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Abstract: The fast development of the world civilization is continuously based on huge energy
consumption. The extra-consumption of fossil fuel (petroleum, coal, and gas) in past decades has
caused several political and environmental crises. Accordingly, the world, and especially the scientific
community, should discover alternative energy sources to safe-guard our future from severe climate
changes. Hydrogen is the ideal energy carrier, where nanomaterials, like layered double hydroxides
(LDHs), play a great role in hydrogen production from clean/renewable sources. Here, we review the
applications of LDHs in petroleum for the first time, as well as the recent breakthrough in the synthesis
of 1D-LDHs and their applications in water splitting to H2. By 1D-LDHs, it is possible to overcome
the drawbacks of commercial TiO2, such as its wide bandgap energy (3.2 eV) and working only in the
UV-region. Now, we can use TiO2-modified structures for infrared (IR)-induced water splitting to
hydrogen. Extending the performance of TiO2 into the IR-region, which includes 53% of sunlight
by 1D-LDHs, guarantees high hydrogen evolution rates during the day and night and in cloudy
conditions. This is a breakthrough for global hydrogen production and environmental remediation.

Keywords: hydrogen; layered double hydroxides; water splitting; bandgap energy; environmental
remediation

1. Introduction

Nowadays, huge amounts of energy have been consumed to make the world civiliza-
tion flourishing and continuous. Petroleum (crude oil) was the main source of energy for
more than one century [1], and it is considered that it will play this role for further decades.
Crude oil is a naturally occurring source of energy that consists mainly of hydrocarbons
(from C5 to C40+, Figure 1) with minor portions of S, O2, and N2 compounds [2,3].

Raw crude oil is not suitable for direct use as an energy source or in internal com-
bustion engines and must be purified by many physical and chemical treatments. The
physical treatment involves washing, sweetening, and then atmospheric/vacuum distilla-
tion. Distillations of crude oil result in its fractionation into light cuts (C5 gases, naphtha,
or gasoline), middle cuts (kerosene/jet fuel and diesel), and heavy cuts (heavy gas oil,
lubricant oil, wax, and bitumen/asphalt). The primary distilled portions usually contain
undesired metals and S, O2, and N2 contaminants, which can cause dangerous destruction
in refining, storage, and combustion equipment [4]. Hence, chemical treatments, such
as hydrodesulphurization, hydroisomerization, hydrodemetalization, and hydrocracking,
are required to remove such contaminants and upgrade the petroleum fraction for saving
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usage to a certain extent. The chemical treatment in the petroleum industry is known as
hydro-finishing. However, the combustion of gasoline, kerosene, and diesel produces SOx
and NOx by the remaining S and N2 impurities (10–500 ppm) and can cause acid rains and
ozone-depletion [4]. This has a negative impact on the environment as a whole and on
plants, animals, and human health.
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In recent years, many parts of the world suffered from different crises due to the cur-
rent climate states. Germany in Europe faced unexpected floods; North America suffered
from exceptional heatwaves; Spain, Turkey, Tunisia, and California recorded dangerous
wildfires; and there were abnormally cold conditions in Mexico, while extreme rainfall
and precipitation were recorded in Henan province (China). These climate accidents were
announced by the world meteorological organization’s (WMO) report (Geneva, 31 Octo-
ber 2021). Additionally, the temperature rising caused ocean warming and acidification,
elevation in sea-levels, and increasing greenhouse gas concentrations (CH4 = 1889 ppm,
N2O = 333.2 ppm, and CO2 = 413.2 ppm). This difference in the earth’s near-surface air tem-
perature critically affects global food security. It became a fact that the consumption of coal
and petroleum as main sources of energy causes ozone-depletion and climate change [5,6].
The WMO clearly stated that alternative solutions should be found to safe-guard millions of
people, coastal cities, and the ecosystem from this negative climate warming. The suggested
solution, according to the WMO, to safeguard our future is to build world cooperation for
encouraging the dependence on hydrogen within the framework of COP26.

Hydrogen is the ideal fuel to substitute petroleum or at least reduce its extra-consumption.
Firstly, hydrogen has a high caloric value, and secondly, it can be produced, transported,
and burnt in clean and green tracks [4]. Although the world still depends on petroleum
and fossil fuels, the world’s hydrogen production is by steam-reforming of hydrocarbons,
and only about 5% of hydrogen can be obtained through water electrolysis [7], and the
hydrogen produced by photocatalytic water splitting can almost be ignored.

2. Photocatalytic Water Splitting to Hydrogen

Water splitting is an endothermic chemical process that involves the dissociation
of water into its main constituents: oxygen and hydrogen. In contrast to conventional
electrolysis, which depends on an external direct current to cause water dissociation, water
splitting depends on using certain catalytic materials to undertake the O-H bond cleavage.
The first photocatalytic water splitting process was practically performed by Fujishima
and Honda in 1972 by using a photoelectrochemical cell and TiO2 as photocatalyst [8].
The photocatalytic water splitting process occurs on the photocatalyst (semiconductor)
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surface, according to the following mechanism, where the semiconductor should own a
suitable bandgap to harvest and react with certain light photons (of a specific wavelength).
Here, the light-photons cause excitation of the electrons in the valence band (VB) of the
semiconductor, and when the electrons gain sufficient energy from photons, they migrate to
the higher atomic level in the conduction band (CB). The migration of the excited electrons
creates excited holes (h+) in the VB, where water molecules can be effectively oxidized
into –OH/O2 and protons (H+). The created protons by water splitting in the VB are then
reduced into hydrogen by the excited electrons (e−) in the CB. The oxidation/reduction
of water in the VB/CB occurs only if there is no fast recombination between the excited
electrons and holes [9].

There are two types of the photo-induced water splitting: (1) photochemical water
splitting, in which only a suitable photocatalyst is used to harvest the light photons and
split water; (2) the photo-electrochemical method, where external electrical energy (current)
is applied to motivate the water splitting by the light/photocatalyst [10]. It is obvious
that photochemical water splitting is the potential route for convenient hydrogen produc-
tion from renewable sources (sun and water) in a feasible/economic pathway. This, in
turn, reflects the vital role of photocatalytic materials (semiconductors) and how they can
guarantee renewable and clean energy for the world, instead of fossil fuels.

3. General Introduction of Semiconductors

Generally, a semiconducting material has intermediate electron mobility (conduc-
tivity), and it is not conductive in normal conditions but can be conductive after certain
modifications. Semiconductors have sufficient electrons in the valence band and conduction
band and a gap between these two bands. This gap restricts the electron mobility (electrical
current) in normal conditions, but the mobility can be improved by simple treatment [11].
In photocatalysis, electron mobility occurs in semiconductors by the excitation of light.

3.1. Commonly Used Semiconductors for Photocatalysis
3.1.1. TiO2

TiO2 is the most common and first applied semiconductor in photocatalysis [12], as
it is naturally abundant, environmentally friendly, and chemically stable, and it can be
synthesized by versatile preparation routes in various morphologies [1,5]. However, pho-
tocatalysis by pure TiO2 is rare, which restricts its work in the UV-region to including
only 5% of sunlight radiation [1,5] due to its wide bandgap (3.2 eV) and the fast recom-
bination of the electrons/hole pairs [1,5]. To overcome these drawbacks, many efforts
have been made to prepare modified TiO2 structures, such as Pt-modified TiO2 [13], Au-
modified TiO2 [14], Ag-modified TiO2 [15], perovskite (CaTi, SrTi, BaTi)-modified TiO2 [16],
Carbon-modified TiO2 [17], metal (Co, Ni, Zn)-modified TiO2 [18], TiN-composites [19],
graphine/TiO2 nanoparticles [20], titania/hydroxyapatite (TiO2/HAp) composites [21],
and silica modified titania (TiO2-SiO2) [22], etc.

3.1.2. ZnO

The zinc oxide photocatalyst is another N-type semiconductor with a close wide band
gap energy to that of TiO2 (3.37 eV), and it can also be produced by potential methods,
such as flame spray pyrolysis, thermal decomposition, and hydrothermal synthesis. ZnO
finds wide applications in the UV-region for photodegradation of organic pollutants [19,23],
water splitting, and various photosynthesis applications.

3.1.3. CdS

Recently, CdS has drawn much attention as a predominant photocatalyst in various
fields of energy conversion/production and environmental remediation. CdS has a great
advantage over TiO2 due to its own narrower bandgap (2.4 eV) and excellent activity in
the visible light region, which counts for about 50% of the solar light [20,24]. Accordingly,
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recent and numerous studies have reported the applications of CdS in water splitting (for
both H2 and O2 evolution) and photodegradation of environmental hazards.

3.1.4. CuS

The bandgap energy of CuS can vary from 1.8 to ~2.2 eV and can be prepared by
various methodologies [21,25]. These features promote the use of CdS in diverse fields of
photocatalysis in a pure form or in combined phases with other semiconductors.

3.1.5. BiOx

Bismuth oxides (BiOx) are highly active n-type semiconductors, and there is worldwide
attention now for employing advanced BiOx-nanostructures for green energy production
and environmental remediation [1]. The high photocatalytic activities of BiOx have allowed
their applications with other semiconductors, such as CoOx and TiO2, for enhanced water
splitting to O2 and/or H2 [1,5].

3.1.6. MnO2

The Manganese element has variable oxidation states and provides various oxide
forms. The alpha-form (α-MnO2) is the common form in photocatalysis, and it has the
advantage over many catalysts due to its capability to work effectively, even at very low
temperatures. Due to the efficient lattice vacancies and oxygen defects both acting as charge
carriers, MnO2 finds wide applications in photocatalysis and especially in photodegrada-
tion of organic pollutants [26].

4. The Contribution of Nanomaterials in Energy and Environmental Remediation

Parallel to the discovery of petroleum, various types of materials were also discovered
and applied in crude oil production, consumption, and treatment to reduce or eliminate the
associated environmental pollution. Firstly, bulky materials containing common elements,
such as aluminum [27] and silicon [28], and naturally occurring materials, such as clays
and zeolites, were used [29,30]. Since 1998, a new era of nanotechnology and nanomaterials
has flourished. Nanotechnology is the science and technology of the preparation, char-
acterization, and application of nanomaterials, i.e., the materials of a crystal size ranging
from 1 to <100 nanometers [31]. Nanomaterials have better and different properties than
bulky materials due to the restricted electronic motion in the new nano-sized environment.
The discovered nanomaterials involve carbon nanotubes (CNTs) [32] graphene sheets [33],
metal-organic frameworks [34,35], polymer nanocomposites [36], quantum dots [37], single
crystals [38], core shells [39], and layered double hydroxides (LDHs).

Compared to the other nanomaterials that have been explored to date, LDH-based
materials have acquired worldwide attention by their unique two-dimensional (2D) and
well-tunable structures, in addition to their remarkable optical/electrochemical proper-
ties [40–44]. LDHs own high adsorption capacities and tunable bandgaps, and they can
effectively supply separated reduction and oxidation reaction corners for green energy
production instead of fossil fuels, as in the case of H2 and O2 evolution reactions [45–48].
The lamellar structure of LDH-structures allows the formation of variable crystal sizes,
shapes, and morphologies parallel to different types of interlayer cations and anions. In the
field of green energy production, these features effectively improve the efficiency of charge
transfer/separation and, in-turn, the net reactivates (photo-activities) of the catalysts (pho-
tocatalysts) derived from LDHs and the energy production process as a whole [47,49–51].
Based on the recent global interest in LDHs, numerous studies and review articles have
been published to estimate the beneficial properties and role of LDHs in energy and/or
environmental applications. A review by Fan et al. [52] discussed the preparation routes of
some LDH-structures and their related catalytic applications, while Mohapatra et al. [46]
extensively studied progress in the LDH-fabrication and photocatalytic applications in
pollution control, H2-evolution, and CO2-reduction to valuable chemical intermediates;
the author could state 164 references in these fields in 2016. The complexities of LDH-
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applications in the environmental remediation through the removal of dyes were also
reviewed by Yang [53]. Again, a mini-review was published by Yan [47] focusing on
discussing the advances in LDH-synthesizing for H2/O2-enhancement. The relationship
between structure and activity and its effect on photochemical/electrochemical water split-
ting and CO2-reduction was reviewed by Zhao et al. [11]. Wu et al. [54] discussed progress
in constructing heterostructures from LDH, with respect to both synthesis methods and
structural growth. Recently, in 2020, a review by Yang et al. [55] discussed the tailoring
and engineering of LDHs/modified LDHs catalysts for feasible water treatment. Parallel
to Yang et al., Razzaqet al. [56] published a study concerning the application of some
LDH-semiconductors in CO2 conversion, and the authors also mentioned the advance-
ment in synthesis routes of both LDHs and LDH-derived materials, as well as the reaction
conditions affecting their catalytic activities [57]. Applications of LDH-nanocomposites in
artificial photosynthesis and the role of the synthesis and modification conditions in this
process were summarized recently in 2021 [58]. The effect of the synthesis and modification
of LDH photoactive materials in photo-electrocatalysts was reviewed and published by
many investigators [40,58].

By following the publications of LDHs, it seems that the field of LDH-based photocatal-
ysis is very crowded, but there is almost no work reviewing the recent bandgap tailoring of
LDH-nanomaterials and their application in petroleum, according to our knowledge. We
are going to mention the recent progress made in LDH-bandgap engineering, as well as
their applications in the petroleum field and treatment of the related hazards that emerged
from the combustion of fossil fuel. Thus, this review will focus on LDH-modulation and
how to make use of their excellent physical/chemical properties to enhance the recent green
energy route and enhance the environmental remediation through the effective removal
of petroleum-based hazards and water treatment. The review will highlight the role of
LDHs/LDH-derived materials with respect to the removal of air pollution, sulfur, and
organic contaminants. A futuristic trend discussing the conversion of 2D LDHs to 1D
LDHs through modified synthetic techniques and the impact of these novel 1D LDHs in
improving the water/green energy routes will be highlighted.

5. General Introduction of Layered Double Hydroxides (LDHs)

LDHs are well-known 2D layered materials and are sometimes nominated as hydro-
talcites or anionic clay minerals due to their abilities to intercalate with negative ions in
contrast to cationic clay minerals as naturally occurring clay and zeolites. The chemical
structure and nature of LDHs can be well-understood by recalling the structure of the
parental and naturally occurring brucite. Brucite is an octahedral form of magnesium
hydroxide [Mg(OH)2], in which the Mg2+ ions coordinate in an octahedral six-fold to
OH-shared edges, forming infinite symmetrical and repeatable sheets or layers. These
sheets are stacked on top of each other and are bonded together by hydrogen bonds, as
shown in Figure 2 [59,60].

The structure of LDHs is originated when some divalent ions, such as Mg2+ ions,
are substituted by trivalent ions with a comparable radius, and this substitution yields
a positive charge through the hydroxyl sheet (brucite-layer). The net positive charges
are compensated by negative ions to neutralize the final structure of any LDH [27]. The
negative ions usually lie in the interlayer region between the two brucite-sheets. The
negative ions are indicated as interlayer ions. Besides the interlayer ions, and between
the interlayer spaces, water molecules are permanently present as intercalated water. This
water is so-called interlayer water or crystal water; hence, the main LDH structure is built
and determined by the nature of the brucite-like sheets, the position of anions and water
in the interlayer region, and the type of stacking of the brucite-like sheets. The sheets
containing cations are built as in brucite, where the cations randomly occupy the octahedral
holes in the close-packed configuration of the OH ions.
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5.1. General Formula of LDHs

The general formula can be written as [M2+1−xM3+x (OH)2]x+[An−x/n.yH2O]x−,
where M2+ is a divalent metal ion, M3+ is a trivalent metal ion, An- is an interlayer exchange-
able anion, y is the count of water molecules, and x is the coefficient factor resembling the
molar percentage between M2+ to M3+, where LDH structures can exist for the value of x in
the range 0.1 to 0.5; many indications show that it is possible to obtain pure LDHs only in
the range of 0.2 to 0.33 [6,61].

5.2. General Characteristics of LDHs
5.2.1. Memory Effect

It is a characteristic feature of LDHs that the primary structure of LDHs can be retained
and recovered again after calcination at elevated temperatures by subjecting the oxide
form into water containing different anions. The memory effect property of LDHs is used
to introduce and substitute different anions into the LDH gallery, giving rise to versatile
structures and different compositions of LDHs for drug delivery and DNA storage.

5.2.2. High Surface Area

LDHs have great surface areas due to their low dimension, infinite lamellar (layered)
structure, and very small particle sizes. According to the IUPAC classification, LDHs usually
exhibits IV-type isotherms, with H3 hysteresis loop characteristics for the mesoporous
materials [1,6]. Although LDHs exhibit usual IV-type isotherms, the values of their surface
area are variable. Table 1 shows the variation of the surface area of LDHs with their type
and synthesis route.

5.2.3. Intercalation Reactions

Intercalation reactions of LDHs are known also as host–guest reactions, which involve
the substitution of the main interlayer anion (the anion linking the LDH-layers) with
another anion or molecule. The intercalation reactions in LDHs can be performed by the
memory effect as above-mentioned or by an ion-exchange mechanism, which involves
immersion of the freshly prepared LDH in a highly concentrated solution of the guest anion
to be intercalated.

5.2.4. Layer-by-Layer (LbL) Assembly

Layer-by-layer assembly involves electrostatic interactions between guest species and
a parental LDH-host and relies on alternative dipping of a substrate into a suspension of
positively charged LDH-nanosheets and a solution of negatively charged guest anions.
This technique can involve co-assembly through a poly-anion carrier, when positively
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charged ions or neutral molecules act as guest species. Preferred nanohybrids can be
achieved when the positively charged LDH-nanosheets and negatively charged guest
anions coexist in an aqueous medium to facilitate exfoliation assembly towards a core-shell
or porous structures. Additionally, the LBL-assembly can provide a great route toward
solid devices with multifunctionality and ultrathin films (UTFs) with anisotropic properties
and a preferred orientation when applying an external field (magnetic or electric field)
during high guest loading into the parental LDH [62].

Acid–Base Properties

Different elements of variable oxidation statistics can be applied in the preparation of
LDHs, according to the nature of the primary physical properties of the starting element;
the final LDH has its own acidic, basic, or acidic–basic property.

Formation of Thermally Stable Mixed Oxides

LDHs are two-dimensional isotactic materials with sharp crystalline structures that
originated from homogeneous intercalation and the substitution of different metals. Accord-
ingly, the mixed oxides produced from the calcination of LDHs have very stable thermal
structures due to the infinite solid state chemical interactions that occurred through the
thermal treatment.

5.2.5. Synthesis Methods for LDHs

There are several methods to prepare LDHs, and each method has its own effect on
the surface morphology and physical and chemical properties of the produced LDHs.

Co-Precipitation Method

This is the most common method applied for the preparation of LDHs [63–65] and
nanomaterials generally, in which the metal cations are mixed in a dilute solution under
vigorous stirring at 50–90 ◦C. On the other hand, the precipitation of the metal cations
is performed through a suitable base titration in the presence of a carbonate source. The
common bases applied for precipitation are NaOH and NH4OH, and the carbonate species
are applied in general by Na2CO3. Carbonate is the most stable and common interlayer
anion, so it is extremely difficult to prepare LDH material free of carbonate without severe
precautions. The factors leading to the formation of LDH, rather than amorphous hydroxide
or gel formation are aging time, rate of titration, and pH. A long aging time (12–36 h) and
slow rate of titration improve the crystallinity and the general morphology of the produced
LDH, while pH must be adjusted between 9 and 12. The range of pH is wide (≥8), whereby
it must be above the neutralization point (pH = 7) to ensure full precipitation of the cations
(since LDH is a true hydroxide). High pH values can affect the morphology and crystallinity
of LDHs [66], as they increases the cationic content (MII–MIII) in the final LDH [67].

A long aging time (≥12 h) increases the crystallinity as well as the cationic content
of the formed LDH [67]. High temperatures accelerate the full precipitation of LDHs and
increase their crystallinities [68].

Hydrothermal Method

It is similar to the co-precipitation method, but the process is completed under the
vapor pressure produced from the entrapped solution of the metal cations and precipitating
agents in a Teflon-lined autoclave at an elevated temperature (120–180 ◦C) for a long time.
The hydrothermal method can be performed by firstly precipitating the starting cations,
as in the precipitation method, and then transporting the precipitate into the autoclave,
or it can be completely performed in the autoclave [69,70]. Due to the high temperature
and long-time of synthesis, the hydrothermal method usually yields LDHs that are sharply
crystalline, of a high surface area, porous, and, in-turn, highly active adsorbents/catalysts.
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Sol-Gel Method

This is that in which the precursors of the metals to be precipitated are in the form of
alkoxides, such as aluminum tri-isoperoxide and titanium tetra-isoperoxide, rather than the
conventional inorganic anions, such as chlorides or nitrates. The precipitation procedure
can be completed by the self-hydrolysis of the used alkoxides by heating up to 70 ◦C for a
definite time or by applying a suitable hydroxide to control the final pH [71,72].

Vapor Diffusion Method to Prepare Exceptional Ti-Containing LDHs

The recently modified method to prepare highly crystalline and ultra-thin Ti-containing
LDHs was introduced in 2020 by Mostafa et al. [73]. Common Ti-based LDHs exhibit low
crystallinities due to the segregation of Ti during the preparation by conventional precipita-
tion methods [74–76]. For the first time, we applied the diffusion of the TiCl4 vapor method
to avoid such segregation and could synthesize novel CoTi-LDH nanorods of exceptional
photocatalytic properties. The used Cl−-precursors led to 1D-assembly by longitudinal
propagation of CoCl2 and TiCl4 precursors and the formation of a [TiCl6]2− intermediate
during the nucleation stages of the LDH structure. This, in turn, greatly enhanced the
chemical activity by the ultrathin assembly of CoTi-LDH by the presence of most of the
atoms on the surface of the nanorods [77] in contrast to the conventional 2D structure of
common LDHs. As a result, the prepared 1D CoTi-LDH exhibits a lowered bandgap energy
and great IR-responsivity (1.4 eV), high oxidation states of both Co and Ti, and excellent
catalyst distribution in the water splitting media. This innovative vapor diffusion method
can be industrially commercialized, especially for massive production of Ti-containing
LDHs for prospective water splitting, solar cells’ materials, and other catalytic and pho-
tocatalytic applications. The nature liquid state of TiCl4 facilitates the usage of the vapor
diffusion method by the self-supplied TiCl4–vapor or by the use of an inert carrier, such as
N2, without the need for a dosing pump, such as in continuous flow preparation methods.

Continuous Flow Preparation Method

Because LDHs are highly active and promising materials in fields of energy and the en-
vironment, the development of innovative methods for the scaled-up preparation of LDHs
is necessary. The abovementioned preparation methods of LDHs are common, feasible, and
long-term trialed since the discovery of LDHs, but they still suffer some drawbacks, which
hinder the industrial production of LDHs. The recent continuous flow preparation methods
achieve great advantages over conventional methods (batch precipitation) in the prepara-
tion of LDHs, such as the feasible scaling up and better physical/chemical properties of
the manufactured materials [78]. The synthesized LDHs by flow routes exhibit narrower
particle sizes, much finer morphologies, and high surface areas. By the flow chemistry
routes, it is now possible now to avoid the drawbacks of batch methods, such as an unstable
pH, the super-saturation stage, agglomeration, and time consumption, especially in the
conventional co-precipitation methods [79]. The continuous flow preparation methods
have various reactor designs, as well as diverse operation means and configurations for the
preparation of LDHs and other materials in specific morphologies and compositions [79].
The great benefits of the flow chemistry technique make it the promising route for sup-
plying the research and industrial communities with smart and tailored LDH and other
valuable materials.
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Table 1. Correlation between the chemical composition and synthesis route of LDHs and surface
area [80–88].

LDH MII/MIII

Ratio
Synthesis Route Specific Surface

Area (m2/g) Ref.

CoAlCl− 4:1 Hydrothermal/acid
salt template 26.5 [80]

CoAlCl− 4:1 Coprecipitation 30.9 [80]

CoAlCl− 4:1 Hydrothermal 19.7 [80]

NiAlCO3
2− 1:1 Coprecipitation 133 [81]

NiCoNO3
− 1:1 Hydrothermal 37 [82]

NiFeCO3
− 2:1 Coprecipitation 427.00 [83]

NiAlCl− 4:1 Coprecipitation 95.44 [84]

NiAlCO3
− 4:1 Hydrothermal 13 [84]

MgFeCl− 2:1 Solvothermal with
SDS 70.19 [85]

ZnAlCl− 2:1 Urea 253 [86]

ZnMgAlCO3
2− 2:1 Coprecipitation 28.12 [87]

NiFeNO3
− 4:1 Coprecipitation 17.84 [88]

5.2.6. Characteristic Analyses of LDHs

LDHs have their own characteristic structures and morphologies, besides their general
characteristics as the other nanomaterials. There are two main instrumental analyses that
can be used to analyze the preparation of LDH.

X-ray Diffraction (XRD)

The XRD diffraction patterns of LDHs are fingerprints and merely offer evidence for
the formation of the LDH structure, rather than the ordinary hydroxide or any bulk or
nanostructured material. LDHs usually show the hydrotalcite structure [1,6] as the only
structure existing through the sample, according to the JCPDS file no. 22-700, characterized
by sharp, narrow, and symmetric reflections respective to the low 2 theta of basal (003),
(006), and (009) planes, in addition to asymmetric and broad reflections at the higher
2 theta for non-basal (012), (015), and (018) planes. These successive diffractions by basal
planes d (003) = 2d (006) = 3d (009) of LDH refer to fully packed stacks of brucite-like
layers ordered along the c-axis, which represent the thickness of the brucite layer and
the interlayer distance. The XRD patterns of LDHs are unique and mostly the same, and
whatever the metals applied in the LDH preparation and construction, a difference may be
noticed only in the d-spacing between the successive planes; Figure 3 shows a typical XRD
of MIMIII LDH.

Surface Features of LDHs; Scanning Electron Microscopy (SEM), High Resolution
Transmission Electron Microscope (HRTEM), and Surface Area

SEM is the second analytical tool that reflects the hydrotalcite structure of LDHs. The
SEM images of LDHs usually reveal plate-like morphologies with well-ordered hexagonal
crystallites [6] of a high porosity, as shown in Figure 4. In contrast to SEM and XRD,
which are characteristic analytical tools for LDH and provide a fingerprint image of the
LDH-structure, HRTEM imaging of LDHs is variable, where sometimes it clearly reflects
the 2D assembly of the hexagonal plate crystallites of LDHs (as SEM) [63], but in other
times, it provides unclear or confusing images due to the finite LDH structure and the new
electro/electromagnetic properties of elements in the LDH configuration [64]. Figure 5A,B
shows variable HRTE-images of common LDHs.
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Surface area is a common analysis of LDHs, especially in the applications of adsorption,
where it plays a predominant role in the sorption of different ions. Table 1 shows the surface
areas of various LDHs; it is very variable and dramatically alters with the used preparation
method of the LDH, the MII/MIII ratio, and the metal type.
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6. Applications of LDHs in the Petroleum Industry
6.1. LDHs/LDH-Based Materials as Hydrotreating Catalysts

An Ni-enriched mixed oxide (Ni-MMO) derived from NiAl-LDH was prepared and
applied as an upgrading catalyst of heavy oil at 425 ◦C, at a pressure of 20 bar and a cata-
lyst/oil ratio of 0.02. Compared to the conventional NiAl-catalyst, the prepared Ni-MMO
enhanced the hydrogenation reaction and yielded lighter fractions of lowered viscosities
and reduced sulfur contents [65]. The results were attributed to the high surface area of the
prepared NiAl-LDH, which facilitated the good distribution of the Ni-active site.

According to Wang et al. [89], novel hydrotreating catalysts of NiSx/NiOx and MoSx/MoOx
were prepared by low-temperature calcination of thiomolybdate-intercalated NiAl LDH
at 300 ◦C and applied for dibenzothiophene (DBT)-hydrodesulphurization. Compared to
the conventional NiAlMo-catalyst, the prepared phases showed duplicated HDS activities,
which are related to a higher Ni-promotion activity by the formation of more coordina-
tive unsaturated sites by the mild calcination of the LDH at 300 ◦C. As mentioned in
Section 5.2., the calcination of LDHs usually yields oxides of high surface areas, porosities,
and acid/base properties.

Linares et al. [90] and his coworkers could prepare highly effective hydrotreating
(HT) and hydrodesulphurization (HDS) catalysts by the facile impregnation of Co and
Mo on a calcined CoNiZnAl LDH precursor. The study discussed the effect of M2+ to
M3+ ratios in the CoNiZnAl LDH on the HT and HDS reactions, where the catalyst of
M3+/M3+ M2+ = 0.25 was more effective for the HDS of thiofene, while the catalyst of
M3+/M3+ M2+ = 0.33 exhibited better performance in the HT-reactions of cyclohexane.

The effect of two preparation methods on the HDS and HT activities of tungstate-
intercalated NiAlZr derived catalysts was studied [91]. According to the author, the
introducion of Zr by the ion-exchange method enhanced the dispersion of NiWO4 and,
in-turn, the reducibility and sulfidation affinities. As a result, the HDS and HT of DBT were
enhanced by increasing the Zr/Al ratio to 0.3/0.7 (higher HDS activity by 55.7% compared
to Zr-free catalysts).

Different catalysts of NiWAl, NiMoAl, and NiWMoAl compositions were prepared by
the ion exchanging of intercalated terephthalate with heptamolybdate (Mo7O246-) and/or
metatungstate (H2W12O406-) and then calcination and sulfidation at 250 at 340 ◦C, respec-
tively. Compared to conventional catalysts of the same composition, these LDH-derived
catalysts showed much higher HT and HDS activities of tetrahydronaphthalene and DBT,
respectively, due to the enhanced sulfidation of Ni, W, and Mo by the LDH structure [92].
The LDH structure facilitated the sulfidation of Ni, Mo, and W species by their distribution
on the LDH-surfaces.
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Noble metal-free catalysts based on NiLaMgAl-LDHs were fabricated by Q. Liu et al. [93]
and his research group for effective hydrogenation of heavy petroleum resin (PR) to
hydro-treated PR as a valuable product. The introduction of La into the synthesized
LDHs enhanced both Ni reducibility and dispersion (reduced particle size), in addition
to increasing the bulk-basicity for better long-chain bond cleavage. The prepared Ni/La-
containing catalysts showed a hydrogenation efficiency of about 96%, with stable structural
and catalytic activity over 100 h.

6.2. LDHs/LDH-Based Materials as Oxidative Desulfurization Catalysts

A recent work by Song et al. [94] discussed the aerobic oxidative desulfurization of
model organosulfur compounds (BT, DBT, DMDBT) by (CoFeMo)-oxide catalysts derived
from the calcination of Mo-intercalated CoFe-LDHs at 500 ◦C. The calcination of Mo/CoFe
LDH yielded different phases, comprising Co3O4, Fe3O4, CoFe2O4, FeMoO4, CoMoO4, β
FeMoO4, and β CoMoO4 of various Co, Fe, and Mo oxidation states and catalytic activi-
ties. Full aerobic oxidation of DBT was possible at 120 ◦C after about 20 min, while the
full oxidation of the model organosulfur compounds by the Mo-containing catalysts was
in the following order: 4,6 dimethydibentothiofene (DMDBT) > DBT > BT at T = 100 ◦C.
Gao et al. [95] could prepare a new LaZnAlMo-LDH photocatalyst with La/Zn/Al ra-
tios = 1/7/2 by the urea hydrolysis method for the UV-desulphurization of BT in diesel
oil. According to this work, Mo was introduced to the LDH by the ion exchanging of
CO3

2−-intercalated LaZnAl LDH with Cl− and then replacing the Cl− ions with Mo by
the immersion of Cl−LaZnAl LDH in Na2MoO4 for 30 min at 80 ◦C. Practically, the pre-
pared photocatalyst achieved BT-photodegradation of 87% after 2 h of irradiation. The
introduction of MoO2− lowered the bandgap energy from 5.12 (of CO3

2− intercalated LDH)
to 3.85 and 1.27 eV of La intercalated LDHs. The ZnAl-LDH nanostructure of variable
surface/interlayer defects enhanced the photocatalytic activity of the guest species by the
quenching of excited charges as well as the high distribution of the photocatalyst particles
in the photodegradation process.

Visible light photocatalytic oxidative desulfurization of DBT in gasoline model fuel
was performed by NiFe, NiCo, and CoFe intercalated with CO3

2− as a guest anion. Accord-
ing to the study [96], a maximum DBT-removal of 76% was achieved by the prepared NiCo
LDH/Fe3O4 photocatalyst after 222 min. The oxidation mechanism is shown in Figure 6.
Efficient desulphurization and denitrogenation of model oil of S-content = 1000 ppm and
N2-content of 100 ppm were achieved by novel polyoxymetalate (POMs) that were in-
tercalated. Experimentally, the catalyst of the Tris-LDH-LaW10 structure could reduce
the S-content to 10 ppm and the N2-content to 1 ppm through ultra-deep desulfurization
and denitrogenation at 65 ◦C [97]. The mesoporous structure of the prepared LDHs was
attributed to fast e-/h transfer and photocatalytic enhancement. The advanced synergy
between MOF-76 on CaMgAl LDH was constructed by Siqi Liu [98] and his co-workers for
the deep desulfurization of BT, DBT, and 4,6 DMDBT at low temperatures (60 ◦C). Exper-
imentally, complete removal of the S-compounds was achieved after 25, 40, and 55 min,
respectively, and the catalyst of 49% MOF-67/LDH exhibited much higher desulfurization
activity (100%) than pure MOF-67, LDH, or (MOF-67 + LDH)-mix.

6.3. LDHs/LDH-Based Materials as Adsorbents for Petroleum Hazards

Due to the intrinsic properties of LDHs, such as high surface areas, porosities, and
interlayer vacancies, they are widely applied as active adsorbents for petroleum and organic
pollutants. According to S. Lee et al. [99], CoFe-LDH with Co/Fe = 3:1 was prepared by
the co-precipitation method and used as an H2S-adsorbent under high humid conditions.
At a humid atmosphere = 90%, the prepared LDH-adsorbent achieved a high adsorption
capacity of 0.209 g H2S/g by surface intermediate HS produced from the dissociation of
H2S or by the reaction of it with the interlayered carbonate species. The LDH-adsorbent
exhibited a stable adsorptive affinity, even at a high S-concentration (3333 ppm), with the
formation of CO2-gas and solid CoFeS/CoFeSO4 products.
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A research work by R. Menzel et al. [100] discussed the preparation and impregnation
of mixed metal oxides (MMO) of MgAl, CuAl, and CoAl LDHs on graphene oxide (GO)
for the adsorption removal of DBT from the liquid phase at 50 ◦C. It was found that MgAl-
MMO/GO showed the higher adsorption capacity of 1.45 mg S/g adsorbent, where GO
acted as a dispersant (spacer) for the adsorbed species to the LDH.

Carbonate-intercalated MgAl LDHs with Mg/Al = 2:1 and 4:1 were prepared and
applied for the SO2 sorption at 140, 170, and 200 ◦C. In the gas phase, adsorption of SO2 and
the removal of SO2 decreased by increasing the Mg ratio from 2 to 4. Conventional Ca(OH)2
exhibited higher SO2-removal, while the adsorption was found to proceed through the
interaction of SO2 and the interlayered carbonate in the LDH adsorbents [101]. This reflects
the effective role of the interlayer anions of LDHs in the adsorptive and catalytic processes
by the possible interaction with targeted pollutants.

6.4. LDHs/LDH-Based Materials as Petroleum Additives

LDHs possess multi-layered structures of hybrid organic and inorganic groups; the
layers allow great mobilities of the LDH-structure, while the organic groups can effectively
interact with the covalent bonds of organic compounds. This feature encourages the
applications of LDHs for improvement of the rheological and anti-friction properties of
heavy petroleum cuts.

The rheological properties and aging resistance of bitumen were improved by the incor-
poration of surface organic modified LDH material. According to C. Zhang et al. [102], the
effect of both MgAl(CO3

2−)-LDH and surface-modified MgAl(CO3
2−)-LDH with propy-

ltrimethoxysilane (KH560) was applied to molten bitumen at 170 ◦C and subjected to
UV-irradiation. The experiments showed that KH560-LDH could enhance the physical
properties of bitumen. involving the rheological and aging resistance. higher than KH560-
modified bitumen or LDH-modified bitumen.

Sodium dodecyl sulfate (SDS) intercalated La/MgAl LDH was synthesized and ap-
plied as an antifriction agent of lube oil. According to the published study [103], the



Catalysts 2022, 12, 792 14 of 28

SDS-intercalated LDH of La/Al molar ratio = 0.1 showed the highest tribological property
compared to the pure La/MgAl-LDH. The results were attributed to the good dispersion
of the nanoparticles in the lube media and the increase in the layers of lamellar spaces by
the SDS-organic layers.

According to a European patent [104], a monolayer of LDH could be prepared by
the inverse emulsion method and applied for enhanced oil recovery, where the prepared
LDH-monolayer showed elevated emulsifying properties.

Great enhancement in the tribological properties of grease-based lube oil was reached by 1
wt.% LDH-additive of composition of Co/Mg/Zn/Ni LDH. According to H. Wang et al. [105],
the LDH sample of a great surface area (139 m2g−1) could lower the wear to only 0.2% due
to the reaction between LDH-additives and the lube oil-sliding solid surface.

6.5. LDHs for Sensing and Photodegradation of Organic Compounds

Different NiCo LDH nanocomposites of 3D flower-like morphologies were prepared
and applied for the detection of toxic NO2 gas at room temperature. According to
L. He et al. [106], the composite of Co:Ni of a molar ratio = 1:1 exhibited the highest
response (31.22) at 100 ppm, with a fast response and recovery time of 1.6 s and 11.6 s,
respectively. The sensing activity of the prepared LDH was related to the high surface area
and the synergy between Co(OH)2 and Ni(OH)2.

Zhang et al. [107] studied the synergy between Mn-substitution and oxygen-vacancies
in the photodegradation of toluene as a model of volatile organic compounds (VOC)
under visible light irradiation. ZnAl LDH was firstly prepared and then subjected to
substitution with Mn to prepare MnxZnAl composites, where x = 0, 0.25, 0.5, 0.75, and 1.
The photocatalyst of Mn0.5ZnAl LDH showed the highest photodegradation activity of
97% after 180 min, where the Mn concentration could lower the conduction band edge by
sufficient oxygen vacancies.

The photodegradation of many volatile organic compounds, such as benzene, or-
tho, meta, and Para xylenes, occurred over ZnCr-LDH and Au/ZnCr-LDH at different
performance conditions. Including relative humidity, catalyst mass, initial concentration,
and irradiation intensity. Experimentally, Au-containing ZnCr-LDH showed enhanced
photodegradation towards the mentioned organic compounds (~84% removal for ortho-
xylene at 35 ◦C and 50% humidity) due to the enhanced charge transfer between the
Au-nanoparticles and the LDH-layers, in addition to the LDH-hydroxide groups [108].

6.6. LDHs/LDH-Based Materials for Removal of Oil Wastewater

Due to the long-dependence on crude oil as a major source of energy in the last
decades, a huge amount of oil-wastewater was produced from the various oil-processing
steps and especially those related to oil drilling systems. The estimated oil-wastewater
counts are about 250 million barrels per day, containing different organic hazards, such as
sulfonated lignite of abundant functional groups, such as sulfonic acid, phenolic, hydroxyl,
carboxyl, and ketone groups [109]. Sulfonated lignite is classified as a very hazardous
material to humans and the environment, since it is a catching agent of heavy metals and
pesticides/herbicides, and it can increase their concentration in water. Sulfonated lignite is
widely used in the oilfield as a viscosity/fluid loss reducer for freshwater drilling fluids,
because of its good dispersibility and low viscosity. Accordingly, the problem of sulfonated
lignite must not be left without proper handling.

LDHs have a high content of (OH)-groups along their layered structures of high
surface areas and, in turn, high affinities towards the water molecules in petroleum or as
free water.

A rare work describing the role of hierarchical MgAl-LDH in the adsorptive removal
of sulfonated lignite was recently published by Zhou et al. [109]. The material was hy-
drothermally synthesized in the presence of CTAB/salicylic acid as directing agents to
produce flower/worm-like morphologies of a high surface area and mesoporous struc-
ture. Accordingly, the prepared hierarchical MgAl-LDH achieved an elevated adsorption
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capacity of 1014.20 mg/g at 25 ◦C and an initial pH of 7, which was much higher than the
conventional MgAl-LDH (86 mg/g), following a pseudo second-order kinetics model and
Freundlich isotherm.

Zeolite A (ZA), MgAl LDH, and ZA/MgAl LDH were prepared and applied for the
removal of both cationic (Al, Cd, Cu, Mn, Ni, Pb, and Zn) and anionic (Cl, Br, NO3, CN,
SO4, and PO3) contaminants from oil-wastewater [110]. The prepared materials achieved
an adsorption removal that varied from 80 to 100% of cations and from 60 to 100% for the
different anions.

7. LDHs/LDH-Based Materials for Water Treatment
7.1. Adsorption of Heavy Metals

The effective adsorptive removal of Pb (II) from an aqueous solution was performed
by Mg2AL-LDH, Mg3Al-LDH, and glutamate-intercalated MgAl-LDH. It was found that
the glutamate-intercalated Mg2Al-LDH reached a maximum Pb adsorption capacity of
68.5 mg/g following a Pseudo-second-order kinetic model through the Langmuir mono-
layer adsorption mechanism [111]. A published work by R. Soltani et al. [112] discussed the
removal of Hg and Ni heavy metals by NiCo LDH, functionalized COOH/triamino-NiCo
LDH, UiO-66-(Zr)-(COOH)2, and the nanocomposite mixture of them. The LDH/MOF
nanocomposite achieved an adsorption removal of 509.8 mg g−1 for Hg (II) and 441.0 mg·g−1

for Ni (II).
Different LDH-based adsorbents comprising MgAl, MgFe, [SnS4]4−/MgFe, and

[SnS4]4−/MgAl LDHs were synthesized and applied for the adsorptive removal of Hg(II)
and As(III) at different experimental conditions [113]. Among the prepared materials, the
[SnS4]4−/MgFe LDH-adsorbent showed the highest adsorption removal of 99% towards
both Hg(II) and As(III). The adsorption and photodegradation of Cr (VI) were performed
by Bi-intercalated ZnAl-LDH [91]. The adsorption removal of Cr(VI) reached 84% by
Bi5O7I/ZnAlBi-CLDH for 60 min, while the same LDH could reach 98% removal of Cr by
the photodegradation under visible light irradiation.

The adsorption of Cr (VI) in the form of potassium dichromate from an aqueous
solution was performed by two LDH-adsorbents: NiFe-LDH and glycerol (GL)-NiFe
LDH [114]. The introduction of glycerol was found to increase the adsorption capacity
to 136 mg/g compared to 50.43 mg/g of the pure NiFe-LDH, due to a preferred interac-
tion between the dichromate ions with GL urea and LDH. A Zn2Cr-LDH adsorbent was
synthesized by the co-precipitation method and applied for the removal and recovery
of pyrophosphate (PP) from electroplating wastewater [115]. At 1 g/L adsorbent, initial
PP concentration = 50 mg/L, pH = 6, and adsorption time course of 6 h, the removal effi-
ciency of PP by Zn2Cr-LDH reached 86%. The LDH-adsorbent also showed good reusability
and recovery of the adsorbed PP when treated with NaOH.

The removal of soil heavy metals, such as Cu, Pb, Zn, and Ni, was performed by
3D- Vermiculite-supported Mg-Al (LDH@VMT) [116]. It was found that the adsorption of
Cu and Pb was through precipitation by the LDH-hydroxide groups, where the removal
of Zn and Ni was conducted by amorphous replacement. A concurrent adsorption of
methylene blue (MB) and Pb (II) and Hg (II) was investigated by M. Chen et al. [117]
using sodium polyacrylate-MgAl LDH adsorbents (PAAS-LDH). At a neutral pH, initial
ion concentration of 50 mg/L, adsorbent load = 0.1 g/L, and T = 40 ◦C, the prepared
PAAS-LDH adsorbent could reach adsorption capacities of 211 mg/g for MB, 345.4 mg/g
for Pb (II), and 142.7 mg/g for Hg (II) Hg through possible complex-formation between the
adsorbed metals and the LDH-carboxylate groups.

7.2. Removal of Industrial Dyes

According to recent reports, the dye-market involves 1 × 104 different types, the
worldwide dye-production is huge (7 × 105 tons/year), and 15% of the produced dyes
directly contaminate the drinking water [118]. Due to their specific organic structure, the
industrial dyes are classified as very toxic compounds to humans, plants, the eco-system,
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animals, and marine life. Accordingly, many separations and treatment techniques are
applied to handle the problem of dye-release to the ecosystem, such as micro-filtration, ultra-
filtration, nano-filtration, reverse osmosis, photodegradation, oxidation, and adsorption.
The adsorption of dyes finds wide applications due to its feasibility compared to other
routes, while LDHs appear as highly active materials in this sector; the following section
cites some of the applied LDH-adsorbents in dye-removal.

The effect of temperature, adsorption time, pH, and concentration on the adsorption
of (Acid Yellow 42)-dye by fresh/calcined MgAl(CO3

2−)-LDH was studied by R.M.M.
Santos et al. [119]. The authors showed that the calcined MgAl LDH could enhance the
adsorption removal of the (Acid Yellow 42)-dye by four times: 1266 mg·g−1 at room
temperature and pH = 7 compared to 330 mg·g−1 by the fresh MgAl LDH at the same
conditions. The authors attributed the results to the memory effect phenomena of the
calcined MgAl LDH. Different NiFeTi LDH-adsorbents of different Ti-ratios were prepared
and applied for very fast adsorption of MO, MB, Congo red (CR), and Orange G (OG)
dyes from contaminated wastewater [120]. The prepared materials could achieve very fast
removal of the different dyes (90% within 2 min) due to the high surface areas and the
available -OH/CO3

2− groups in the prepared LDHs.
The parallel adsorption of cationic/anionic dyes and heavy metals by a carbon-LDH

composite (C/CaxAlMg LDH) was investigated by Sukanya Kundu and Milan Kanti
Naskar [121]. According to the authors, the prepared materials possessed high surface ar-
eas (477–758 m2g) to achieve maximum adsorption capacities of 122.1 and 328.95 mg/g for
MB and MO, respectively. The removal of organic MB and MO dyes by zeolite imidazolate
frameworks/CoAl LDH composite was investigated by M.A. Nazir, et al. [122]. Experimen-
tally, the ZIF-67@CoAl-LDH adsorbent showed an elevated adsorption capacity towards
MB (57.24 mg/g) compared to pure CoAl-LDH (15 mg/g) or pure ZIF-67 (57.14 mg·g−1).
In the adsorption removal of MO, the composite also achieved a much higher adsorption
capacity (180.5 mg/g) than bare adsorbents.

Optically-responsive CoNiTi-LDH synthesized by a hydrothermal route was applied
for the photodegradation of cationic/anionic dyes from an aqueous solution [123]. Ex-
perimentally, the prepared photocatalyst showed much better removal towards both Rho-
damine B (∼99.8%) and Acid Red G (∼99.6%) compared to commercial catalysts, such as
CoO, NiO, or TiO2, due to the sufficient radical generation, excellent charge-separation,
high surface areas, and the low bandgap energy (2.6 eV) of the LDH-photocatalyst. Di-
atoms (DE)-modified MgAl-LDHs (DE-LDHs) were prepared and applied for the removal
of Congo Red (CR). The incorporation of the LDH into the diatoms sharply increased their
surface area from 28 to 51 m2/g and increased the maximum (CR)-removal efficiency from
~15% of DE-adsorbent to ~98% by the DE-LDH adsorbents [124].

A promising (Zn/Al LDH/biochar)-composite was synthesized by liquid deposition
treatment for the adsorptive removal of MB in an aqueous solution under different condi-
tions, such as initial concentration, adsorption time, pH medium, and temperature. The
(Zn/Al-LDH/biochar)-composite showed higher surface area properties (58.461 m2/g)
than ZnAl-LDH (9.621 m2/g) or biochar (50.936 m2/g) to achieve the maximum (MB)-
removal of 59% at pH = 5 and 60 ◦C [125]. Environmental remediation by upgrading
petroleum was investigated early through the effective adsorptive removal of organo-sulfur
compounds from petroleum wax [6,121] as a common heavy byproduct. A highly surface-
active CoMo LDH was synthesized and applied as a novel adsorbent for sulfur from
wax-distillate. According to the study, a refined micro crystalline wax for medical and other
purposes was obtained by a cost-effective technique via using CoMo LDH-adsorbent [126],
where the high surface area of the prepared LDH-adsorbent of the highly charged surface
and porosity played the essential role in adsorption of the organic contaminants as sulfur
from wax.
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8. The Recent Breakthrough in Synthesis and Applications of 1D LDHs

The fast progress and development of the world civilization in the last decades led to
severe climate changes and threatened millions of people. The elevating earth temperature
and ocean acidity dramatically threaten the coastal cities through abnormal floods and
extreme rains. These climate changes can also result in world food shortage and uncon-
trolled starvations. The year 2021 recorded the highest greenhouse gas rates, with abnormal
floods, extreme rainfalls, and dangerous wildfires in many parts of Europe, Asia, and north
America [127]. By the end of October 2021, the world meteorological organization (WMO,
Geneva) reported that the available solutions to protect our humanity against these climate
changes should be through world cooperation to encourage the global production and
dependence on hydrogen instead of fossil fuels [1,6]. Hydrogen is a perfect energy carrier;
it can be generated and used in green routes, has a high caloric value, and can be produced
from renewable sources [1,6,128]. However, the production of hydrogen globally is still
facing implemental crises due to the wide bandgap energies of the current semiconductors
and their main operation in the UV-region of only 5% of the solar light.

In 2014, Li and his coworkers [1,6] led a motivating attempt to overcome the restricted
working of semiconductors in the UV-region by assuming the boron nitride photocatalyst
as infrared (IR)-responsive. The IR-radiation accounts for about 54% of sunlight and is
available in the day, night, and cloudy conditions. Although, the proposed IR-responsive
achieved low hydrogen evolution rates (HERs). Following the leading Li’s negotiation, we
could discover 1D LDHs in 2020 as highly active and potentially IR-responsive for enhanced
photocatalytic water-splitting reactions [70]. Firstly, we could prepare 1D CoTi LDH for
enhanced IR-induced water oxidation by a one-pot urea hydrolysis route depending on
chloride-based precursors. The chloride-based synthesis led to 1D-propagation (Figure 7)
through the formation of a [TiO6]2− intermediate. The prepared 1D CoTi LDH showed a
typical IR-bandgap of 1.4 eV (Figure 8), with bandgap positions suitable for water oxidation
to O2, which is the challenging half-reaction in the process. In the water-splitting process,
1D CoTi LDH could achieve an HER of 5300 µmolg−1·h−1 under 200-watt irradiation at
50 ◦C without any promoters or scavengers (Figure 9). The 1D-assembly increased the
(CoTi LDH)-distribution in water, IR-absorbance and transferring, and the short pathway
for the electrons/holes pairs. Due to the containing surface and interlayer water, carbonate,
and cyanate groups, 1D CoTi LDH could dramatically quench the photoexcited species and
prevent their fast recombination instead of using organic or inorganic scavengers.

For the first time, cyanate intercalated CoBi LDH could be prepared in a 1D-assembly
as highly active IR-responsive in a potential trial to prepare one that is feasibly IR-responsive
with high photocatalytic water-splitting activities. The prepared photocatalyst showed the
highest oxidation states of Bi and Ti (according to the XPS measurements), as well as the
lowest bandgap value of the CoBi-structure (1.32 eV). Accordingly, 1D CoBi LDH achieved
the highest OER of 5300 µmolg−1h−1, where the predominant cyanate groups effectively
captured the photoexcited species and offered a shorter pathway for their migration into
the photocatalyst surface [1].

Since hydrogen production by photocatalytic water splitting is an urgent and great
world goal, we fabricated the first IR-structure for this purpose in 2022 by constructing a
novel 3D CoBiTi LDH/CoBiTi LDO heterojunction (Figure 10) for the first time [127]. The
CoBiTi LDH (CBT-LDH) was firstly prepared in 1D-morphology with excellent visible light
responsivity (bandgap = 2.3 eV) to achieve an HER of ~273 µmolg/g/h as the highest HER
under IR-irradiation. The assembly of highly active Co, Bi, and Ti elements in nanorod (1D)-
morphology greatly enhanced the chemical/photochemical properties of the CBT-LDH
semiconductor by the presence of most of the atoms on the surface. This indeed increases
the photocatalyst distribution and the IR-light absorbance and transferring for enhanced
HER without external promoters. The 1D CBT-LDH semiconductor was easily oxidized to
the corresponding 2D-CoBiTi layered double oxide (CBT-LDO) by mild drying at 150 ◦C.
The fast oxidation at lower temperatures is attributed to the presence of most of the atoms
on the outer surface of the material [77], due to the ultrathin sheets of CBT-LDH in this
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case. The CBT-LDO involved highly photoactive phases of the Co3O5-spinel, Bi12TiO20,
and Bi4Ti3O4 [5] and could reach an HER of 113 µmol/g/h by the lowest bandgap energy
value of a CoBiTi-structure: 1.27 eV.
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Figure 10. The surface structure/heterojunction of the prepared CBT/CBTO semiconductors [108].
The images express (a–c) SEM, and (d–f) HRTEM captures of CBT-LDH, CBTO, and the CBT-
LDH/CBTO photocatalysts. The images (g–i) the crystal lattice fringes of the synthesized pho-
tocatalysts. Copyright 2022, reproduced with permission from Elsevier.

The highest HER by the abundant IR-energy, which is available all of the day and in
the cloudy conditions, was possible by our previous work when we fabricated the novel
3D LDH/LDO heterojunction. It is a practical and potential pathway to increase the HER
by IR energy through the mixing of CBT-LDH and CBT-LDO powders instead of going so
far and preparing complex IR-structures. The novel 3D LDH/LDO led to the formation of
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a type I heterojunction by two different visible lights (CBT-LDH), and it was IR-responsive
and could increase the HER by five-fold (1255 µmol/g/h) (Figure 11).
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Figure 11. The role of 1D CBTO LDH in enhancing the HER of CBT-LDH by five-fold under IR-
irradiation [127]. Copyright 2022, reproduced with permission from Elsevier.

In this heterojunction, the cyanate groups of CBT-LDH completely quenched the pho-
toexcited species and allowed their migration to the surface of CBT-LDO for the reduction
of H+ to H2 [6]. The great world goal is to get a green and renewable energy source, such
as hydrogen, and introducing the IR-region in this direction is very essential to reach this
goal; it is the predominant energy in the globe (sunlight). Accordingly, the 1D LDHs are the
promising semiconductors to achieve the world goal of their own unique characteristics,
such as high IR-responsivities, feasible preparation procedures, and availabilities of their
precursors and the variable bandgap energy values from the visible to IR regions. We
would like to encourage and direct the researchers in the world towards the synthesis and
applications of 1D LDHs for better clean energy production and environmental remediation.
Table 2 shows the quantum yield efficiency (QYE) and the effectiveness of CBT and CBTO
IR-responsiveness [129–137] in the solar-to-hydrogen process compared to conventional
photocatalysts. Figure 12 exhibits the CB/VB potentials of common LDHs compared to
ordinary oxide photocatalysts. We cannot forget or overcome the tangential role of LDHs in
other fields of energy production as the important photoelectrochemical process [138–142],
although we dream, as the entire world, to get clean and renewable sources of energy
without external driving forces, except the sun.

Table 2. Quantum yield efficiencies (QYE) of common photocatalysts and the effectiveness of IR-
responsiveness in the solar-to-hydrogen process [127–137].

LDH-Photocatalyst Conditions HER
(µmolg−1h−1) QYE Ref.

CBT-LDH Xe-200 W, <800 nm 272.8 - [127]

CBT-LDH/CBTO Xe-200 W, <800 nm 1255 - [127]

CdS/ZnCr-LDH Xe-340 W, <420 nm 374 42.6 (420 nm) [129]

NiO/NaTaO3:La Hg-400 W, full light 19,800 56 (420 nm) [130]

Pt-Cd0.5Zn0.5S:Bi Hg-400 W, >420 nm 55.9 9.7 (420 nm) [131]

Ni-CdS Xe-300 W, >420 nm 25.8 26.8 (420 nm) [132]

Pt-La5Ti2AgS5O7 Xe-300 W, >420 nm 225 1.2 (420 nm) [133]

Pt-LaInS2O Xe-300 W, >420 nm 9 0.2 (420 nm) [134]

P3HT/g-C3N4 Xe-300 W, >420 nm 3045 77.4 (420 nm) [135]

g-C3N4/N-rich-CNF Xe-300 W, >420 nm 169 14.3 (420 nm) [136]

CdS-Au-HCNS Pt Xe-300 W, >455 nm 277 8.7 (420 nm) [137]
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9. Durability of LDHs as Potential Photocatalytic Materials

According to our investigations [1,6,73,126,127], all the synthesized and applied LDH-
photocatalysts exhibited stable structures in the photocatalytic water splitting under dif-
ferent light irradiation energies. Generally, LDHs are highly stable materials, due to the
perfect asymmetry and strong bonding of the interlayer anion (CO3

2−, -CN, . . . ) inside the
layers; this makes it so difficult to substitute the interlayer anion except by applying special
treatment. To perform anion exchange to the interlayer anion, it requires immersing the
LDH in a solution with a high concentration of an interfering anion at a high temperature
and stirring for a long time to achieve anion exchange. For example, the recently discovered
CoTi, CoBi, and CoBiTi LDH photocatalysts showed great structural stabilities with respect
to the primary hydrotalcite structure (XRD) as well as the existence of the interlayer CO23-
and CN anions (by FTIR) after many cycles of photocatalytic water splitting [1,73,127].
LDHs usually comprise heavy metals in their structures, and the recovery of LDHs needs
no complex separation methods, just settling, filtration, and drying at room temperature
overnight or at 120 ◦C for 2–6 h. Thus, LDHs usually possess their unique crystallinities
and main properties even after long use in aqueous solutions.
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10. Summary and Future Prospective

Layered double hydroxides (LDHs) are well-known as hydrotalcites or anionic clay
minerals with 2D multilayered structures and can intercalate different anions in contrast to
the conventional cationic clay minerals, such as zeolites. LDHs possess specific excellent
properties, such as the memory effect, acid–base nature, high surface area, and layer-
by-layer (LBL)-assembly. Accordingly, LDHs find wide applications in the research and
industrial fields, such as catalysts, photocatalysts, catalyst-supports, adsorbents, drug
delivery systems, polymer nanocomposites, and additives. There have been numerous
published works (research articles or reviews) discussing the applications of LDHs in the
energy and environmental fields, as in the case of water splitting, green energy production,
adsorption, and photodegradation of environmental pollutants. However, no relevant work
has stated the application of LDHs in the petroleum field, according to our best knowledge.
This review discussed the recent advancement and applications of LDHs in petroleum with
respect to using LDHs as hydrotreating catalysts, catalysts for the oxidative desulfurization
process, adsorbents for petroleum hazards, petroleum additives (especially for lube oil
as a vital petroleum fraction), and as sensors and photocatalysts for organic compounds
released from the petroleum combustion. Additionally, the introduced review stated the
recent LDH-modification and applications in water treatment in respect to the removal of
heavy metals from drinking water and the adsorption/photodegradation of industrial dyes
of a huge world production, and very dangerous toxicities in petroleum (oil)-wastewater.

Due to the outstanding properties of LDHs, more research work is needed to widen
their applications in the petroleum and petrochemical industries and to teach the synthesis
methods for recently qualified things that can work in diverse fields of research and industry.
It is recommended to advance LDH nanosheets, nanoclusters, and bandgap-engineered
LDHs and scale-up their usage in petroleum, oil-wastewater, and other environmental
fields. Additionally, the exfoliation of LDHs structure into a few layers and single sheets
can expose more surface sites because of the large interlayer spacing between individual
layers in the LDH structure. However, the synthesis of exfoliated NiFe-LDHs nanosheets
requires complex multistep process, such as hydrothermal process, anion exchange, and
exfoliation, which take several days to get the final product. Developing an effective
strategy to exfoliate bulk NiFe-LDHs into stable single-layer NiFe-LDHs nanosheets with
more exposed active sites remains challenging.
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