron microscope (SEM) and transmission electron microscope (TEM). As shown in Figure S1a-

b, the resulting product shows a nanosheet morphology. The XRD pattern is consistent with the 

diffraction peak of the standard card Ni (PDF#87-0712), indicating the metallic Ni phase of the 

nanosheet (Figure S1c). The thickness of the prepared nickel nanosheets is confirmed by atomic force 

microscopy (AFM). As shown in Figure S1d-f, the thickness range is 1.65-4.64 nm, and the average 

thickness is about 3.2 nm. 

 

Figure S1. a) SEM image, b) TEM image and c) XRD pattern of the Ni nanosheets; d) AFM image 

and e-f) corresponding thicknesses. 
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As shown in Figure S2, only 2H-MoS2 can be obtained without Ni nanosheets, which further 

confirms the induced phase transformation of interface engineering. The SEM and TEM images show 

that the resulting product of 2H-MoS2 with a nanosheet morphology. The corresponding HRTEM 

image shows a lattice spacing of 0.62 nm, which correspond to the (002) crystal plane of 2H-MoS2.[3] 

It is seen that the number of layers of 2H-MoS2 nanosheets is distributed between 3-8 layers, which 

can provide numerous active sites. The crystal structure is shown in Figure S2d, which is consistent 

with the traditional 2H-MoS2.[4] 

 

Figure S2. a) SEM image, b) TEM image and c) HRTEM image of the 2H-MoS2; d) Crystal 

structure of 2H-MoS2 nanosheets (S: yellow; Mo: dark green). 
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Figure S3. a) Polarization curves (without iR correction) of 1T-MoS2/NiS and commercial Pt/C. 
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Figure S4. Nyquist plots of 1T-MoS2/NiS and 1T-MoS2 (inset is an enlarged view of 1T-MoS2/NiS). 
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Figure S5. Side (above) and Top views (below) of the optimized slab models of 1T-MoS2. 
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Figure S6. Side view (left) and top view (right) of the optimized plate model of the 1T-MoS2/NiS. 
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Figure S7. Performance comparison chart between different materials (data from Table S1, partly 

from Nat. Commun., 2021, 12, 5260). 
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Supplementary tables 

Table S1. Comparisons of HER performance of the recently reported MoS2-based electrocatalysts in 

1.0 M KOH. 

Catalysts η@10 mA cm−2 Tafel slope/dec−1 Stability/h Reference 

1T-MoS2/NiS 120 mV 69 45 This work 

O-NiMoS 185 mV 80 10 (2018) ACS Catal. [5] 

Zn-MoS2 198 mV 78 6 
(2019) Angew. Chem. 

Int. Ed. [6] 

CoMoNiS-NF-31 113 mV 85 24 
(2019) J. Am. Chem. 

Soc. [7] 

MoS2/NiS 244 mV 97 12 (2018) Small [8] 

1T-MoS2/NiS2 116 mV 72 10 
(2019) Angew. Chem. 

Int. Ed.[9] 

S-MoS2@C 155 mV 78 24 
(2019) Adv. Energy 

Mater. [10] 

MoS2/NiS/NF 87 mV 47 40 
(2020) Int. J. 

Hydrogen Energy [11] 

MoS2/NiS Core-

Shell 
84 mV 77 30 

(2020) J. Power 

Sources. [12]  

Ni-MoS2 136 mV 72 20 
(2020) Appl. Surf. Sci. 

[13] 

Co9S8-MoS2/NF 110 mV 82 60 
(2020) Adv. Funct. 

Mater. [14] 

Co-MoS2 137 mV 59 -- 
(2021) Angew. Chem. 

Int. Ed.[15] 

MoS2/NLG-x 110 mV 106 140 
(2021) ACS Catal. 

[16] 

Ni-MoS2/RGO 398 mV 140 -- 
(2021) Int. J. 

Electrochem. Sci. [17] 

en-Bu-1T-MoS2 169 mV 62 12 
(2021) Chem. Eng. J. 

[18] 

CoS2@1T-MoS2 72 mV 45 50 
(2022) Appl. Catal. B: 

Environ [19] 

MoS2/NiS 158 mV 128 21 
(2022) New J. Chem. 

[20] 
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