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Abstract: A highly facile and efficient protocol for silver(I)-catalyzed C4–H amination of 1-naphthylamine
derivatives with readily available azodicarboxylates utilizing picolinamide as a bidentate directing
group is reported, providing an alternative strategy for the synthesis of 4-aminated 1-naphthylamine
derivatives. The reaction proceeded smoothly in acetone at room temperature undergoing a self-redox
process under the base and external oxidant-free conditions, affording the desired products with
good to excellent yields.
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1. Introduction

Arylamine compounds are important structural fragments in pharmaceuticals, agro-
chemicals, dyes, herbicides, and functionalized materials [1–3]. Therefore, the development
of efficient methods for C-N bond construction have captured much attention. However,
traditional synthesis methods usually use pre-functionalized substrates as raw materials to
achieve the synthesis of target products, which will increase the cost of reaction synthesis
and the complexity of experimental operations [4,5].

In the past few decades, the transition metal-catalyzed C-H functionalization has
emerged as a reliable tool in organic synthesis [6–12]. Therefore, direct oxidative cross-
dehydrogenative-coupling (CDC) amination of hydrocarbons with amines has gradually
become a fascinating protocol for the C-N bond-forming reaction due to its atom- and step-
economy. In 2005, Daugulis’ group introduced a type of picolinamide (PA) moiety as a
directing group to complete the C-H activation process, [13] and then, a series of reports for
C2-H [14–21] and C8-H [22–29] functionalization reactions of 1-naphthylamine derivatives
started to appear. Remarkably, different kinds of C4-H functionalization of 1-naphthylamides
derivatives were developed, such as sulfonylation, [30–32] amination, [33–37] esterifica-
tion, [38,39] etherification [40]. Among them, the traditional transition metal-catalyzed
amination reaction of 1-naphthylamine derivatives at the C4 site usually utilizes a stoi-
chiometric amount of base and oxidant under heated conditions, and the reaction cost is
relatively higher (Scheme 1a).

In recent years, the research interest in our group has mainly focused on the regiose-
lective C-H functionalization of arene compounds with the assistance of the bidentate
directing group, such as the direct C-H functionalization of 1-naphthylamine deriva-
tives [24,29,31,33,36,37] and 8-aminoquinoline derivatives [41–44]. Especially in 2018, our
research group reported the reaction of 1-naphthylamine derivatives and azodicarboxylates
and successfully realized the C4-H bond amination of the 1-naphthylamine derivative [33].
In this work, we would like to report a facile and efficient protocol for the C4−H amination
of 1-naphthylamine derivatives with azodicarboxylates at room temperature under base
and oxidant-free conditions (Scheme 1b).
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Scheme 1. The C4-H Amination of 1-Naphthylamines. (a) C4-H Amination of 1-Naphthylamines
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2. Results and Discussion

Initially, N-(naphthalen-1-yl) picolinamide (1a) and diisopropyl azodicarboxylate
(DIAD, 2a) was explored as the template reaction substrates for the C4−H amination of
1-naphthylamine derivatives (Table 1 and Tables S1–S3 in Supplementary Materials), and
the amination proceeded smoothly in DCE at room temperature in the presence of Ag2O
(10 mol%), resulting in the product 3aa in an 80% isolated yield (Table 1, entry 1). The
reaction solvents were then examined, and the results showed that acetone was the best
solvent with a high yield of 97% (Table 1, entries 2–6). Next, some metal catalysts were
examined, and none of them could match the catalytic efficiency of Ag2O (Table 1, entries
7–10). Finally, some control experiments were explored. The reaction did not occur in the
absence of Ag2O, indicating that Ag2O played an indispensable role in the reaction (Table 1,
entry 11), reducing the reaction time or the catalyst loading results in lower yields of the
target product (Table 1, entries 12 and 13).

Table 1. Optimization of the reaction conditions a.
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Entry Catalyst Solvent Yield (%) b

1 Ag2O DCE 80
2 Ag2O dioxane 90
3 Ag2O acetone 97
4 Ag2O THF 90
5 Ag2O DME 80
6 Ag2O DCM <5
7 CuO acetone <5
8 Cu2O acetone <5
9 Fe2O3 acetone <5
10 AgOAc acetone <5
11 - acetone <5

12 c Ag2O acetone 88
13 d Ag2O acetone 46

a Reaction conditions: 1a (0.1 mmol), 2a (0.2 mmol), catalyst (10 mol%) in solvent (1 mL) at room temperature for
8 h. b Isolated yield based on 1a. c For 7 h. d With a catalyst loading of 5 mol%.

With the above-optimized reaction conditions, the scope of 1-naphthylamine deriva-
tives was then explored with diisopropyl azodicarboxylate (2a), depicted in Scheme 2.
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When there was a halogen (F, Cl and Br) substituent at the C3, C4, C5, or C6 position of
the pyridine ring of N-(naphthalen-1-yl) picolinamide, the reaction proceeded smoothly to
afford the corresponding aminated products in excellent yields (3ba–3ha). In the case of
the pyridine ring bearing a methyl substituent at the C3 or C6 position, aminated products
were obtained in good yields of 97% and 70%, respectively (3ia and 3ja). These results
indicate that the pyridine ring of the 1-naphthylamine derivatives could be compatible with
the electron-withdrawing and electron-donating groups. When the naphthalene ring of the
substrate possesses an electron-donating group at the C2, C7 or C8 position, the reaction
could also proceed smoothly to afford products in moderate to good yields (3ka–3oa).
When a quinoline ring was taken instead of the pyridine ring of the substrate, the reaction
could generate the corresponding target product in yields in lower yields of 68% (3pa and
3qa). However, when a pyrimidine ring was utilized as a directing group instead of the
pyridine ring, the reaction could not occur at all (3ra). These results show that the directing
group of 1-naphthylamine derivatives plays an important role in this reaction.
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Then, the substrate scope of 1-naphthylamine derivatives with dibenzyl azodicar-
boxylate(2b) or di-tert-butyl azodicarboxylate (2c) was also screened, and the results are
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summarized in Scheme 3. The pyridine ring of 1-naphthylamine derivatives could be
compatible with functional groups such as halogen atom, methyl and phenyl groups at the
C3, C4, C5, or C6 position, leading to the target products in high yields, the results of which
are similar to those of Scheme 2. In addition, the naphthalene ring of 1-naphthylamine
derivative bearing a phenyl or methyl group at the C8 position reacted with di-tert-butyl
azodicarboxylate(2c) could result in the target products in yields of 38% and 83%, respec-
tively (3nc and 3oc).
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Scheme 3. Substrate Scope of 1-Naphthylamine Derivatives with Dibenzyl Azodicarboxylate (2b) or
Di-tert-butyl Azodicarboxylate (2c).

In order to explore the applicability of this protocol, synthetic applications of the
product were demonstrated (Scheme 4). A gram-scale experiment of 1a (0.5000 g) and
2.0 equiv. of diisopropyl azodicarboxylate (2a) proceeded under standard conditions,
affording the product 3aa (0.8370 g) with a high yield of 93% (Scheme 4a). Subsequently,
some useful transformation of product 3 was pursued such as alkylation and arylation of
the naphthyl ring at the C8 position, and bi-functionalized products of 1-naphthylamine
derivatives were obtained in moderate yields (Scheme 4b).
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Scheme 4. Synthetic Application. (a) Gram-Scale Experiment for the amination of 1a. (b) Further
alkylation and arylation of Products 3.

In order to explore the reaction mechanism, some control experiments were investi-
gated (Scheme 5). Some designed substrate analogs pending N, O-or N-chelating groups
instead of the N, N-bidentate directing group were conducted in this amination reaction,
and the products were obtained in low yields or even no products were observed, indi-
cating that the N, N-bidentate directing group is crucial for this reaction (5a–8a). The
reaction under a nitrogen and oxygen atmosphere afforded similar yields to that of those
performed with air, suggesting that oxygen might not have a very significant effect on
this reaction and this reaction might proceed via the self-redox process (Scheme 5b). Then,
the 0.2 equiv. radical inhibitor such as 2,2,6,6-tetramethyl-1-piperindinyloxy (TEMPO)
or 2,6-di-tert-butyl-4-methylphenol (BHT) was added to the amination reaction, and the
product 3aa was obtained in a lower yield; when the loading of TEMPO or BHT increased
to 3.0 equiv., the reaction was inhibited successfully; in the presence of BHT under standard
conditions, an adduct 9a of BHT with 2a was detected by HRMS (Scheme 5b). These results
could imply that the reaction might proceed through a radical process.
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the Reaction.

On the basis of the above-mentioned obtained results and previous reports of [33–37], a
plausible mechanism is proposed as shown in Scheme 6. First, N-(naphthalen-1-yl) picoli-
namide 1a potentially coordinates with Ag(I) species to afford an aryl-Ag(I) intermediate
A, the single electron transfer process of which with Ag(I) species occurs to generate an
aryl-Ag(I) intermediate radical B and Ag(0) species. On the other hand, the electrophilic ad-
dition of a proton to the azodicarboxylate 2a occurs to generate a nitrogen-centered cation,
a redox process of which with the Ag(0) species leads to a nitrogen-centered radical C and
active Ag(I) species to fulfill the Ag(I)/Ag(0) catalytic cycle. Subsequently, the electrophilic
attack of the nitrogen-centered radicals C to the aryl-Ag(I) intermediate B takes place to
afford an aryl-Ag(I) intermediate D. Finally, the intramolecular proton transfer process
of the aryl-Ag(I) intermediate D affords the N-Ag(I) coordinated complex E, the ligand
dissociation of which would result in the target product 3aa and regenerate catalytically
active Ag(I) species to complete the catalytic cycle.
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Intermediate B is an open-shell structure with a single unpaired electron distributed
in the complex. Mulliken spin densities and singly occupied molecular orbitals (SOMO)
are shown in Figure 1. The highest spin density is located on the para-carbon atom C4
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(0.36 au), followed by a lower spin density on the ortho-carbon C2 (0.27 au) in the naphthyl
ring. A molecular orbital (MO) analysis showed that the SOMO is primarily located on the
naphthyl ring with partial contribution from the core region of N-Ag-N of the intermediate
B. Among all the carbon atoms in the naphthyl ring, C4 is calculated to be the most-likely
reactive site for the attack of the nitrogen racial, which is consistent with experiments.
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Figure 1. The intermediate B was optimized using B3LYP in combination with the LANL2TZ effective
core potential (ECP) for Ag, and 6–311G (d, p) for all other atoms. The D3 version of Grimme’s
dispersion (GD3) and Truhlar’s SMD solvation model with acetone as the model solvent was adopted
for the geometry optimization. Spin densities (red) are in atomic units. The single occupied molecular
orbital (SOMO) is depicted with 0.03 au−3/2 isovalue.

3. Experimental Section
3.1. General Information

1H and 13C NMR spectra were recorded on a Bruker DPX-400 spectrometer with CDCl3
as the solvent and TMS as an internal standard. Chemical shifts are expressed in parts per
million (δ) and the signals were reported as s (singlet), d (doublet), t (triplet), m (multiplet),
and coupling constants (J) were given in Hz. Chemical shifts as internal standard were ref-
erenced to CDCl3 (δ = 7.26 for 1H and δ = 77.16 for 13C NMR as internal standard). Melting
points were measured using a WC-1 microscopic apparatus. High-resolution mass spectra
were ensured on an Agilent Technologies 1290–6540 HPLC/Accurate-Mass Quadrupole
Time-of-Flight LC/MS. All solvents and chemicals were obtained from commercial sources
and used as received without further purification unless otherwise noted.

3.2. General Procedure for Synthesis of Product 3aa

A Schlenk tube was equipped with a magnetic stir bar and charged with N-(naphthalen-
1-yl)picolinamide 1a (0.1 mmol), 2a (0.2 mmol, 2 equiv), Ag2O (10 mol%) in acetone (1.0 mL).
The resulting mixture was sealed and stirred for 8 h at room temperature. Upon completion,
CH2Cl2 (10 mL) was added to the reaction system, and the resulting mixture was filtered
through a pad of celite. The filtrate was extracted with H2O (20 mL), and the aqueous
layer was extracted with CH2Cl2 (2 × 10 mL). The collected organic layer was dried with
anhydrous Na2SO4, filtered and concentrated under vacuum. The residue was purified by
column chromatography on silica gel (200–300 mesh) using hexane-EtOAc as eluent (3:1,
v/v) to afford the pure product 3aa.

3.3. General Procedure for Synthesis of Product 3

Mixture of 3 (0.1 mmol, 1.0 equiv), Pd(OAc)2 (15 mol%), CH3I or PhI (0.4 mmol,
4.0 equiv), anhydrous KOAc (0.2 mmol, 2.0 equiv), and 1,4-dioxane or xylene (1 mL) was
placed in a 25 mL Schlenk tube with a rubber plug under air. The tube was heated at 130 ◦C
for 24 h or 12 h. The reaction mixture was cooled to room temperature, diluted with ethyl
acetate, filtered through celite, and concentrated in vacuo. The residue was purified by
silica gel column chromatography with petroleum ether-ethyl acetate (5:1, v/v) to afford
the desired products.

3.4. Spectral Data for Products

3aa. pale yellow solid. (44.0 mg, 97%), Rf = 0.32 (25% EtOAc in hexane), mp 176.9–178.0 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.82 (s, 1H), 8.71 (d, J = 7.93 Hz, 1H), 8.36 (d, J = 7.93 Hz,
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1H), 8.36 (d, J = 7.81 Hz, 1H), 8.12–8.10 (m, 2H), 7.94 (td, J1 = 1.56 Hz, J2 = 7.68 Hz,
1H), 7.75 (s, 1H), 7.63–7.56 (m, 2H), 7.54–7.51 (m, 1H), 7.28 (s, 1H), 5.02–5.01 (m, 2H),
1.25–1.05 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 162.2, 156.1, 149.8, 148.1, 137.8, 134.9,
132.7, 130.7, 126.9, 126.8, 126.7, 126.5, 126.0, 123.7, 122.5, 120.8, 118.1, 70.9, 70.0, 22.0, 21.8;
HRMS (ESI+) m/z [M + H]+ calcd for C24H27N4O5: 451.1976, Found: 451.1977.

3ba. yellow solid (43.6 mg, 93%), Rf = 0.32 (25% EtOAc in hexane), mp 156.5–158.0 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.55 (s, 1H), 8.53 (d, J = 2.70 Hz, 1H), 8.40–8.37 (m, 2H),
8.09–8.05 (m, 2H), 7.77–7.75 (m, 1H), 7.64–7.54 (m, 3H), 7.36 (s, 1H), 5.05–5.01 (m, 2H),
1.44–1.09 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 161.4 (d, J = 263.43 Hz), 161.2, 156.1,
146.2 (d, J = 3.79 Hz), 136.8 (d, J = 25.40 Hz), 135.1, 132.5, 130.7, 126.8 (d, J = 11.09 Hz),
126.5, 125.9, 124.5, 124.4, 124.3 (d, J = 18.66 Hz), 123.8, 120.7, 118.3, 70.9, 70.0, 22.0; 19F NMR
(376 MHz, CDCl3): δ -121.18 (s, 1F); HRMS (ESI+) m/z [M + H]+ calcd for C24H26FN4O5:
469.1882, Found: 469.1881.

3ca. yellow solid (45.0 mg, 93%), Rf = 0.32 (25% EtOAc in hexane), mp 170.9–172.6 oC;
1H NMR (400 MHz, CDCl3) δ 10.57 (s, 1H), 8.64 (d, J = 2.07 Hz, 1H), 8.38 (d, J = 7.97 Hz,
1H), 8.30 (d, J = 8.36 Hz, 1H), 8.09–8.04 (m, 2H), 7.91 (dd, J1 = 2.31 Hz, J2 = 8.37 Hz, 1H),
7.76 (s, 1H), 7.62–7.56 (m, 2H), 7.32 (s, 1H), 5.02–5.01 (m, 2H), 1.43–1.09 (m, 12 H); 13C NMR
(100 MHz, CDCl3) δ 161.4, 156.1, 148.0, 147.2, 137.5, 135.5, 135.2, 132.4, 130.7, 126.9, 126.8,
126.2, 125.9, 123.8, 123.6, 120.6, 118.3, 70.9, 70.0, 22.0; HRMS (ESI+) m/z [M + H]+ calcd for
C24H26ClN4O5: 485.1586, Found: 485.1584.

3da. yellow solid (50.1 mg, 95%), Rf = 0.32 (25% EtOAc in hexane), mp 139.5–140.5 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.58 (s, 1H), 8.76 (d, J = 1.96 Hz, 1H), 8.38 (d, J = 7.95 Hz,
1H), 8.24 (d, J = 8.30 Hz, 1H), 8.08–8.04 (m, 3H), 7.75 (s, 1H), 7.62–7.56 (m, 2H), 7.29 (s, 1H),
5.02–5.01 (m, 2H), 1.25–1.09 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 161.5, 156.1, 149.4, 148.3,
140.5, 135.2, 132.4, 130.7, 126.8, 126.8, 126.6, 125.9, 124.5, 124.0, 123.8, 120.6, 118.3, 70.9, 70.0,
22.0; HRMS (ESI+) m/z [M + H]+ calcd for C24H26BrN4O5: 529.1081, Found: 529.1077.

3ea. yellow solid (50.3 mg, 95%), Rf = 0.32 (25% EtOAc in hexane), mp 176.2–178.4 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.74 (s, 1H), 8.64 (dd, J1 = 1.00 Hz, J2 = 4.40 Hz, 1H), 8.40 (d,
J = 7.20 Hz, 1H), 8.12–8.02 (m, 3H), 7.73 (s, 1H), 7.61–7.59 (m, 2H), 7.35 (dd, J1 = 4.53 Hz,
J2 = 8.08 Hz, 1H), 7.23 (s, 1H), 5.02–5.00 (m, 2H), 1.25–1.09 (m, 12 H); 13C NMR (100 MHz,
CDCl3) δ 161.2, 156.0, 146.6, 146.3, 144.5, 135.0, 132.7, 130.7, 126.9, 126.7, 126.5, 125.9, 123.7,
120.7, 120.0, 118.3, 70.9, 70.0, 22.0; HRMS (ESI+) m/z [M + H]+ calcd for C24H26BrN4O5:
529.1081, Found: 529.1077.

3fa. yellow solid (40.2 mg, 83%), Rf = 0.32 (25% EtOAc in hexane), mp 218.0–219.5 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.40 (s, 1H), 8.33 (d, J = 7.70 Hz, 1H), 8.28 (d, J = 7.48 Hz,
1H), 8.06 (d, J = 8.52 Hz, 1H), 7.91 (t, J = 7.76 Hz, 1H), 7,76 (s, 1H), 7.65–7.55 (m, 3H), 7.24 (s,
1H), 5.02–4.99 (m, 2H), 1.26–1.10 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 160.9, 156.1, 150.3,
150.1, 140.4, 135.4, 132.3, 130.7, 127.5, 127.1, 126.8, 126.7, 125.8, 123.7, 121.3, 120.8, 118.8, 70.9,
70.0, 22.0; HRMS (ESI+) m/z [M + H]+ calcd for C24H26ClN4O5: 485.1586, Found: 485.1582.

3ga. yellow solid (44.7 mg, 95%), Rf = 0.32 (25% EtOAc in hexane), mp 195.5–197.0 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.28 (s, 1H), 8.35 (d, J = 7.92 Hz, 1H), 8.25 (dd, J1 = 1.48 Hz,
J2 = 7.36 Hz, 1H), 8.07–8.01 (m, 3H), 7.75 (s, 1H), 7.64–7.57 (m, 2H), 7.32 (s, 1H), 7.19 (dd,
J1 = 1.96 Hz, J2 = 8.16 Hz, 1H), 5.02–4.99 (m, 2H), 1.25–1.10 (m, 12H); 13C NMR (100 MHz,
CDCl3) δ 162.0 (d, J = 243.57 Hz), 160.9, 156.1, 148.4 (d, J = 10.63 Hz), 143.0 (d, J = 10.63 Hz),
135.4, 132.2, 130.7, 127.0, 126.8, 126.7, 125.8, 123.8, 120.7, 120.3 (d, J = 3.66 Hz), 118.7, 113.2
(d, J = 35.47 Hz), 70.9, 70.0, 22.0; 19F NMR (376 MHz, CDCl3): δ -66.95 (s, 1F); HRMS (ESI+)
m/z [M + H]+ calcd for C24H26FN4O5: 469.1882, Found: 469.1880.

3ha. pale yellow solid (43.1 mg, 89%), Rf = 0.32 (25% EtOAc in hexane), mp 170.6–172.4 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.67 (s, 1H), 8.59 (d, J = 5.24 Hz, 1H), 8.38 (d, J = 7.89 Hz,
1H), 8.35 (d, J = 1.80 Hz, 1H), 8.09–8.04 (m, 2H), 7.75 (s, 1H), 7.62–7.56 (m, 2H), 7.52 (dd,
J1 = 1.92 Hz, J2 = 5.20 Hz, 1H), 7.35 (s, 1H), 5.02–5.01 (m, 2H), 1.25–1.10 (m, 12H); 13C
NMR (100 MHz, CDCl3) δ 161.0, 156.1, 151.3, 149.0, 146.4, 135.2, 132.3, 130.7, 126.8, 126.6,
125.9, 123.8, 123.2, 120.6, 118.3, 70.9, 70.0, 22.0, 21.9; HRMS (ESI+) m/z [M + H]+ calcd for
C24H26ClN4O5: 485.1586, Found: 485.1583.
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3ia. pale yellow solid (45.0 mg, 97%), Rf = 0.32 (25% EtOAc in hexane), mp 192.1–194.0 ◦C;
1H NMR (400 MHz, CDCl3) δ 11.05 (s, 1H), 8.54 (d, J = 3.81 Hz, 1H), 8.37 (d, J = 7.24 Hz,
1H), 8.11–8.08 (m, 2H), 7.73 (s, 1H), 7.67 (d, J = 7.64 Hz, 1H), 7.61–7.55 (m, 2H), 7.40 (q,
J = 7.74 Hz, 1H), 7.23 (s, 1H), 5.02–5.00 (m, 2H), 2.85 (s, 3H), 1.25–1.09 (m, 12H); 13C NMR
(100 MHz, CDCl3) δ 163.7, 156.0, 146.7, 145.5, 141.4, 136.4, 134.6, 133.1, 130.7, 127.1, 126.6,
126.3, 126.2, 126.0, 123.6., 121.0, 118.0, 70.8, 69.9, 22.0, 20.8; HRMS (ESI+) m/z [M + K]+ calcd
for C25H28N4O5K: 503.1691, Found: 503.1691.

3ga. yellow solid (32.6 mg, 70%), Rf = 0.32 (25% EtOAc in hexane), mp 202.5–204.4 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.89 (s, 1H), 8.42 (d, J = 7.57 Hz, 1H), 8.17–8.08 (m, 3H),
7.83–7.73 (m, 2H), 7.64–7.56 (m, 2H), 7.37 (d, J = 7.68 Hz, 1H), 7.26 (s, 1H), 5.02–4.99 (m, 2H),
2.70 (s, 3H), 1.37–1.00 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 162.4, 157.2, 156.1, 149.1,
137.9, 134.8, 132.8, 130.8, 126.9, 126.7, 126.4, 126.4, 126.0, 123.7, 120.8, 119.6, 118.1, 70.8, 70.0,
24.4, 22.0; HRMS (ESI+) m/z [M + K]+ calcd for C25H28N4O5K: 503.1691, Found: 503.1690.

3ka. yellow solid (32.3 mg, 67%), Rf = 0.32 (25% EtOAc in hexane), mp 191.0–192.5 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.57 (s, 1H), 8.68 (d, J = 4.20 Hz, 1H), 8.36 (d, J = 7.80 Hz,
1H), 8.28 (d, J = 8.00 Hz, 1H), 8.05 (s, 1H), 7.94 (dt, J1 = 1.55 Hz, J2 = 9.26 Hz, 1H),
7.57–7.51 (m, 2H), 7.33 (d, J = 2.88 Hz, 1H), 7.26–7.23 (m, 2H), 5.02–4.99 (m, 2H), 3.96
(s, 3H), 1.29–1.09 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 162.3, 158.2, 156.0, 149.9, 148.2,
137.8, 135.3, 131.5, 128.6, 126.6, 126.2, 125.7, 123.2, 122.6, 119.6, 118.6, 100.4, 70.8, 69.9, 55.3,
22.0, 21.8; HRMS (ESI+) m/z [M + H]+ calcd for C25H29N4O6: 481.2082, Found: 481.2081.

3la. yellow solid (37.5 mg, 80%), Rf = 0.32 (25% EtOAc in hexane), mp 175.9–177.6 ◦C;
1H NMR (400 MHz, CDCl3) δ 9.90 (s, 1H), 8.70 (d, J = 4.20 Hz, 1H), 8.33 (d, J = 7.80 Hz,
1H), 7.97–7.92 (m, 3H), 7.68 (s, 1H), 7.55–7.52 (m, 1H), 7.49–7.46 (m, 2H), 7.20 (s, 1H),
5.02–4.99 (m, 2H), 2.46 (s, 3H), 1.37–1.12 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 162.9,
155.9, 149.6, 148.3, 137.6, 137.2, 133.2, 131.3, 130.3, 129.3, 128.6, 126.7, 126.6, 126.0, 123.0,
122.7, 70.9, 70.0, 22.0, 18.9; HRMS (ESI+) m/z [M + K]+ calcd for C25H28N4O5K: 503.1691,
Found: 503.1690.

3ma. yellow solid (47.5 mg, 88%), Rf = 0.32 (25% EtOAc in hexane), mp 113.6–115.0 ◦C;
1H NMR (400 MHz, CDCl3) δ 13.96 (s, 1H), 9.14 (d, J = 8.50 Hz, 1H), 8.73 (d, J = 4.17 Hz, 1H),
8.38 (d, J = 7.84 Hz, 1H), 7.95–7.72 (m, 3H), 7.54–7.47 (m, 2H), 7.41 (d, J = 7.33 Hz, 1H), 7.20
(s, 1H), 5.02–4.99 (m, 2H), 4.25 (s, 2H), 3.84 (s, 2H), 3.19–2.98 (m, 4H), 1.25–1.03 (m, 12H);
13C NMR (100 MHz, CDCl3) δ 163.4, 156.0, 151.0, 149.5, 147.9, 137.6, 135.9, 134.0, 133.0,
126.5, 126.4, 123.5, 120.4, 120.3, 117.3, 116.5, 70.8, 70.0, 65.5, 55.1, 54.3, 53.8, 22.0; HRMS
(ESI+) m/z [M + K]+ calcd for C28H33N5O6K: 574.2062, Found: 574.2059.

3na. yellow solid (26.7 mg, 50%), Rf = 0.32 (25% EtOAc in hexane), mp 221.6–223.5 ◦C;
1H NMR (400 MHz, CDCl3) δ 9.65 (s, 1H), 8.30 (d, J = 7.88 Hz, 1H), 8.16–8.07 (m, 3H),
7.80–7.73 (m, 2H), 7.56–7.52 (m, 1H), 7.42–7.28 (m, 5H), 7.19 (s, 2H), 7.01 (t, J = 7.43 Hz,
1H), 5.04–5.02 (m, 2H), 1.34–1.08 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 161.9, 155.9,
149.5, 147.3, 142.4, 138.1, 137.0, 135.7, 433.4, 132.1, 130.9, 129.2, 128.1, 126.9, 125.8, 125.7,
125.4, 123.1, 121.8, 70.9, 70.0, 29.7, 22.0; HRMS (ESI+) m/z [M + K]+ calcd for C30H30N4O5K:
565.1848, Found: 565.1847.

3oa. yellow solid (41.0 mg, 80%), Rf = 0.32 (25% EtOAc in hexane), mp 181.1–183.9 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.67 (s, 1H), 8.65–8.64 (m, 1H), 8.36 (d, J = 7.81 Hz, 1H), 8.12
(d, J = 7.33 Hz, 1H), 7.94–7.90 (m, 2H), 7.75 (s, 1H), 7.51–7.48 (m, 1H), 7.39 (t, J = 7.10 Hz,
1H), 7.30 (d, J = 6.88 Hz, 1H), 5.01–4.99 (m, 2H), 2.99 (s, 3H), 1.25–1.03 (m, 12H); 13C NMR
(100 MHz, CDCl3) δ 162.2, 156.0, 149.9, 148.2, 137.7, 136.4, 133.7, 133.1, 132.4, 130.5, 128.6,
126.5, 126.3, 125.6, 122.7, 121.9, 70.8, 69.9, 25.1, 22.0; HRMS (ESI+) m/z [M + K]+ calcd for
C25H28N4O5K: 503.1691, Found: 503.1688.

3pa. yellow solid (34.1 mg, 68%), Rf = 0.32 (25% EtOAc in hexane), mp 185.4–187.0 ◦C;
1H NMR (400 MHz, CDCl3) δ 11.02 (s, 1H), 8.47–8.37 (m, 3H), 8.26 (d, J = 8.47 Hz, 1H), 8.19
(d, J = 8.33 Hz, 1H), 8.11 (s, 1H), 7.92 (d, J = 8.14 Hz, 1H), 7.85–7.79 (m, 2H), 7.68–7.59 (m,
3H), 7.29 (s, 1H), 5.04–5.02 (m, 2H), 1.27–1.11 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 162.4,
156.1, 149.6, 146.3, 138.0, 135.0, 132.8, 130.8, 130.4, 129.8, 129.5, 128.3, 127.8, 127.0, 126.7,
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126.5, 126.0, 123.8, 120.8, 118.8, 118.2, 70.9, 70.0, 22.0; HRMS (ESI+) m/z [M + K]+ calcd for
C28H28N4O5K: 539.1691, Found: 539.1690.

3qa.yellow solid (34.4 mg, 68%), Rf = 0.32 (25% EtOAc in hexane), mp 223.1–224.2 ◦C;
1H NMR (400 MHz, CDCl3) δ 11.16 (s, 1H), 9.78 (d, J = 7.92 Hz, 1H), 8.62 (d, J = 4.30 Hz,
1H), 8.44 (d, J = 7.26 Hz, 1H), 8.16–8.07 (m, 2H), 7.90 (d, J = 6.08 Hz, 2H), 7.77–7.71 (m, 3H),
7.63–7.57 (m, 2H), 7.20 (s, 1H), 5.02 (s, 1H), 1.26–1.06 (m, 12H); 13C NMR (100 MHz, CDCl3)
δ 163.8, 156.1, 147.3, 140.0, 137.7, 134.9, 133.1, 130.8, 130.7, 129.0, 127.8, 127.4, 127.2, 126.9,
126.7, 126.4, 126.0, 125.1, 123.6, 121.0, 118.3, 70.9, 70.0, 22.0, 21.9; HRMS (ESI+) m/z [M + K]+

calcd for C28H28N4O5K: 539.1691, Found: 539.1692.
3ab. pale yellow solid (29.8 mg, 73%), Rf = 0.32 (25% EtOAc in hexane), mp 81.2–83.9 ◦C;

1H NMR (400 MHz, CDCl3) δ 10.81 (s, 1H), 8.69–8.68 (m, 1H), 8.40 (d, J = 7.94 Hz, 1H),
8.34 (d, J = 7.81 Hz, 1H), 8.10–8.08 (m, 2H), 7.90 (dt, J1 = 1.24 Hz, J2 = 7.68 Hz, 1H), 7.78
(s, 1H), 7.58 (t, J = 6.99 Hz, 2H), 7.52–7.49 (m, 2H), 7.29–7.20 (m, 2H), 7.05 (s, 1H), 5.15 (s,
4H); 13C NMR (100 MHz, CDCl3) δ 162.3, 156.1, 149.7, 148.1, 137.8, 135.7, 135.4, 134.4, 133.0,
130.6, 128.5, 128.2, 128.0, 127.6, 127.0, 126.8, 126.7, 126.6, 126.1, 123.6, 120.8, 118.0, 68.4, 67.8;
HRMS (ESI+) m/z [M + H]+ calcd for C32H27N4O5: 547.1976, Found: 547.1973.

3cb. yellow solid (48.4 mg, 83%), Rf = 0.32 (25% EtOAc in hexane), mp 68.9–70.2 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.55 (s, 1H), 8.61 (d, J = 2.12 Hz, 1H), 8.33 (d, J = 7.89 Hz,
1H), 8.26 (d, J = 8.33 Hz, 1H), 8.09–8.01 (m, 2H), 7.81–7.79 (m, 3H), 7.59–7.50 (m, 2H),
7.30–7.91 (m, 9H), 7.04 (s, 1H), 5.14 (s, 4H); 13C NMR (100 MHz, CDCl3) δ 161.5, 156.2,
147.8, 147.2, 137.5, 135.7, 135.6, 135.5, 134.7, 132.7, 130.7, 128.5, 128.3, 128.2, 127.6, 127.0,
126.8, 126.7, 126.0, 123.8, 123.6, 120.7, 118.3, 68.4, 67.8; HRMS (ESI+) m/z [M + H]+ calcd for
C32H26ClN4O5: 581.1586, Found: 581.1584.

3bd. pale yellow solid (58.6 mg, 94%), Rf = 0.32 (25% EtOAc in hexane), mp 69.4–71.6 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.55 (s, 1H), 8.71 (d, J = 1.92 Hz, 1H), 8.32 (d, J = 7.93 Hz,
1H), 8.19–8.10 (m, 2H), 8.01 (d, J = 8.61 Hz, 1H), 7.94 (d, J = 7.72 Hz, 1H), 7.83–7.75 (m, 2H),
7.58–7.49 (m, 2H), 7.26–7.18 (m, 9H), 7.03 (s, 1H), 5.13 (s, 4H); 13C NMR (100 MHz, CDCl3)
δ 161.6, 156.2, 149.4, 148.2, 140.5, 135.7, 135.5, 134.8, 132.6, 130.7, 128.5, 128.3, 128.2, 128.1,
127.6, 127.0, 126.8, 126.7, 126.0, 124.6, 124.0, 123.8, 120.6, 118.3, 68.4, 67.8; HRMS (ESI+) m/z
[M + H]+ calcd for C32H26BrN4O5: 625.1081 Found: 625.1080.

3eb. white solid (41.8 mg, 67%), Rf = 0.32 (25% EtOAc in hexane), mp 74.1–75.3 ◦C; 1H
NMR (400 MHz, CDCl3) δ 10.74 (s, 1H), 8.63 (d, J = 4.05 Hz, 1H), 8.38 (d, J = 7.87 Hz, 1H),
8.10–8.01 (m, 3H), 7.76 (s, 1H), 7.58–7.50 (m, 3H), 7.34–7.72 (m, 10H), 7.05 (s, 1H), 5.15 (s,
4H); 13C NMR (100 MHz, CDCl3) δ 161.1, 156.1, 146.5, 146.2, 144.5, 135.6, 135.4, 134.4, 132.9,
130.5, 128.5, 128.3, 128.1, 127.6, 126.9, 136.9, 126.6, 126.0, 123.5, 120.7, 120.0, 118.1, 68.4, 67.9;
HRMS (ESI+) m/z [M + H]+ calcd for C32H26BrN4O5: 625.1081 Found: 625.1080.

3fb. pale yellow solid (41.9 mg, 72%), Rf = 0.32 (25% EtOAc in hexane), mp 75.9–77.3 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.37 (s, 1H), 8.29–8.23 (m, 2H), 8.03 (d, J = 8.56 Hz, 2H),
7.84–7.70 (m, 3H), 7.60 (t, J = 7.05 Hz, 1H), 7.51 (d, J = 7.88 Hz, 2H), 7.28–7.20 (m, 9H),
7.04 (s, 1H), 5.14 (s, 4H); 13C NMR (100 MHz, CDCl3) δ 161.0, 156.2, 150.2, 150.1, 140.4,
135.6, 135.4, 135.0, 132.5, 130.6, 128.5, 128.3, 128.2, 127.6, 127.5, 127.1, 126.8, 126.0, 123.7,
121.3, 120.8, 118.7, 68.4, 67.8; HRMS (ESI+) m/z [M + H]+ calcd for C32H26ClN4O5: 581.1586,
Found: 581.1585.

3hb. pale yellow solid (46.7 mg, 80%), Rf = 0.32 (25% EtOAc in hexane), mp 70.5–71.1 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.65 (s, 1H), 8.57 (d, J = 5.24 Hz, 1H), 8.36–8.33 (m, 2H), 8.03
(d, J = 8.66 Hz, 2H), 7.77 (s, 1H), 7.59–7.55 (m, 2H), 7.50 (dd, J1 = 1.96 Hz, J2 = 5.16 Hz, 2H),
7.30–7.20 (m, 9H), 7.04 (s, 1H), 5.14 (s, 4H); 13C NMR (100 MHz, CDCl3) δ 161.1, 156.1,
151.2, 149.0, 146.4, 135.6, 135.4, 134.7, 132.7, 130.6, 128.5, 128.3, 128.2, 127.7, 127.0, 126.9,
126.7, 126.1, 123.6, 123.2, 120.7, 118.1, 68.5, 67.9; HRMS (ESI+) m/z [M + H]+ calcd for
C32H26ClN4O5: 581.1586, Found: 581.1586.

3ib. white solid (44.7 mg, 80%), Rf = 0.32 (25% EtOAc in hexane), mp 67.1–69.5 ◦C; 1H
NMR (400 MHz, CDCl3) δ 11.05 (s, 1H), 8.52 (d, J = 3.61 Hz, 1H), 8.35 (d, J = 7.92 Hz, 1H),
8.07 (d, J = 8.73 Hz, 2H), 7.75 (s, 1H), 7.65–7.49 (m, 4H), 7.38 (dd, J1 = 4.46 Hz, J2 = 7.72 Hz,
2H), 7.28–7.20 (m, 8H), 7.05 (s, 1H), 5.14 (s, 4H), 2.82 (s, 3H); 13C NMR (100 MHz, CDCl3)
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δ 163.8, 156.1, 146.7, 145.5, 141.4, 136.4, 135.7, 135.5, 134.1, 133.5, 130.6, 128.5, 128.3, 128.2,
127.6, 127.1, 126.9, 126.5, 126.2, 123.5, 121.1, 117.8, 68.4, 67.8, 20.8; HRMS (ESI+) m/z [M +
K]+ calcd for C33H28N4O5K: 599.1691, Found: 599.1692.

3ac. pale yellow solid (45.8 mg, 95%), Rf = 0.32 (25% EtOAc in hexane), mp 215.5–216.8 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.80 (s, 1H), 8.69 (d, J = 4.28 Hz, 1H), 8.43 (d, J = 7.29 Hz,
1H), 8.34 (d, J = 7.77 Hz, 1H), 8.10–8.08 (m, 2H), 7.92 (t, J = 7.26 Hz, 1H), 7.73 (s, 1H),
7.59–7.57 (m, 2H), 7.51 (t, J = 6.04 Hz, 1H), 7.11 (s, 1H), 1.48–1.25 (m, 18H); 13C NMR
(100 MHz, CDCl3) δ 162.2, 155.5, 149.9, 148.1, 137.8, 135.6, 132.4, 130.7, 126.6, 126.3, 123.9,
122.5, 120.7, 118.0, 82.0, 81.3, 28.2, 28.0; HRMS (ESI+) m/z [M + H]+ calcd for C26H31N4O5:
479.2289, Found: 479.2288.

3cc. white solid (25.8 mg, 50%), Rf = 0.32 (25% EtOAc in hexane), mp 170.1–172.2 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.56 (s, 1H), 8.65 (d, J = 2.12 Hz, 1H), 8.38 (d, J = 7.54 Hz,
1H), 8.31 (d, J = 8.32 Hz, 1H), 8.06–8.04 (m, 2H), 7.92 (dd, J1 = 2.17 Hz, J2 = 8.33 Hz, 1H),
7.22 (s, 1H), 7.62–7.57 (m, 2H), 7.00 (s, 1H), 1.49–1.30 (m, 18H); 13C NMR (100 MHz, CDCl3)
δ 161.3, 155.4, 148.0, 147.2, 137.5, 135.7, 135.5, 132.0, 130.7, 126.7, 126.6, 126.4, 125.9, 125.5,
123.9, 123.6, 120.6, 118.2, 82.1, 81.4, 29.6, 28.2, 28.0; HRMS (ESI+) m/z [M + H]+ calcd for
C26H30ClN4O5: 513.1899, Found: 513.1901.

3dc. pale yellow solid (29.4 mg, 53%), Rf = 0.32 (25% EtOAc in hexane), mp 182.7–184.9 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.57 (s, 1H), 8.77 (d, J = 1.95 Hz, 1H), 8.38 (d, J = 7.58 Hz,
1H), 8.24 (d, J = 8.41 Hz, 1H), 8.09–8.04 (m, 3H), 7.73 (s, 1H), 7.62–7.57 (m, 2H), 6.99 (s, 1H),
1.55–1.30 (m, 18H); 13C NMR (100 MHz, CDCl3) δ 161.5, 154.8, 149.4, 148.4, 140.5, 135.7,
132.0, 130.7, 126.7, 126.4, 125.4, 124.5, 123.9, 120.6, 118.2, 82.1, 81.4, 29.6, 28.2, 28.0; HRMS
(ESI+) m/z [M + H]+ calcd for C26H30BrN4O5: 557.1394, Found: 557.1395.

3fc. pale yellow solid (34.8 mg, 68%), Rf = 0.32 (25% EtOAc in hexane), mp 207.8–209.6 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.39 (s, 1H), 8.33 (d, J = 7.78 Hz, 1H), 8.27 (d, J = 7.35 Hz,
1H), 8.05 (d, J = 8.80 Hz, 2H), 7.90 (t, J = 7.79 Hz, 1H), 7.73 (s, 1H), 7.64–7.57 (m, 2H), 7.55
(d, J = 7.78 Hz, 1H), 7.05 (s, 1H), 1.48–1.25 (m, 18H); 13C NMR (100 MHz, CDCl3) δ 160.9,
155.5, 154.7, 150.4, 150.1, 140.4, 136.0, 131.9, 130.7, 127.4, 127.0, 126.6, 125.3, 123.9, 121.2,
120.7, 118.8, 82.1, 82.5, 28.2, 28.0; HRMS (ESI+) m/z [M + Na]+ calcd for C26H29ClN4O5Na:
535.1719, Found: 535.1724.

3ic. yellow solid (39.5 mg, 80%), Rf = 0.32 (25% EtOAc in hexane), mp 197.0–198.1 ◦C;
1H NMR (400 MHz, CDCl3) δ 11.04 (s, 1H), 8.54–8.53 (m, 1H), 8.37 (d, J = 7.09 Hz, 1H),
8.10–8.07 (m, 2H), 7.70–7.65 (m, 2H), 7.59–7.55 (m, 2H), 7.40 (dd, J1 = 4.58 Hz, J2 = 7.70 Hz,
1H), 7.03 (s, 1H), 2.85 (s, 3H), 1.48–1.25 (m, 18H); 13C NMR (100 MHz, CDCl3) δ 163.7, 155.4,
146.8, 145.5, 141.4, 136.3, 135.2, 132.8,130.7, 127.0, 126.4, 126.2, 126.2, 123.7, 121.0, 118.0,
82.0, 81.3, 28.2, 28.0, 20.8; HRMS (ESI+) m/z [M + H]+ calcd for C27H33N4O5: 493.2445,
Found: 493.2446.

3jc. yellow solid (38.7 mg, 78%), Rf = 0.32 (25% EtOAc in hexane), mp 201.3–203.8 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.83 (s, 1H), 8.41 (d, J = 7.48 Hz, 1H), 8.15 (d, J = 7.62 Hz,
1H), 8.09–8.07 (m, 2H), 7.81 (t, J = 7.68 Hz, 1H), 7.73 (s, 1H), 7.37 (d, J = 7.65 Hz, 1H), 7.06
(s, 1H), 2.70 (s, 3H), 1.48–1.30 (m, 18H); 13C NMR (100 MHz, CDCl3) δ 162.4, 157.2, 155.4,
149.1, 137.9, 132.5, 130.8, 126.9, 126.4, 126.3, 123.9, 120.7, 119.6, 118.1, 82.0, 81.4, 28.2, 28.0,
24.4; HRMS (ESI+) m/z [M + H]+ calcd for C27H32N4O5: 493.2445, Found: 493.2448.

3nc. yellow solid (20.9 mg, 38%), Rf = 0.32 (25% EtOAc in hexane), mp 201.5–203.3 ◦C;
1H NMR (400 MHz, CDCl3) δ 9.62 (s, 1H), 8.29 (d, J = 6.17 Hz, 1H), 8.16 (d, J = 3.91 Hz, 1H),
8.07 (d, J = 7.73 Hz, 2H), 7.77–7.73 (m, 2H), 7.54 (t, J = 7.21 Hz, 1H), 3.39–3.26 (m, 4H), 7.19
(s, 1H), 7.02–6.98 (m, 2H), 1.56–1.34 (m, 18H); 13C NMR (100 MHz, CDCl3) δ 161.9, 154.9,
149.6, 147.3, 142.4, 138.0, 137.0, 136.2, 133.0, 132.1, 130.8, 129.1, 128.1, 126.8, 125.7, 125.5,
123.2, 121.8, 82.1, 81.4, 29.6, 28.2, 28.1; HRMS (ESI+) m/z [M + H]+ calcd for C32H35N4O5:
555.2602, Found: 555.2603.

3oc. yellow solid (40.8 mg, 83%), Rf = 0.32 (25% EtOAc in hexane), mp 202.5–204.7 ◦C;
1H NMR (400 MHz, CDCl3) δ 10.65 (s, 1H), 8.65 (d, J = 4.43 Hz, 1H), 8.35 (d, J = 7.82 Hz,
1H), 7.94–7.88 (m, 2H), 7.33–7.32 (m, 1H), 7.51–7.48 (m, 1H), 7.39 (t, J = 7.15 Hz, 1H), 7.29 (d,
J = 6.91 Hz, 1H), 7.03 (s, 1H), 2.99 (s, 3H), 1.47–1.43 (m, 18H); 13C NMR (100 MHz, CDCl3)
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δ 162.2, 155.3, 154.9, 149.9, 148.1, 137.7, 137.0, 133.3, 133.0, 132.3, 130.3, 128.5, 126.5, 126.1,
125.2, 122.1, 82.0, 81.3, 28.2, 28.0, 25.1; HRMS (ESI+) m/z [M + H]+ calcd for C27H33N4O5:
493.2445, Found: 493.2443.

4. Conclusions

In summary, we developed a simple and efficient protocol for silver(I)-catalyzed
amination of 1-naphthylamine derivatives with azodicarboxylate at the C4 site in acetone
at room temperature, leading to the target products in mostly good yields. Note that this
reaction might proceed with a self-redox process under external-oxidant and additive-free
conditions. The reaction is compatible with a variety of functional groups on both the
pyridine and naphthene rings of 1-naphthylamine derivatives.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal12091006/s1, Table S1: Optimization of Catalyst and Solvent, Table S2: Optimization of
Catalyst Loading, Table S3: Optimization of Time.
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