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Abstract: In the present study, glycerol was oxidized by photocatalysis to glyceraldehyde, formalde-
hyde, and formic acid. Copper-doped TiO2 was synthesized by the evaporation-induced self-assembly
approach and it was used as catalyst during the glycerol photo-oxidation reactions. The prepared
mesoporous material exhibited high specific surface area (242 m2/g) and band gap energy reduc-
tion of 2.55 eV compared to pure titania (3.2 eV) by the synthesis method due to the presence of
copper cations (Cu2+ identified by XPS). The catalyst showed only anatase crystalline phase with
nanocrystals around 8 nm and irregular agglomerates below 100 µm. The selectivity and formation
rate of the products were favored towards formaldehyde and glyceraldehyde. The variables studied
were catalyst amount, reaction temperature, and initial glycerol concentration. The response surface
analysis was used to evaluate the effect of the variables on the product’s concentration. The optimized
conditions were 0.4 g/L catalyst, 0.1 mol/L glycerol, and temperature 313.15 K. The response values
under optimal conditions were 3.23, 8.17, and 1.15 mM for glyceraldehyde, formaldehyde, and formic
acid, respectively. A higher selectivity towards formaldehyde was observed when visible light was
used as the radiation source. This study is useful to evaluate the best reaction conditions towards
value-added products during the oxidation of glycerol by photocatalysis using Cu/TiO2.

Keywords: Cu/TiO2; photo-oxidation; glycerol; products; optimization

1. Introduction

Biodiesel is a widely used energy alternative because it is environmentally friendly
compared to fossil fuels. However, the production of biodiesel generates a large amount of
glycerol as the main waste byproduct in the triglyceride transesterification reaction [1], with
an approximate formation weight ratio of 1:20 [2]. It is for this reason that interest in glycerol
has increased towards its conversion into value-added products [3]. Selective oxidation
of glycerol is a commonly used reaction for its conversion to chemicals of interest, such
as dihydroxyacetone, glyceraldehyde, formaldehyde, and various acids (formic, glyceric,
glycolic, oxalic, among others) [4,5].

Among the processes that have been carried out for the oxidation of glycerol are
with heterogeneous [6] and homogeneous [7] catalysts, and microbial [8] and electrochem-
ical [9] oxidation. Heterogeneous photocatalysis has been used as an alternative in the
selective conversion of glycerol towards certain products of interest, because the reactions
are performed under moderate conditions with relatively low energy consumption, using
different types of solid catalysts such as ZnO, Bi2WO6, Pt/CNT, and TiO2 [10–13]. Titanium
dioxide is the most widely used semiconductor due to its excellent properties (low cost and
toxicity, abundant, thermal, and chemical stability) [14,15]. The incorporation of metallic
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and non-metallic species in TiO2 in order to improve its photocatalytic performance has
been approached by several investigations to extend its absorption spectrum and/or to
reduce the recombination of the photogenerated electron/hole pairs [16,17]. Although
most research has focused on the production of hydrogen from glycerol [18–20], the gener-
ation of products with industrial importance has been neglected. Furthermore, although
photocatalysis is an advanced oxidation process, it can also be used to carry out partial
oxidations of organic molecules towards certain compounds of interest. Table 1 summarizes
the existing literature focused on the selective oxidation of glycerol by photocatalysis using
pure TiO2 and metal/TiO2 as catalysts, the applied reaction conditions, and the relevant
results regarding selectivity.

Table 1. Selective oxidation of glycerol by photocatalysis on TiO2 and metal/TiO2 catalysts.

Reaction Conditions Studied
Variables Obtained Products Selectivity

(Principal Product) Reference

Catalyst: Pt/TiO2
Catalyst: 0.5 g/L
Glycerol: 1 M
Temperature: 30 ◦C
Reactor type: batch
λ: simulated sunlight
Reaction time: 6 h

Catalyst synthesis method
Compound (selectivity):
Glyceraldehyde (46%)
Glycolaldehyde (54%)

Glycolaldehyde (54%) [21]

Catalyst: Ag-AgBr/TiO2
Catalyst: 1 g/L
Glycerol: 4.5 mM
Temperature: 25 ◦C
Reactor type: batch
λ: simulated sunlight
Reaction time: 4 h

Catalyst type

Compound (selectivity):
Glyceraldehyde (52%)

Dihydroxyacetone (36%)
Glycolic acid (8%)
Glyceric acid (4%)

Glyceraldehyde (52%) [22]

Catalyst: TiO2
Catalyst: 3 g/L
Glycerol: 0.3 M
Temperature: 25 ◦C
Reactor type: batch
λ: 100–600 nm
Reaction time: 24 h

Catalyst synthesis method

Compound (yield):
Glycolaldehyde (39.2%)
Glyceraldehyde (4.9%)

Dihydroxyacetone (3.3%)
Glycolic acid (2.2%)

Hydroxypyruvic acid (2.1%)
Formic acid (26.6%)

Glycolaldehyde (50%) [23]

Catalyst: (Bi, Pd, Pt, Au)/TiO2
Catalyst: 3 g/L
Glycerol: 0.3 M
Temperature: 25 ◦C
Reactor type: batch
λ: 200–600 nm
Reaction time: 14 h

Metal type

Compound (yield):
Glyceraldehyde (23.1%)
Dihydroxyacetone (12%)

Glycolic acid (10.7%)
Hydroxypyruvic acid (13.6%)

Formic acid (15.3%)

Glyceraldehyde (31%) [24]

Catalyst: Au/TiO2
Catalyst: 1 g/L
Glycerol: 0.05 M
Temperature: 90 ◦C
Reactor type: batch (5 bar)
λ > 420 nm
Reaction time: 5 h

Support type

Glyceraldehyde
Dihydroxyacetone

Glycolic acid
Oxalic acid

Dihydroxyacetone (63%) [25]

Among the compounds obtained from the partial oxidation of glycerol (see Table 1),
dihydroxyacetone, glyceraldehyde, glycolaldehyde, formaldehyde, and formic acid are
considered chemicals with wide applications. Dihydroxyacetone is used as tanning com-
pound in the cosmetics industry, as well as in the polymer industry as a monomer in
the manufacture of biomaterials [26]. Glyceraldehyde is used in the skin care products
industry [27]. Glycolaldehyde is the smallest molecule containing one hydroxyl group
and one aldehyde group, which can be easily hydrogenated into value-added chemicals
such as ethylene glycol under moderate reaction conditions [13]. Other expected products
are formaldehyde and formic acid. Formaldehyde is widely used as a bactericide and a
preservative of biological samples [28]. Formic acid is used in the leather industry and
in agriculture [29]. Therefore, the generation of these compounds is of great industrial
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importance. As observed in Table 1, the main obtained product and selectivity of the
photocatalyzed glycerol oxidation varies according to type of catalyst, which also dictates
the wavelength to conduct this reaction (100 to 600 nm).

In this work, TiO2 doped with Cu cations was synthesized by the EISA (Evaporation-
Induced Self-Assembly) method [30] and its photocatalytic performance was evaluated
in the selective oxidation reaction of glycerol towards value-added products. Until now,
no study using TiO2 doped only with copper species and evaluated during the partial
oxidation of glycerol has been reported [31,32]. Initial glycerol concentration, amount of
catalyst, and temperature were the variables studied in order to obtain the best reaction
conditions. The response surface methodology [33] was used to optimize the effect of the
independent variables on the concentration of the products.

2. Results and Discussion
2.1. Characterization

The textural properties of the synthesized Cu/TiO2 and TiO2 catalysts are shown
in Table 2. By nitrogen adsorption-desorption, it was observed that the incorporation of
copper species into the TiO2 structure increased the specific surface area and the pore
volume with respect to the pure TiO2 catalyst. The Cu/TiO2 sample exhibited twice the
surface area than that obtained with the pure TiO2 material, and the pore volume increased
from 0.26 to 0.48 cm3/g, which can be attributed to structural defects in the titania due to
the presence of Cu cations [34]. The average pore diameter remained constant at 5.7 nm in
both catalysts. High textural properties can promote better catalytic activity, since more
organic molecules can be adsorbed [35].

Table 2. Textural properties and band-gap energies of Cu/TiO2 and TiO2 catalysts.

Catalyst Specific Surface
Area (m2/g)

Pore Volume
(cm3/g)

Pore Diameter
(nm)

Band Gap
(eV)

Cu/TiO2 242.4 0.48 5.7 2.55
TiO2 121.5 0.26 5.7 3.24

Isotherms and pore size distributions of the synthesized materials are shown in
Figure 1. The samples presented unimodal pore diameters with type IV isotherms and type
H2 hysteresis cycles (relative pressure values between 0.5 and 0.9), which is characteristic
of mesoporous materials forming a structure of interconnected pores [36]. The saturation
point adsorption band for the Cu/TiO2 sample is higher compared to that of the TiO2
sample, which corresponds to a higher surface area, as can be seen in Figure 1a.
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Figure 2 shows the X-ray diffraction patterns of the synthesized catalysts. As can be
seen, the materials exhibited only characteristic peaks of the anatase TiO2 crystalline phase
corresponding to the planes (101), (004), (200), (105), (211), and (204), which are located at 2θ
values of 25.29◦, 37.94◦, 47.97◦, 53.91◦, 55.03◦, and 62.65◦, respectively [37]. Copper species
can be present in the Cu/TiO2 catalysts as Cu2+, based on the used synthesis method [38],
these species were later confirmed by XPS. These species exhibit ionic radii (0.072 nm) very
similar to those of the Ti4+ species (0.068 nm) that are part of TiO2 and they are probably
well dispersed within the structure of anatase crystals [39], so that no peak with respect
to copper oxides was observed (see Figure 2). On the other hand, a slight shift in the
position of the (101) anatase peak towards higher 2θ values is related to the crystal lattice
distortion by Cu species, which reduces crystal growth [40]. As can be seen in Table 3, the
addition of Cu cations in the titania reduces the average crystalline size from 8.22 nm to
7.98 nm, and an increase in the lattice distortion can be observed. The copper content in
the catalyst, determined by atomic absorption spectroscopy, was 3.8 wt.%, as can be seen
in Table 3. This value is in good agreement with the theoretical value of 3.9 wt.%. Energy
dispersive spectroscopy analysis was also carried out and showed a value of 3.75 wt.% Cu
(see Figure S1).
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Cu/TiO2 25.3 7.98 0.0198 3.8
TiO2 25.2 8.22 0.0193 -

Images of catalysts Cu/TiO2 and TiO2 obtained by SEM are depicted in Figure 3. As
can be seen, both materials exhibit particles with irregular shapes and sizes ranging from
30 to 100 µm. This type of morphology is similar when compared to other investigations
using the same synthesis methodology [41].
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Figure 3. SEM images of catalysts (a) Cu/TiO2 and (b) TiO2.

Transmission electron micrographs (TEM) and high-resolution transmission electron
micrographs (HRTEM) for the synthesized catalysts are shown in Figure 4. Both materials,
Cu/TiO2 and TiO2, exhibit crystalline structures of irregular shapes and sizes between 7 and
10 nm, as can be seen in Figure 4a,c, which is in agreement with the XRD analyses during
the estimation of the average anatase crystal size. HRTEM images shown in Figure 4b,d
exhibit parallel lines that are related to the distance “d” between two planes (101) of anatase
at a value of 0.35 nm [42], which is the preferential growth direction of the crystals. These
images confirm the high crystallinity and well-defined structures of the catalysts.
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The band-gap energies of the synthesized materials were determined by DRS analysis
(see Table 2). The estimation of these values was carried out using the Kubelka–Munk
function in Tauc graphs, as can be seen in Figure 5. The estimated value for the TiO2
sample was 3.24 eV, which is in agreement with the reported band-gap value of anatase
at 3.2 eV [43]. When copper is incorporated into TiO2, the band-gap value is reduced to
2.54 eV, which is related to charge transfers between the “3d” and “2p” orbitals of copper
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and oxygen, respectively, just below the conduction band of the semiconductor [44]. The
band-gap energy corresponds to the energy required to excite the semiconductor and thus
be able to generate the electron/hole pairs responsible for the photocatalytic performance.
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By means of X-ray photoelectron spectroscopy (XPS) analysis, the oxidation state
of the species on the surface of the Cu/TiO2 catalyst were established. Figure 6a shows
the XPS spectra for Ti 2p with peaks for Ti 2p1/2 and Ti 2p3/2 at 264.2 eV and 258.6 eV,
respectively, assigned to Ti4+ [41]. Figure 6b shows the XPS spectra for O 1s with two
contributions at 532.2 eV and 530.7 eV, assigned to surface oxygen (O-H) and oxygen into
the TiO2 lattice (O-Ti), respectively [45]. Figure 6c shows the XPS spectra for Cu 2p with
two peaks at binding energies of 950 eV and 933 eV assigned to the Cu 2p1/2 and Cu 2p3/2
states, respectively, which correspond to Cu2+ species forming Cu-O-Ti bonds [38].
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2.2. Glycerol Photo-Oxidation
2.2.1. Effect of Catalyst Loading

The amounts of catalyst evaluated were selected based on the concentrations used
for this type of photocatalytic reaction [21,46,47]. The glycerol oxidation with the effect
of the amount of catalyst is shown in Figure 7. As can be seen, high percentages in the
decrease of glycerol are not obtained at the end of the reaction time, achieving conversions
between 6 and 15%, approximately, with the three amounts of Cu/TiO2 in 6 h. Although
oxidation is slow, an increase in the conversion can be observed with the increase in the
catalyst loading, which is related to a greater area available for photon absorption during
catalytic activation by the effect of radiation, which leads to a high rate of hydroxyl radical
generation. Similarly, the catalyst load could increase the number of photogenerated active
sites for the adsorption of organic molecules [22,24]. Likewise, a considerable increase in the
initial reaction rate was observed when using a higher catalyst loading (0.4 g/L), obtaining
a value of 19.8× 10−4 mol/L h. In photocatalysis, a decay trend in the degradation rate may
be related to an excess in the amount of catalyst, which reduces the penetration of radiation
due to the opacity of the solution [47]. In this study, such maximum catalyst loading limit is
not exceeded. It is also worth noting that the maximum catalyst concentration used in this
work is one order of magnitude lower than other studies where 100% conversion has been
reported with catalysts such as Au/TiO2 and using a lamp with higher intensity (100 W)
than the used here (8 W) [24].
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The concentration and selectivity of glycerol oxidation products when using different
catalyst concentrations are shown in Figure 8. As can be seen, the compounds formed
during the oxidation of glycerol are glyceraldehyde (GCD), formaldehyde (FD), and formic
acid (FA). When the amount of catalyst is low (0.1 g/L), the lowest generation of products is
obtained. On the other hand, when the catalyst loading is the highest (0.4 g/L), a maximum
concentration can be observed. A high concentration of product formation associated
with high amount of catalyst may be related to higher generation of hydroxyl radicals, as
shown in Equations (1)–(3), which are the main species responsible for the oxidation of the
organic molecule [48]. Likewise, copper species can act as electron traps by reducing the
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recombination rate of photogenerated electron/hole pairs, as can be seen in Equation (4),
thus increasing the generation of •OH radicals [49],

Cu/TiO2 + hv→ hvb
+ + ecb

− (1)

hvb
+ + H2O→ •OH + H+ (2)

Glycerol + •OH→ oxidation products (3)

Cu2+ + ecb
− → Cu+ (4)
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(GCD), (b) formaldehyde (FD), and (c) formic acid (FA). Initial glycerol = 6.25× 10−2 M, T = 305.65 K,
Cu/TiO2 catalyst.

Figure 8a shows the GCD concentration profiles with a maximum concentration
at 6 h of reaction for all catalyst loadings, as a result of oxidation. The formation of
glyceraldehyde is related to the attack of hydroxyl radicals on the glycerol molecule in the
C1 position in comparison with the reactivity in the C2 position towards the formation of
dihydroxyacetone [50]; however, in this study, the generation of dihydroxyacetone was
negligible since the abstraction of the first hydrogen is favored (see Figure 9) [51]. The
subsequent oxidation of glyceraldehyde by hydroxyl radicals can form other byproducts,
such as formic acid and formaldehyde, this is due to the incision of the C-C bonds in the
organic molecule [46]. Figure 8b,c shows the concentration profiles of the formaldehyde
and formic acid formed during the photo-oxidation tests, respectively. Both products show
an increasing trend over time for each catalyst amount, but with 0.4 g/L of catalyst the
greatest generation is observed. FD was the product with the highest concentration of
formation compared to GCD and FA, showing a selectivity of up to 65%, as shown in
Figure 8.
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2.2.2. Effect of Reaction Temperature

The effect of reaction temperature was studied in the range of 298.15–313.15 K while
keeping the concentration of catalyst (0.25 g/L) and glycerol (6.25 × 10−2 M) constant.
Figure 10 shows the glycerol conversion and initial reaction rate with different temperatures
on the photo-oxidation reactions. As can be seen, the increase in temperature promotes the
degradation of glycerol, achieving a conversion of 21% at 313.15 K in 6 h. This is related to
a greater molecular excitation that favors the interaction between the glycerol molecules
and the catalyst, which increases the catalytic activity [52]. Likewise, initial reaction rates
are favored by the increase in temperature. The decrease in glycerol concentration due to
evaporation from solution is considered negligible.
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glycerol = 6.25 × 10−2 M, Cu/TiO2 = 0.25 g/L).

Figure 11 shows the effect of reaction temperature on concentration and selectivity
of the products formed during glycerol photo-oxidation. It is worth noticing that the
accumulation of GCD is favored by the increase of temperature, see Figure 11a, which is
associated with an increase in the oxidation rate of glycerol [53]. These results indicate the
reaction, beyond temperatures of 305 K, is being photo- and thermo-activated. The GCD
concentration increases 57% as the temperature increases from 298.15 K to 313.15 K after
6 h of reaction due to high oxidation. This is supported by the fact that the production
rates of the secondary products (FD and FA), see Figure 11b,c, increase according to
temperature. The selectivity of these products remained practically constant with the
increase in temperature with values around 69% and 8% for FD and FA, respectively. In the
case of GCD, the selectivity decreases with high temperature and this can be ascribed to
the presumed increase in its oxidation rate. The maximum concentration of 7.06 mM was
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obtained for formaldehyde compared to the glyceraldehyde (1.91 mM) and formic acid
(0.73 mM) products at 313.15 K.
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Cu/TiO2 = 0.25 g/L.

2.2.3. Effect of Initial Glycerol Concentration

The effect of the initial glycerol concentration on the conversion percentage and initial
reaction rate of this organic compound is shown in Figure 12. As can be seen, the reaction
rate increases from 1.39 × 10−4 mol/L h to 31.16 × 10−4 mol/L h when the initial glycerol
concentration is quadrupled from 0.025 M to 0.10 M, which is related to a high oxidation at
the beginning of the reaction due to the presence of a greater amount of organic glycerol
molecules. A decrease in the amount of glycerol was also observed for the three tested
concentrations due to oxidative processes. Low glycerol concentrations (25 mM) exhibited
higher percentages of decrease (23.2%) when compared to high initial concentrations
(100 mM) that showed a decrease of 9.7%. This behavior is associated with a saturation
effect on the active sites of the catalyst, which reduces the activity [54].

The products formed with an effect on the initial glycerol concentration are shown
in Figure 13. In this figure, it is observed that the formation of GCD is favored at high
concentrations of glycerol and long reaction times. The maximum formation of GCD and
selectivity were obtained of 1.53 mM and 30%, respectively, with a glycerol concentration
of 10 × 10−2 mol/L at 6 h of reaction, as shown in Figure 13a. On the other hand, the
generation of formaldehyde is not directly related to the increase in glycerol concentration,
because its maximum concentration was obtained by using the intermediate initial con-
centration of 6.25 × 10−2 mol/L, as can be seen in Figure 13b. With respect to formic acid,
a considerable effect was not observed with the initial amount of glycerol; however, an
increase in selectivity occurs when a high initial concentration of glycerol is used according
to Figure 13c. Both FD and FA were identified from low glycerol concentrations as they
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are secondary reaction products. Formaldehyde is the reaction product that exhibited the
highest formation with a concentration of 4.2 mM. Although other products generated
during the oxidation of glycerol have been reported by other investigations (glycolic and
glyceric acids) as precursor compounds of formaldehyde and formic acid [31,55], in this
study, such products were not identified.
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2.2.4. Total Organic Carbon Content

In order to evaluate the degree of mineralization during the glycerol photo-oxidation
tests, measurements of the total organic carbon (TOC) content were carried out and the
results are shown in Figure 14. As can be seen, the deep oxidation of glycerol towards
CO2 and H2O was not achieved with respect to the variables studied. However, when
a reaction temperature of 313.15 K is used, the maximum change in the TOC value is
achieved with a decrease of 10% after 6 h of reaction, as can be seen in Figure 14b. This
phenomenon is related to the high oxidation of the organic molecule, as well as of the
intermediate compounds.
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(a) amount of catalyst, (b) reaction temperature, and (c) initial glycerol concentration.

2.2.5. Optimization

The experimental design for the optimization of the independent variables, catalyst
amount (X1), reaction temperature (X2), and glycerol concentration (X3), towards the
concentration of the products is shown in Table 4. The polynomial equation for each
response variable with its corresponding coefficients calculated from the experimental
values using the response surface methodology is shown in Equations (5)–(7).

Sqrt (GCD × 104) = 301.49 + 11.25X1 − 1.95X2 − 423.22X3 − 11.98X1
2 + 0.003X2

2 − 216.90X3
2 − 0.017X1X2 + 51.06X1X3 + 1.48X1X3 (5)

Sqrt (FD × 104) = 1133.21 − 25.54X1 − 7.44X2 − 435.56X3 − 22.88X1
2 + 0.012X2

2 − 582.62X3
2 + 0.137X1X2 + 40.26X1X3 + 1.62X1X3 (6)

Sqrt (FA × 104) = 318.16 + 6.48X1 − 2.08X2 − 239.91X3 − 6.40X1
2 + 0.003X2

2 + 28.46X3
2 − 0.012X1X2 + 26.49X1X3 + 0.764X1X3 (7)
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Table 4. Experimental design with independent variables and response variables for the selective
photo-oxidation of glycerol.

Run

Independent Variables Response Variables

Catalyst
Concentration

(g/L)

Reaction
Temperature

(K)

Glycerol
Concentration

(mol/L)

GCD × 104

(mol/L)
FD × 104

(mol/L)
FA × 104

(mol/L)

1 0.40 313.15 0.0250 10.103 58.834 5.582
2 0.10 313.15 0.1000 17.648 36.328 7.507
3 0.10 305.65 0.0625 8.151 22.669 3.078
4 0.40 298.15 0.1000 13.772 25.308 4.762
5 0.25 298.15 0.0625 12.132 35.432 4.112
6 0.40 305.65 0.0625 16.862 51.647 5.304
7 0.40 298.15 0.0250 8.532 33.806 4.221
8 0.25 305.65 0.0625 14.667 42.121 5.061
9 0.10 298.15 0.0250 6.078 17.491 3.725
10 0.25 305.65 0.0625 14.697 42.160 5.079
11 0.25 305.65 0.0250 8.844 34.104 4.316
12 0.25 305.65 0.0625 14.637 42.082 5.043
13 0.25 305.65 0.0625 14.691 42.178 5.067
14 0.10 298.15 0.1000 4.863 8.761 2.309
15 0.25 313.15 0.0625 19.129 70.601 7.295
16 0.25 305.65 0.0625 14.644 42.065 5.055
17 0.10 313.15 0.0250 8.391 34.685 5.517
18 0.25 305.65 0.0625 14.731 42.273 5.089
19 0.25 305.65 0.1000 15.338 30.237 5.513
20 0.40 313.15 0.1000 32.834 84.294 11.613

The analysis of variance (ANOVA), as can be seen in Table S1 of the Supplementary
Information, suggests a quadratic polynomial model with a square root transform for a
better representation of the experimental data according to the value obtained from the
coefficient of determination (R2), with values of 0.9908, 0.9949, and 0.9857 for the response
variables GCD, FD, and FA, respectively. R2 values close to unity indicate a better fit of the
data; otherwise small values indicate that the response values are not adequate to explain
the behavior [56]. The values of the determination coefficients obtained in our study are
higher than 0.7, therefore the effect of the independent variables on the response values
can be appropriately described by the quadratic polynomial model (Fit Statistics can be
seen in Table S1).

Pareto analysis was performed according to Equation (8) in order to determine the
percentage effect of each factor (Pi) on the responses,

Pi =

 αi

∑
i

αi

× 100 (8)

Figure 15 shows the Pareto graphic analysis. The results in this figure suggest that
among the variables, α3 (glycerol concentration, mol/L) produces the largest effect: 41.52%,
19.36%, and 38.16% on all responses (GCD, FD, and FA), respectively. Moreover, the
interaction term α13 (catalyst amount (g/L)*glycerol concentration (mol/L)), produces a
medium effect 5.01%, 1.79%, and 4.21% on all responses (GCD, FD, and FA), respectively.

In order to observe the influence of the amount of catalyst, reaction temperature, and
glycerol concentration on the response variables (products concentration), 3D plots are
shown in Figure 16 by keeping one independent variable constant (at the central value) and
varying the other two variables within the studied range. Figure 16a,d,g shows the change
in reaction temperature and amount of catalyst with a constant glycerol concentration of
0.0625 mol/L, Figure 16b,e,h presents the variation in glycerol concentration and catalyst
amount with a constant reaction temperature of 305.65 K, and Figure 16c,f,i exhibits the
change in glycerol concentration and reaction temperature with a constant catalyst amount
of 0.25 g/L, which allows to graphically observe the interaction of all the independent
variables involved in this study.
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The optimization of the values for the response variables is shown in Table 5. The
optimization was carried out considering as objective goal the maximization of the GCD,
FD, and FA products within the entire range of values of the independent variables. The
result obtained with the highest desirability (0.984) was selected as the optimum point. The
optimized reaction conditions were using a catalyst amount of 0.4 g/L, reaction temperature
of 313.15 K, and glycerol concentration of 0.1 mol/L. The values of the response variables
at the optimal conditions were 32.27 × 10−4, 81.74 × 10−4, and 11.47 × 10−4 mol/L for
GCD, FD, and FA, respectively.

Table 5. Optimum and experimental values of the response variables.

Response Variables Optimum
× 104 (mol/L)

Experimental
× 104 (mol/L)

Glyceraldehyde (GCD) 32.267 32.834
Formaldehyde (FD) 81.741 84.294

Formic acid (FA) 11.465 11.613

The optimal reaction conditions towards the maximization of the products were
evaluated using TiO2 + UV, UV and visible light (λ > 400 nm), and the results are shown in
Figure 17. Therefore, the photocatalytic activity during glycerol oxidation is lower in all
processes compared to the Cu/TiO2 + UV system. The absence of copper species in titania
(TiO2 + UV system) significantly reduces the concentration of the products, which is due to
the fact that copper acts as an electron trap, see Equation (4), by reducing the recombination
of photogenerated charges, which increases the formation of the main oxidative species
(hydroxyl radicals). It can also be observed in Figure 17 that the glycerol oxidation also
proceeds with UV light only. This might be due to the production of hydroxyl radicals from
hydrogen peroxide that is being produced via the following two reactions [51],

H• + O2 → HO2
• (9)

HO2
• + HO2

• → H2O2 + O2 (10)
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The generation of H2O2 was previously proven in the same reaction system, i.e., lamp
and reactor [51]. Once the H2O2 is formed, this might be dissociated into hydroxyl radicals
(responsible of glycerol oxidation) by a Fenton-like mechanism favored by the presence of
Cu [51]. The proton that is activated for reaction (9) to proceed is believed to come from the
interaction of an energetic enough light source and glycerol [51]. The oxygen in reaction (9)
is the one in solution.

Thus, by contrasting the results in Figure 17, the photocatalytic effect of the synthesized
material can be concluded. No effect of photolysis with visible radiation was observed.

On the other hand, only glyceraldehyde was obtained as a primary oxidation product with
a concentration of 2.22× 10−4 mol/L when using Cu/TiO2 + visible light, and a low concentra-
tion of formaldehyde (6.92× 10−4 mol/L) and formic acid (0.92 × 10−4 mol/L) as secondary
products compared to those obtained with Cu/TiO2 + UV radiation (84.29 × 10−4 mol/L
and 11.61 × 10−4 mol/L, respectively), according to the scheme proposed in Figure 9. This
behavior is related to the low activation of the catalyst, since the visible radiation did not
provide enough energy to generate a greater number of electron/hole pairs (see Figure S2),
despite the fact that the semiconductor presented a reduction in the band-gap energy (see
Table 2), which has been reported in other investigations [38–40]. However, the selectivity
towards formaldehyde is favored by using visible radiation (69%) instead of UV light (65%),
as can be seen in Figure 17. The pH before (5.8) and after (3.6) the process for the Cu/TiO2
+ UV system suggests the generation of acid species, in this case the formation of formic
acid as a secondary product during the photo-oxidation of glycerol [57].

The stability of the synthesized Cu/TiO2 catalyst was evaluated under optimal reaction
conditions using two catalyst reuse cycles. The TOC content was evaluated after each cycle
and the results are shown in Figure 18. As can be seen, there is no change in the TOC
value at the end of each cycle, which is related to the partial oxidation of glycerol without
reaching a deep level of oxidation in terms of mineralization in each reuse. This is a relevant
result since mineralization is a main cause of selectivity loss reported in other works [58].
Although H2 has been identified and quantified as a product from the photocatalytic
oxidation of glycerol [21,27], in this study, the investigation was centered only on the
generated organic products.
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The percentage of glycerol degradation and distribution of products formed for each
reuse cycle are shown in Figure 19. During the catalyst recycling experiments, a decrease of
only 2.5% in the percentage of glycerol degradation can be observed. This decrease can
be ascribed to the inherent experimental error and to catalyst loss during sampling and
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recovery in each cycle [59]. The oxidation towards formaldehyde as secondary reaction
product is also diminished and the accumulation of glyceraldehyde, as a primary product,
is increased after each reuse cycle.
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reuse cycles.

The main species involved in the oxidation of organic molecules were evaluated.
The effect of scavengers of holes and hydroxyl radicals was studied on the percentage of
glycerol degradation and the results are shown in Figure 20. As can be seen in Figure 20,
the presence of methanol (MeOH) in the reaction system as a hole scavenger [60,61] inhibits
the conversion of glycerol to approximately 7%. Similarly, the introduction of salicylic
acid (SA) as a scavenger of hydroxyl radicals [62] inhibits the conversion of glycerol to
a greater extent. The almost null conversion using SA confirms that hydroxyl radicals
are the dominant oxidative species, whose generation is through reactions (2), (12), (13)
and (14). In addition, the results when using MeOH suggest that holes on the titania
surface are also reactive species in the glycerol oxidation. On the other hand, the electron
trapped by the copper species can be scavenged by the oxygen present and by the hydrogen
peroxide formed [38], thus generating other reactive species by reactions (11) and (12),
which becomes a cycle of electron capture and donation during photocatalytic activation.
The presence of Cu2+ species after the catalyst first use was corroborated by XPS analysis
(see Figure S3).

Cu+ + O2 → Cu2+ + O2
•– (11)

Cu+ + H2O2 → Cu2+ + •OH + –OH (12)

H2O2 + hv→ 2•OH (13)

H2O2 + ecb
− → •OH + –OH (14)

The production rate values for GCD and FD obtained with TiO2 and other metal/TiO2
catalysts are summarized in Table 6. Formic acid was not considered in this table because it
was not quantified in the related literature. It is worth pointing out that the comparison
should be taken with caution since the values reported in Table 6 were obtained under
a different radiation field and a reactor completely different to that used in this work.
At this point, it is worth recalling that the radiation intensity and reactor design affect
oxidation rate [63]. Nevertheless, it is important to notice that the accumulation rate of
GCD and FD in this work is one and two orders of magnitude higher, respectively, than
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in previous studies where the glycerol photo-oxidation is catalyzed by other metals. It is
worth clarifying that it was decided to use the term accumulation rather than production
because is likely that those values are reflecting the rate of production and consumption.
This is because oxidation is acknowledged to proceed via the attack of hydroxyl radicals,
which are not selective at all. Thus, these radicals may be attacking the glycerol molecule
and concomitantly, albeit at a different rate, the oxidation products such as GCD and FD
in such a way that a higher amount of available hydroxyl radicals will be reflected in a
higher oxidation degree of all molecules, which will also decrease the concentration of all
of them. Therefore, the values in Table 6 suggest that Cu/TiO2 is not more active than the
other catalysts but is more selective by “dosing” the hydroxyl radical production.
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Table 6. Comparison of accumulation rate of glyceraldehyde (GCD) and formaldehyde (FD) with
TiO2, Cu/TiO2 and other metal-decorated TiO2.

Catalyst Product mol × 104/gcat·h Reference

Pt/TiO2 GCD 11.000 [21]

Ag-AgBr/TiO2 GCD 3.250 [22]

TiO2
GCD
FD

0.934
0.233

[24]

Bi/TiO2
GCD
FD

0.807
0.339

Pd/TiO2
GCD
FD

1.255
0.388

Pt/TiO2
GCD
FD

1.680
0.425

Au/TiO2
GCD
FD

1.279
0.504

Cu/TiO2
GCD
FD

13.681
35.122 This work

Based on the results found with the Cu/TiO2 catalyst presented in this work, it can be
said that one of its advantages over the other TiO2-based catalysts presented in Table 6, is
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to attain a high selectivity towards formaldehyde and glyceraldehyde without using an
expensive metal as platinum. Another advantage is its capability of being re-used.

3. Materials and Methods
3.1. Synthesis of Photocatalysts

The synthesis through the EISA approach was carried out according to the following
methodology: titanium butoxide (Ti(OC4H9)4) was added to ethanol (C2H6O) to form a
sol, then a surfactant (copolymer P123) was incorporated and the mixture was kept under
stirring for 30 min. Subsequently, the copper precursor (Cu(NO3)2·3H2O) was added in
a ratio of 5 at.% Cu with respect to the Ti species, and finally nitric acid (HNO3) was
dropwise added. The mixture was kept under constant stirring for 3 h, dried in a rotary
evaporator, and calcined at 400 ◦C for 4 h with an intermediate stage at 300 ◦C for 1 h and a
rate of 1 ◦C/min. Titanium precursor, solvent, surfactant, and acid were used in a molar
ratio of 5.8 × 10−3:1.085 × 10−1:1.03 × 10−4:2.06 × 10−2, respectively. Cu-free TiO2 was
synthesized by the same methodology for comparative purposes.

3.2. Characterization

X-ray diffraction (XRD) was used to characterize the synthesized materials using a
Bruker diffractometer (Advanced D8, Billerica, MA, USA) with Kα radiation and the spectra
were recorded in 2θ degrees between 22–66◦. The crystal size (D) of the nanostructures
was estimated by the Debye–Scherrer equation (D = kλ/β cos θ), while the distortion of
the crystal lattice by
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= β/4 tg θ, where k = 0.9, λ = 1.54 Å is the wavelength of the X-ray
radiation, θ is the diffraction angle, and β is the full-width at half-maximum (FWHM) of
the anatase peak.

The textural properties of the catalysts were determined by nitrogen physisorption
using Autosorb equipment (Quantachrome, Boynton Beach, FL, USA) at 77 K. The specific
surface area and the average pore diameter were estimated by the BET and BJH methods,
respectively. Before the analysis, the samples were degassed under vacuum for 2 h at
250 ◦C.

Band-gap energies were determined by UV–Vis diffuse reflectance spectroscopy (DRS)
using a spectrophotometer (Lambda 35, Perkin-Elmer, Waltham, MA, USA) equipped with
an integrating sphere (Labsphere RSA-PE-20, North Sutton, NH, USA).

The copper content was determined by atomic absorption spectroscopy (AAS). The
solid was dissolved by hydrofluoric acid, diluted in deionized water and analyzed in a
Perkin Elmer Spectrophotometer (AAnalyst 200, Waltham, MA, USA).

Images of the crystalline particles were obtained by transmission electron microscopy
(TEM) using a JEOL 2100 microscope at 200 kV and with a LaB6 filament (Peabody, MA, USA).
The size and shape of the catalytic particles were determined by scanning electron microscopy
(SEM) with a JEOL microscope (JSM-6510LV model, Peabody, MA, USA) at 25 kV. Energy
dispersive X-ray spectroscopy (EDS) was carried out to estimate the copper composition in
the synthesized catalyst using a voltage of 20 kV and a magnification of 550×.

Analysis by XPS (X-ray photoelectron spectroscopy) were carried out in a JPS-9200
spectrometer (Peabody, MA, USA) using an Al Kα radiation source and taking as reference
the binding energy of C 1s (284.6 eV).

3.3. Photo-Oxidation of Glycerol

The photo-oxidation reactions of glycerol were conducted in a batch type annular
reactor with an internal diameter of 2.5 cm and a height of 20 cm. The radiation source
was supplied by a mercury UV lamp of 8 W (Analytik Jena, Upland, CA, USA) placed at
the center of the reactor with a typical intensity of 166 W/m2 and a primary wavelength
of 254 nm. The desired temperature was kept constant inside the reactor during all the
photocatalytic tests by means of a thermal bath. A typical reaction was carried out as
follows: 0.1 L of glycerol solution was placed in the reactor and then the catalyst was added
and kept under constant stirring, finally the UV lamp was turned on to start the catalytic
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photo-oxidation, which was maintained for 6 h. Amount of catalyst (0.1, 0.25, and 0.4 g/L),
glycerol concentration (0.025, 0.0625, and 0.1 M), and reaction temperature (298.15, 305.65,
and 313.15 K) were the studied variables. The best reaction conditions were compared
to TiO2 + UV, UV, and visible light processes. Visible light (λ > 400 nm) was supplied by
three linear fluorescent lamps (TL5 Essential 14 W/840, Philips Lighting, Amsterdam, the
Netherlands). Deionized water was used in all experiments.

3.4. Analytical Methods

To assess the glycerol oxidation, several aliquots were removed from the reaction
system every 2 h, filtered (nylon membrane 0.2 µm) to remove solid particles, and ana-
lyzed by ultra high-performance liquid chromatography (UHPLC). The chromatograph
(Vanquish) equipped with a RefractoMax 521 Refractive Index Detector (Thermo Scientific,
Waltham, MA, USA) was used to identify the glycerol and products obtained after oxida-
tion. The column (5 µm, 7.8 × 300 mm, Carbomix Ca-NP, Newark, DE, USA) was kept at
80 ◦C with a flow rate of 0.6 mL/min (deionized water). For acid compounds, a column
(9 µm, 7.8 × 300 mm, Aminex HPX-87H, Hercules, CA, USA) at 60 ◦C and a flow rate of
0.5 mL/min (3 mM H2SO4 solution) was used. The reaction products were quantified
using calibration curves.

The Total Organic Carbon (TOC) content was determined with a TOC-L analyzer (Shi-
madzu, TOC-L CPH/CPN PC-Controlled model, Kyoto, Japan) by catalytic combustion
oxidation and infrared identification. Before analysis, 100 µL of the previously filtered sam-
ple was added to a 10 mL volumetric flask with deionized water. The TOC concentration
was determined according to the corresponding calibration curve.

3.5. Experimental Design

The effect of the independent variables namely, catalyst amount (X1), reaction temper-
ature (X2), and glycerol concentration (X3) on the concentration of the GCD (Y1), FD (Y2),
and FA (Y3) products was studied using the response surface methodology, which follows
a face-centered central composite design (FCCCD) with three factors with three levels (see
Table 7). Twenty treatments were used randomly according to the central composite design
with eight factorial, six axial, and six central points. In addition, a polynomial model of
second order was used to evaluate the response values (GCD, FD, and FA concentration) as
a function of the independent variables, as shown in Equation (15).

Yi = α0 + α1X1 + α2X2 + α3X3 + α11X1
2 + α22X2

2 + α33X3
2 + α12X1X2 + α13X1X3 + α23X2X3 (15)

where Yi represents the values of each response variable, the alpha terms are the coefficients
(linear, quadratic, and interactive), and the term α0 is a constant. The calculation of
the coefficients and the statistical parameters were determined using the Design Expert
software (version 10.0.8).

Table 7. Levels of the independent variables for the selective photo-oxidation of glycerol.

Independent Variables
Levels

−1 0 +1

Catalyst amount (g/L) 0.100 0.2500 0.40
Reaction temperature (K) 298.150 305.6500 313.15

Glycerol concentration (mol/L) 0.025 0.0625 0.10

4. Conclusions

In this study, titania doped with Cu2+ cations was successfully prepared using the
EISA method. The incorporation of copper doping species doubled the surface area of TiO2
up to 242 m2/g and a reduction of the band gap energy was obtained to a value of 2.55 eV.
This method allowed obtaining anatase crystalline phase nanocrystals with average sizes
of approximately 8 nm and irregular particle sizes ranging from 30 to 100 µm.
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The synthesized material proved to be a promising catalyst in selective oxidation
during the photocatalytic reaction of glycerol. The compounds formed as a result of
the glycerol oxidation were glyceraldehyde, formaldehyde, and formic acid, which are
value-added products with industrial importance. The selectivity was favored towards
formaldehyde as a secondary product, compared to glyceraldehyde, which is the primary
product during glycerol oxidation. Complete oxidation of the glycerol molecule was
not observed.

The response surface methodology was used to optimize the independent variables
(catalyst amount, reaction temperature, and glycerol concentration) and their relationship
with the response variables (product concentration). The optimal conditions towards the
maximization of the products considering the desirability function were achieved with the
highest values of the independent variables (catalyst loading = 0.4 g/L, glycerol concentra-
tion = 0.1 mol/L, and temperature 313.15 K), obtaining concentrations for glyceraldehyde,
formaldehyde, and formic acid of 3.23, 8.17, and 1.15 mM, respectively. Under these condi-
tions, the Cu/TiO2 + UV system was superior to the TiO2 + UV, UV, and Cu/TiO2 + Vis
processes. The selectivity towards formaldehyde was improved with visible radiation
under the optimal reaction conditions. It was found that glycerol oxidation photo-catalyzed
by Cu/TiO2 proceeds mainly by hydroxyl radicals attack.

The independent variable affecting the most of responses is glycerol concentration
and therefore special attention should be given to such a variable. The synthesized catalyst
exhibits an excellent capability for being re-used.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal12080835/s1, Figure S1: Energy Dispersive Spectroscopy analyzes
for the Cu/TiO2 catalyst; Figure S2: Photometric spectrum of the visible radiation lamp used during
the photocatalytic tests; Figure S3: XPS spectra of (a) Ti 2p, (b) O 1s, and (c) Cu 2p for the Cu/TiO2
catalyst after first use; Table S1: ANOVA for Quadratic model.
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