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Abstract: Solar-driven hydrogen production from water has attracted increasing attention due
to sustainable H2 fuel generation with zero-emissions. However, the design of a photocatalyst
without noble metals to enable efficient water splitting is still critical for practical applications.
In this study, the hierarchical microspheres of SrWO4 assembled with well-defined metallic Bi
nanoparticles were synthesized through mild hydrothermal aging. The resultant photocatalyst with
optimum proportion exhibited the competitive performance of a high hydrogen-generation rate
at 4.5 mmol·h−1·g−1, outperforming SrWO4 and Bi by factors of 2.0 and 2.4, respectively. Both
the experimental characterization and active analysis revealed that the synergistic effect of noble
metal-like behavior of Bi and their electron-sink capacity mainly contribute to boosting the overall
photocatalytic efficiency. This work may provide advanced insights into the application of economical
bismuth elements as co-catalysts, instead of noble metals, to improve photocatalytic efficiency in
solar-fuel conversion and environmental remediation.

Keywords: photocatalyst; hydrogen generation; bismuth metal; co-catalyst; synergistic effect

1. Introduction

With the worldwide consumption of fossil fuels in past decades, the major cause for
concern has been increasingly concentrated on the long-lasting problem of greenhouse
effect and serious environmental pollution [1,2], while the efficient solar-energy conver-
sion from nanomaterials development has gradually become a major research topic to
address the equilibrium between the reduction of human-energy usage and alleviating
environmental issues [3–5]. As a promising alternative technology, semiconductor-based
photocatalysis is being rapidly accelerated and extensively applied in the wide field of
water splitting, environmental remediation, and photosynthesis [6–8]. Deriving from the
prominent characteristics of their nontoxic nature, high chemical stability, and low cost, the
prototype TiO2 have been considered as efficient materials for this purpose of photocatalytic
hydrogen-evolution reaction (HER) [9,10]. However, the sluggish reaction rate against their
widespread use is mainly determined by the poor charge separation and relatively wide
band gap [11]. Substantial efforts have been devoted to improving the total catalytic activity,
including crystallinity, surface morphology, heterostructure construction, and heteroatom
doping [12–17]. To date, the additional surface loading with a noble metal co-catalyst has
been regarded as the most reliable strategy to improve their photocatalytic efficiency and
stability [18]. However, high demand, as well as over-expenditure and scarcity significantly
hinder their commercial development and scalable applications.

With respect to these precious metals, the promising candidate of bismuth (Bi) has
attracted intense attention to exhibit their noble-metal-like behavior very recently. A variety
of Bi coupled nanocomposites such as Bi/(BiO)2CO3 [19,20], Bi-BiOI [21], Bi/g-C3N4 [22],
and Bi/ZnWO4 [23] have been developed to perform their superior interfacial charge
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transfer kinetics and surface-reaction dynamics when competing with their individual
phase. Indisputably, construction of strong metal-support interactions can profoundly
influence the electronic structure and geometry of catalysts, which subsequently show
a large impact on the catalytic performance [24,25]. Therefore, it is quite necessary to
develop a new method to load the suitable co-catalysts on host species. To the best of our
knowledge, a series of Bi-containing Titania with optimal structural regulation toward
enhanced HER was widely studied in heterogeneous catalysis [26–31]. Binary metal oxides
of AWO4 (A = Ca, Sr, Ba) with scheelite structure have attracted extensive attention in recent
years due to their importance in laser host materials for quantum electronics and medical
applications, such as the prototype scintillator detectors of CdWO4 and optical materials
of PbWO4 [32,33]. Furthermore, the body-centered tetrahedral structure of strontium
tungstate (SrWO4) has the physicochemical properties such as nontoxicity, light response,
good electronic conductivity and thermal stability to compete with titanium dioxide, which
was alternatively applied as optoelectronic material, optical fibers, photoluminescent
medium, laser body, photocatalysts and antibacterial materials. While it is recognized
as a representative non-titania inorganic candidate, its intrinsic catalysis for solar energy
conversion is rarely studied [34–36]. However, the rare investigation on the effect of s-state
occupation with cationic Bi on SrWO4 has been considered, with particular emphasis on
the structure–property relationship.

In this study, the photocatalytic HER of SrWO4 was improved when in combination
with the metallic Bi. The hydrogen production rate with respect to the global mass ratio
has been determined and the continuous reactive capability was also monitored for long
periods of time. It revealed that the hierarchical structure of SrWO4 plays a critical role to
promote the strong metal-support interaction deriving from the structural characteristics
and spectral analysis. A significant mechanism during the heterogeneous catalysis was
finally revealed to further realize their synergistic effect on contributing the decent stability,
robust reactive sites, and efficient charge separation.

2. Results and Discussion
2.1. Structural Characterization

X-ray diffraction (XRD) patterns and Raman spectra of the resultant SWO and their
composites of Bi/SWO-0.7 as well as the reference sample of pure Bi from direct synthesis
are shown in Figure 1. It was found that the typical diffraction peaks of Bi/SWO-0.7 are
all consistent with their corresponding standard cards of tetragonal SWO4 (PDF#85-0587)
and metal Bi (PDF#85-1331), indicating the successful heterostructure construction without
any impurities (Figure 1a). When in comparison to their counterparts, the crystallinity
of Bi/SWO-0.7 was not changed significantly after deposition of Bi metals on the surface
because of their similar peak intensities and areas. As shown in the observed Raman
spectra from 200 to 1100 cm−1, there are five vibration modes of Ag (ν1, 921 cm−1), Bg
(ν3, 833 cm−1), Eg (ν3, 799 cm−1), Bg (ν4, 372 cm−1), Bg (ν2, 336 cm−1) assigned to SrWO4
(Figure 1b) [37]. Bi/SWO-0.7 maintained all prominent modes of SrWO4 along with the
slight negative shifting of Ag vibration ([WO4]2- tetrahedron), indicating their strong
interaction with metallic Bi (i.e., the s-state occupation) arising from their similar atomic
radius of Bi (0.207 nm) and W (0.210 nm) [38]. When the mass ratio of Bi increased from
0.4 to 0.8, the intensity from vibrational mode of Bi-O bond lattice centered at 320 cm−1

was gradually increased against the pristine SWO (Figure S1a) [39]. Consistent with the
result of increment of Bi intensity in XRD (Figure S1b), it is further proposed that there is
a composition of SrWO4 and mixed-sates of metallic Bi and Bi2O3 to construct the final
product. However, no more characteristic peaks of oxidized Bi components appeared in
XRD due to their low crystallinity.
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fully prepared, as well as the strong interaction between the metallic Bi and SrWO4. 

Figure 1. XRD patterns (a) and Raman spectra (b) of prepared Bi, SWO and Bi/SWO-0.7.

To elucidate the detailed oxidation states of Bi in Bi/SWO-0.7, X-ray photoelectron
spectroscopy (XPS) was conducted (Figure 2). It was found that two main peaks centered
around 157.08 eV and 162.35 eV are typically attributed to the Bi-Bi bonds of metallic
Bi (Figure 2a), while the narrow Gauss-shaped symmetrical Bi 4f7/2 (158.96 eV) and Bi
4f5/2 (164.27 eV) core spectra are characteristic of the Bi3+ oxidation state in Bi2O3 [40,41].
According to the deconvoluted peaks of reference Bi, the discrete area ratio of metallic Bi
to Bi3+ reflected the importance of the existence of host support during glucose-induced
in-situ reduction in hydrothermal process [42]. Prior to Bi loading, the curve fitting in
the O 1s region (Figure 2b) was attributed to lattice oxygen (530.37 eV) in SrWO4 and
adsorbed oxygen of OH– or CO3

2– (531.02 eV) on the surface. Additionally, the binding
energies of Bi-O in Bi/SWO-0.7 and reference Bi are accordingly found to be 529.60 eV
and 529.52 eV. However, the dramatic increment of oxide intensities was identified on
reference Bi, suggesting that the richer metallic Bi predominantly formed on the surface
of Bi/SWO-0.7 instead. The Sr 3d5/2 and Sr 3d3/2 orbitals of SWO are located at 133.15 eV
and 134.91 eV (Figure 2c), while the W 4f7/2 and W 4f5/2 are located at 35.42 eV and
37.58 eV (Figure 2d), respectively. It can be seen that both spin orbitals of Sr 3d (132.77 eV
and 134.53 eV) and W 4f (34.87 eV and 37.02 eV) for Bi/SWO-0.7 are both negatively
shifted to the lower binding energies, attributed to the stereochemical activity of s orbitals
through the feasible interfacial electron transfer between the 6s2 lone-pair electrons of
Bi and the [WO4]2− tetrahedron [43]. All these results confirmed that the Bi/SWO-0.7
heterostructure was successfully prepared, as well as the strong interaction between the
metallic Bi and SrWO4.
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Figure 2. High-resolution XPS spectra of Bi 4f (a), O 1s (b), Sr 3d (c), and W 4f (d) for Bi, SWO and
Bi/SWO-0.7.

The typical morphology of the hierarchical structure was investigated by scanning
electron microscopy (SEM). When compared to original SWO (Figure 3a), Bi/SWO-0.7
products maintained the well-dispersed spherical-shape morphology in the average di-
ameters of ~10 µm along with a rougher surface (Figure 3b). Determined from the higher
magnification image (insert in Figure 3b), we also observed that Bi/SWO-0.7 with porous
structures was assembled with radial alignment of a worm-like host structure (Figure S2a).
Their porosity was furthered to verify from surface areas and average pore diameters of
N2 adsorption-desorption isotherms (Figure S3). It was found that the specific surface
area of Bi/SWO-0.7 (24.9 m2 g−1) is significantly higher than that of the counterpart SWO
(13.7 m2 g−1), which is possibly due to the more regular nanoparticle arrangement of pores
in the structures as the gradual increment of Bi (Table S1), while Bi/SWO-0.8 does not
have this feature because of the pore structures filled by the overloading of Bi particles. In
contrast, the pore size distribution of Bi/SWO-0.7 shows the unique micropore type that
coincides with the characteristics of their hierarchical porous structure from SEM (insert in
Figure S3). Interestingly, all the Sr, W, and O signals exhibited the microsphere morphology
from the recorded elemental mapping (Figure 3c), whereas Bi species uniformly distributed
on the surface of the host microstructure instead of the particles aggregation from coun-
terpart Bi (Figure S2b). The energy dispersive spectrum (EDS) shows that Bi/SWO-0.7 is
composed of 33.95, 14.52, 37.38, and 14.15 wt% Bi, Sr, W and O respectively without any
impurities (Figure S4 and Table S2). While the higher molar ratio of Sr to O (1:5.1) than that
of SrWO4 (1:4) indicated the existence of oxide species of Bi on the surface, this results in
a bit smaller molar ratio of Bi than the well matched XPS analysis (70.8%) in relation to
experimental composition (70.0%).
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of panel (b) is the magnified image.

2.2. Growth Mechanism

It is believed that the photocatalysts with novel structures always possess the unique
physicochemical properties [36]. Previous studies have shown that the growth mechanism
and shape evolution process of uniform Bi particles assigned on porous host of SWO should
be systematically investigated. As a monosaccharide sugar, glucose can work as the mild
reducing agent arising from the positive result for Fehling’s test [44]. When the reductive
glucose was introduced into the Bi precursors, the irregular aggregations assembled with
dense Bi particles were formed after the in-situ reduction of Bi3+ species in hydrothermal
aging (upper route in Figure 4). For comparison, the hierarchical microspheres of SWO
as the composite substrate were added to obviously alter the final morphology attributed
to the bifunctional roles of glucose as both surfactant and reductant [43]. In this case, the
capping activity of glucose is expected to play the critical role to successfully prevent the
structural aggregation through the sequential pathway (bottom route in Figure 4). First,
the oxygen atoms in carbonyl and hydroxyl groups of glucose would form the hydrogen
bonds with surface hydroxyls of SWO, resulting in glucose molecules completely entwined
in the interspace of the backbone. Subsequently, trivalent metal cations electrostatically
adsorbed on the polar headgroup of glucose, which acted as molecular ligand and micelles
constructor to bridge with SWO [45]. Finally, the glucose with high steric hindrance effect
was moderately increased to reduce Bi3+ to metallic Bi for uniformly wrapping on SWO
surface as active sites, leading to agglomeration prevention during the hydrothermal
heating. To extract information of electrostatic effect on the underlying glucose-assistant
anisotropic growth, the pH independent morphology of the control products was taken,
even with glucose addition. It is evident that the pH variation as well as with additive
glucose has negligible effect on the supporting structure of SWO (Figures S5 and S6). Based
on these results, it can be concluded that both glucose capped synthesis and hierarchical
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backbone are crucial for the uniform coverage of Bi particles under the mild condition
(pH~6.9).
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2.3. Charge Separation

To better understand the influence of strong metal-support interaction on interfa-
cial electron transfer, the photoelectrochemical performance was characterized using I–t
curves, and subsequently impedance spectra (EIS) measurements. Bi/SWO-0.7 showed
remarkable increment and stable photocurrent density up to 42.9 nA cm−2 (Figure 5a)
upon light illumination, which is approximately 2.4 and 10.1 times larger than that of
SWO (17.9 nA cm−2) and Bi (3.9 nA cm−2), respectively. In accordance with the result of
transient photocurrent response, Bi/SWO-0.7 with the most reduced semi-diameter of the
semicircle radius represented a minimum charge transfer resistance compared to individual
component (Figure 5b). It is well known that the relative intensity of photoluminescence
(PL) emission is directly proportional to the recombination rate of photoinduced electron
and hole. When in comparison to the PL emission of pure SWO, ranged from UV to visible
light regions, the Bi/SWO composites show a sharply diminished PL intensity, which
supposes the prominent contribution of the Bi element on the apparent descent of the
recombination rate (Figure S7) [46]. It was obviously observed that metallic Bi loading
with the optimal amount displays the lowest intensity significantly, reflects its superior
capability of charge separation. In contrast, the characteristics of interfacial charge transfer
on Bi/SWO-0.7 were further investigated through the single-particle PL measurements
(Figure 5c inset). Matched well with the preceding results of a broad steady-state emission
(inset), it revealed the longer average lifetime (τPL) of photo-induced electron of Bi/SWO-
0.7 (3.68 ns) than that of SWO (2.20 ns) through the transient PL spectra (Figure 5d). Since
the emitting sites on the surface were complicated beyond the instrumental resolution, the
spatial distribution of active sites assigned to elemental Bi are not clear here for analysis. In
summary, all results supported the fact that metallic Bi intimately coupled with SWO can
serve as electron traps, which significantly facilitates charge separation and subsequent
HER kinetics toward high hydrogen production [47].
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Figure 5. Transient photocurrent response (a) and electrochemical impedance spectra (b) of Bi, SWO
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fluorescence decay spectra (d) between SWO and Bi/SWO-0.7. The solid curves indicate the multi-
exponential curves fitted to the kinetic traces using biexponential decay function.

2.4. Photocatalytic Hydrogen Production Activities

Photocatalytic hydrogen production over catalysts was tested in the presence of an elec-
tron donor (Na2S-Na2SO3) under irradiation with a mercury lamp (Figure 6). The results
showed that a promising improvement of photocatalytic activity after Bi loading on SWO
(Bi/SWO) was observed when compared to both individual SWO (2346.8 µmol·g−1·h−1)
and pure Bi (1925.1 µmol·g−1·h−1). It was found that the reactive rate gradually increased
when the loading ratio was less than 0.7 due to an increase in the number of active sites
from Bi (Figure S8). However, an excessive loading ratio, more than 0.7, lowered the total
efficiency, possibly suffering from the obstructive light absorption and interfacial barrier
from serious agglomeration of the Bi covering (Figure S8) [48]. The fact that the optimal
Bi/SWO-0.7 with maximum active sites produced the highest amount of hydrogen around
13,634.3 µmol·g−1 after 3 h (Figure 6a) strongly revealed the crucial interaction between
Bi and SWO for catalytic promotion. In particular, it is noted that the visible performance
of Bi/SWO-0.7 is negligible, despite its absorption spectral profile extended from an in-
trinsic absorption edge of SWO (~400 nm) to the visible light and near-infrared regions
(Figure S9a), which corresponds to the narrowed bandgap from 3.25 eV to 4.47 eV via Tauc
plots analysis (inset in Figure S9a). To our knowledge, this phenomenon is not consistent
with the direct photocatalytic behavior of plasmonic Bi, mainly attributed to the insufficient
charge generation from their poor incident light excitation at the resonance wavelength [17].
Additionally, the influence of the surface area on the photoactivity seems to be also insignif-
icant because of their close SBET (Table S1). All the above results indicated that Bi/SWO-0.7
with competitive activity should be most efficient in spatial charge separation, as a result of
the structural modification with Bi.
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2.5. Photocatalysis Mechanism and Stability

With respect to its commercial application, photocatalytic hydrogen generation from
platinum (1 wt%) photodeposited SWO (Pt/SWO) was measured for a typical compari-
son. Note that Bi/SWO-0.7 exhibited a higher activity (13634.3 µmol·g−1) than Pt/SWO
(7658.6 µmol·g−1) under the same conditions (Figure 6b), further indicating the alterna-
tive competitor of Bi endowed with noble metal-like behavior. In this case, a schematic
illustration of the band alignment within Bi/SWO-0.7 for mechanistic promotion of pho-
tocatalytic performance was shown in Figure 6c. The band positions could be calculated
based on the bandgap values and valence-band XPS (VB-XPS) data (Figure S9b), while
their strong interaction in hybridized charge migration and weak plasmonic effect would
give rise to the reconstruction of the negative states in relation to pristine SWO. Upon light
illumination on Bi/SWO-0.7, the SWO is excited to generate charge pairs of electrons (e−)
and holes (h+) in the conduction (CB) and valence bands (VB), respectively. Furthermore,
electrons escaped from geminate recombination and exergonically relaxed into the neighbor
electron-sink of Bi nanoparticles (Fermi energy = −0.17 eV) from the higher energies CB
(−1.28 eV) of Bi/SWO. Consequently, holes mostly accumulated on the surface of Bi/SWO,
while electrons accumulated on Bi. After that, the accumulated electrons on dispersive Bi
centers subsequently reduced the proton (H+) to generate H2, inferring their resembling
feature as the noble metals to accelerate interfacial charge transfer for suppressing the back
recombination with retentive holes. Meanwhile, substantial holes at the VB of Bi/SWO
(1.28 eV) are scavenged preferably by sacrificial S2−–SO3

2− anions (0.17 V vs. NHE) rather
than water oxidation (1.23 V vs. NHE) through the polysulfide Sn

2−–based mediation of
redox events [49]. Therefore, it can be reasonably inferred that the promising performance
of Bi/SWO-0.7 stems from the synergistic interaction between well-aligned Bi exposure
and porous 3D supports for significant promotion of charge separation and mass transfer,
thereby ensuring the unique structure–property relationship in the heterogeneous system.

As well as high photocatalytic activity, a good photocatalyst should display critical
stability. The repeated experiment of Bi/SWO-0.7 was tested by running the photocatalytic
reaction for 96 h (Figure 6d). It was clearly observed that the photocatalytic efficiency
is mainly stable, and gradually drops within the first eight recycles. After replenishing
the catalysts’ amounts (50 mg) in fresh sacrificial reagents, the activity was recovered at
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the ninth cycle, further excluding the effect of mass missing from multiple treatments of
centrifugation and washing in each cycle. Although the loss of activity that occurred at 96 h
was significant, the reusability in the continuous eight recycles (9th–16th) seems a step closer
to the former case (1st–8th), which confirms their comparable stability. The few changes
in crystallographic structure were also observed by comparing the characteristic peaks of
XRD on Bi/SWO-0.7 before and after reaction (Figure S10). However, was discovered that
some host structures were collapsed (Figure S11), resulting in the irregular agglomeration
of Bi particles after leaching from preliminary support. This result further indicates that
such structural photocorrosion may be considered as the possible cause of their gradual
decrement of activity after long-term reactions.

It is well known that photocatalytic water splitting consists of proton reduction cou-
pled to sluggish water oxidation. The fact that concurrent reactions of electrons and holes
with preferable potential on photoexcited catalysts can spontaneously participate in the
redox activation of suitable reactants [50]. The oxidative capability of photocatalysts was
evaluated by performing the aerobic degradation of tetracycline (TC), benzyl alcohol (BP),
phenol (Ph) and 4-chlorophenol (4-CP). In comparison to the 61% removal of BP after 1 h,
the Bi/SWO-0.7 performed nearly 100% degradation of TC, Ph and 4-CP within 30 min
(Figure S12a). It can be reasonably inferred that the efficient pollutant degradation and
TOC (41.3~80.4%) removal stem from the direct oxidation of the holes (inset in Figure S12a).
One consideration of less expensive sacrificial reagents, from the viewpoint of industrial
application, is that it is favorable if the anaerobic photodegradation is coincidental with
the typical operations of hydrogen production when pollutants serve as electron donors.
Therefore, the hydrogen production activities with additive organic pollutants were further
investigated in the identical system. Concurrently with complete degradation of TC (TOC,
80.4%), Bi/SWO-0.7 displays a significantly enhanced hydrogen production rate up to
7207.9 from 4544.8 µmol·g−1·h−1 (Figure S12b), evidently demonstrating their synergistic
effect on the promotion of catalytic performance. However, as they suffer from an unstable
structure, as shown in our present work, it would be of great interest to construct the poten-
tial heterojunction for our future study in the field of redox-coupled pollutant degradation
and hydrogen production [51].

3. Materials and Methods
3.1. Chemical Reagents

All chemicals were analytical grade or higher: sodium tungstate, bismuth nitrate
pentahydrate, glucose, sodium sulfide nonahydrate, sodium sulfite were all purchased
from Adamas (Shanghai, China). Strontium nitrate was purchased from Aladdin (Shanghai,
China). All raw materials were analytical reagents and were used without further purification.

3.2. Characterization

Powder X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance
X-ray diffractometer with Cu Kα (λ = 0.15406 nm). The Raman spectra was tested via the
Raman spectrometer (Renishaw inVia Raman Microscope, laser wavelength was 785 nm,
laser power was 5%, exposure time was 10 s, integration times was 3). The morphology
of the materials was observed by scanning electron microscopy (SEM, Gemini SEM 300)
equipped with energy dispersive X-ray spectroscopy (EDS). X-ray photoelectron spectra
(XPS) and valence-band X-ray photoelectron spectra (VB-XPS) were obtained by a Thermo
Scientific K-Alpha. UV-visible diffused reflectance spectroscopy (DRS) was obtained using
a UV-visible spectrophotometer (UV-2600, Shimadzu, Japan). Photoluminescence (PL)
spectra were recorded using a Gangdong F-320 spectrometer using 275 nm as the excitation
wavelength. The Brunauer–Emmett–Teller (BET) surface area was measured using a
nitrogen adsorption instrument (Micromeritics ASAP 2460 analyzer) at liquid-nitrogen
temperature. The specific surface areas of samples were determined by the Brunauer–
Emmett–Teller (BET) method, and the pore size distribution and pore volume of samples
were calculated by the Barrette–Joynere–Halenda (BJH) method.
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3.3. Synthesis of Photocatalyst

In a typical procedure for direct synthesis of the SrWO4 (SWO) microstructure [52],
the source materials of Sr(NO3)2 and Na2WO4 with equimolar quantities of 5 mmol were
separately dissolved in 25 mL distilled water at room temperature. Then the Na2WO4
aqueous solution was slowly added into the Sr(NO3)2 solution without stirring or shaking
followed by the pH adjudication from H2SO4 and NaOH solution. Immediately, white
precipitates appeared and were maintained for 2 h at room temperature. Finally, the SWO
products were collected after drying at 70 °C for 5 h, followed by washing with water
several times. After SWO formation, we prepared the hierarchical composites of Bi/SWO
through the hydrothermal method [23]. First, 1 mmol of Bi (NO3)3·5H2O and 1 mmol of
glucose were mixed in 30 mL of ethylene glycol under continuous stirring. After the mixture
was dissolved completely, a certain amount of SWO powder was added and dispersed
ultrasonically. Then, the final suspensions were transferred into a 50 mL Teflon-lined
autoclave reactor and heated at 160 °C for 24 h. After cooling down to room temperature,
the precipitates were collected, followed by washing with ethanol and deionized water,
and drying at 70 °C for 4 h. For ease and clarity, the synthesized Bi/SWO composites were
denoted as Bi/SWO-x, where x represents the different mass ratio of Bi among 0.4, 0.5,
0.6, 0.7 and 0.8, respectively. For comparison, Bi nanoparticles were prepared under the
identical conditions with addition of Bi(NO3)3 as precursors.

3.4. Photocatalytic Hydrogen Evolution Reaction

The photocatalytic hydrogen-evolution reaction was conducted in an all-glass au-
tomatic on-line trace gas analysis system (Beijing China Education AuLight Technology
Co., Ltd., Beijing, China) connected to a fully automatic flow control gas chromatograph
(GC-CEAuLight, Beijing, China) with a thermal conductivity detector (TCD). Typically,
50 mg of the photocatalyst was dispersed into a 100 mL aqueous solution with a sacrificial
agent (0.35 M Na2S·9H2O and 0.25 M anhydrous Na2SO3). The entire system was degassed
several times before the reaction to remove the air from the system. Under the irradiation of
Hg lamp (250 W, Shanghai Jiguang Special Lighting Electric Appliance Factory, Shanghai,
China), the generated hydrogen in this reactor was analyzed by online GC (CEAuLight)
after every time interval. Finally, the samples were collected after centrifugation and wash-
ing for the recycling experiment. The reusability test was carried out 16 times and then
each reaction lasted for 6 h per cycle. During the reaction, the temperature of the entire
circulation system was maintained at 293 K by using a cooling circulation water system.

3.5. Photoelectrochemical Measurements

Electrochemical impedance spectroscopy (EIS) and Mott-Schottky (MS) analysis were
performed on a three-electrode potentiostat (CHI660E, Shanghai, China) with an electrolyte
of 0.5 M Na2SO4 solution. A platinum, Ag/AgCl electrode, and the conductive ITO glass
coated with photocatalysts were used as the counter, reference, and working electrodes.
EIS tests were carried out in the frequency range of 10−1 and 102 Hz. MS tests were carried
out using the impedance-potential model over a voltage range of −1 to 1 V at a frequency
of 1 kHz. Current-time curves (I-t) were determined at 0 V versus Ag/AgCl in Na2SO4
(0.5 M) at ambient temperature using a 300 W Xe lamp (Perfect Light MICROSOLAR 300,
Beijing, China) with a UV cut-off filter (λ > 400 nm).

3.6. Sample Preparation for Single-Particle PL Experiments

The quartz cover glasses were purchased from Matsunami Glass and cleaned by
sonication in a 20% detergent solution (Cleanace, As One) for 6 h, followed by washing
with warm water for 5 times. Finally, the quartz cover glasses were washed again with
Milli-Q ultrapure water (Millipore). The suspension with a low concentration of different
samples was spin-coated on the pre-cleaned quartz cover glass, which was subsequently
annealed at 100 ◦C for 0.5 h to immobilize the particles on the glass surface.
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3.7. Single-Particle Pl Measurements by Confocal Microscopy

Single-particle PL images and spectra were recorded by using an objective scanning
confocal fluorescence microscope system (PicoQuant, MicroTime 200). The samples were
excited through an oil-immersion objective lens (Olympus, UplanSApochromat, 100×,
1.4 NA) with a circular-polarized 375-nm pulsed laser (Spectra-Physics, Mai Tai HTS-
W with an automated frequency doubler, Inspire Blue FAST-W; 0.8MHz repetition rate)
controlled by a PDL-800B driver (PicoQuant). The emission from the sample was collected
by the same objective and detected by a single-photon avalanche photodiode (Micro
Photon Devices, PDM 50CT) through a dichroic beam splitter (Chroma, z405rdc) and
long pass filter (Chroma, HQ435CP). For the spectroscopy, only the emission that passed
through a slit was detected with the imaging spectrograph (Acton Research, SP-2356)
equipped with an electronmultiplying charge-coupled device (EMCCD) camera (Princeton
Instruments, ProEM).

4. Conclusions

In summary, the appropriate amount of metallic Bi particles was successfully assigned
on SWO microspheres through the glucose-assistant one-pot hydrothermal method. In com-
parison to individual SrWO4 (2.3 mmol·h−1·g−1) and Bi (1.9 mmol·h−1·g−1), the Bi/SWO
greatly enhanced the reactive rate of HER up to 4.5 mmol·h−1·g−1 to reveal the synergistic
contribution of strong metal-support interactions. The representative electron-sink-capacity
of Bi on SWO contributed twice as much activity than Pt/SWO, leading to their potential
application as noble-metal-alternative co-catalysts. The remarkable increment of photocur-
rent around 42.9 nA cm−2 and the smallest semicircle radius through the electrochemical
analysis, as well as the longer average lifetime of 3.68 ns in fluorescence decay, evidently
reflected their superior capability of charge separation compared to that of the pure phase.
When coupling the methodology of glucose encapsulated metallic loading with 3D host
structures, this work could provide a new insight into the structure-activity relationships
for collaboratively promoting the photocatalytic performance of SrWO4-based materials in
hydrogen production and even organic pollutant degradation.
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//www.mdpi.com/article/10.3390/catal12070787/s1, Figure S1: Raman spectra (a) and XRD patterns
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treatment (a) and direct synthesis of Bi (b); Figure S3: N2 adsorption–desorption isotherms curves
and pore diameter distribution curves (inset) of Bi, SWO and Bi/SWO-0.7, respectively; Figure S4:
EDX spectrum of the resultant Bi/SWO-0.7; Figure S5: SEM images of pH independent morphology
on the control products along with glucose addition; Figure S6: XRD patterns of SWO samples
obtained with and without glucose addition from hydrothermal aging at pH = 6.9; Figure S7: PL
spectra for SWO and their composites with different amounts of Bi; Figure S8: Comparable H2
generation between SWO and their composites with different amounts of Bi; Figure S9: Steady-state
diffuse reflectance UV-visible spectrum (a) with corresponding Tauc plots (inset) and valence-band
XPS (b) for the samples; Figure S10: The comparable XRD patterns of Bi/SWO-0.7 before and after
long-term experiment; Figure S11: The SEM images of Bi/SWO-0.7 after long-term experiment;
Figure S12: Photodegradation of typical pollutants (a) with their total organic carbon (TOC) removal
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and the average pore size of the photocatalysts; Table S2: Elemental composition of Bi/SWO-0.7 from
XPS and EDS.
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