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Abstract: A predictive model correlating the properties of a catalyst with its performance would be
beneficial for the development, from biomass waste, of new, carbon-supported and Earth-abundant
metal oxide catalysts. In this work, the effects of copper and iron oxide crystallite size on the
performance of the catalysts in reducing nitrogen oxides, in terms of nitrogen oxide conversion and
nitrogen selectivity, are investigated. The catalysts are prepared via the incipient wetness method
over activated carbon, derived from palm kernel shells. The surface morphology and particle size
distribution are examined via field emission scanning electron microscopy, while crystallite size is
determined using the wide-angle X-ray scattering and small-angle X-ray scattering methods. It is
revealed that the copper-to-iron ratio affects the crystal phases and size distribution over the carbon
support. Catalytic performance is then tested using a packed-bed reactor to investigate the nitrogen
oxide conversion and nitrogen selectivity. Departing from chemical characterization, two predictive
equations are developed via an artificial neural network technique—one for the prediction of NOx

conversion and another for N2 selectivity. The model is highly applicable for 250–300 ◦C operating
temperatures, while more data are required for a lower temperature range.

Keywords: catalyst; selective catalytic reduction; carbon; crystallite size; artificial neural network

1. Introduction

The removal of nitrogen oxides (NOx) from domestic and industrial emissions is
of ongoing interest due to environmental benefits and the more stringent policies un-
dertaken by many countries [1]. Many techniques have been used and studied, but the
selective catalytic reduction is the most prominent. The choice of a reductant, whether
ammonia, hydrocarbon, or hydrogen, is highly dependent on the available technology and
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resources [2,3]. The type of reductant could influence the catalyst requirement, including
the type of catalyst support, precursor, composition, operating temperature, and reactor
configuration [4]. One of the most important physical properties of the selective catalytic
reduction (SCR) catalyst is the microstructure of the chemical composition involved in the
reaction, i.e., the microstructure of the impregnated metals. Chen et al. [5] investigated the
effects of crystallite size on NOx storage performance and concluded that the smallest size,
i.e., 0.4 µm, offered the highest NOx storage capacity while Costa et al. [6] found that the
metal phase crystallinity and size played major roles in determining NOx selectivity.

In recent years, research interest has converged on the development and employment
of machine learning modeling approaches, the artificial neural network (ANN) being one
of the widely adopted, due to their usefulness in forecasting numerous outcomes in the
presence of multi-factorial inputs. In essence, ANN has been formulated to follow an
architectural framework that mimics the thinking characteristics of the human brain. It
challenges numerous input variables while making and influencing linkages amongst
them to carry out prediction through three chief events, namely, training, validation, and
testing. Such a predictive process follows a similar decision-formation course used by the
brain when presented with a group of data. ANN gathers information from the provided
input with matching outputs to form experiences and obtain knowledge through the
learning of examples. With sufficient information, ANN is capable of making a reasonable
forecast when presented with a new set of data. Hence, with more input data, better
predicting performance is expected from ANN. Some practical uses of ANN in the literature
include the prediction of concrete strength [7–9], steel connection rigidity [10], chloride
permeability behaviors [11], flood identification [12], the control of vehicles [13], and
medical diagnosis [14], in addition to finance [15], and countless other fields.

In this work, the hydrogen-selective catalytic reduction (H2-SCR) was studied due to
the increasing attention on the use of hydrogen as a future fuel, which could serve as the
reductant in the NOx-removal system. Considering environmental concerns, the catalyst
was prepared from biomass waste, i.e., palm kernel shells (PKAC) and a mixture of two
metal oxides of abundant elements, i.e., copper and iron. This bimetal oxide catalytic system
could be utilized at a large scale due to its cost-effectiveness. It could be a solution to the
problem of increasing biomass waste generation revolving around developing countries,
in which agriculture is the primary economic activity [16]. Therefore, the possibility of
applying this system using H2-SCR to reduce NOx from a synthetic exhaust gas is explored.
This paper discusses in detail the effects of copper and iron oxide particle size on the
performance of the catalysts in reducing NOx and the development of a predictive model
that correlates the particle size with the H2-SCR performance of the catalysts.

2. Results and Discussion
2.1. FESEM-EDX

Figure 1 shows the evolution of the shape and texture of particles over the surface of
the activated carbon (PKAC) and catalysts (PKAC/Cu and PKAC/Fe).

The original surface structure of PKAC was composed of coagulants of edgy particles
that made up the porosity of the carbon surface. This image is similar to the SEM image
obtained by Buhani et al. [17] on the activated carbon derived from palm kernel shells. As
copper oxide was doped via incipient wetness, these aggregates can be seen to be reduced
in size while increasing the number of particles over the surface. This is due to the thermal
reaction of the carbon aggregates and additional metallic particles impregnated (refer to
Figure 2) during the catalyst preparation process [18]. Similar phenomena can be observed
for PKAC/Fe; however, the PKAC/Fe aggregates consist of larger particles compared to
PKAC/Cu. The method used to prepare the catalysts did not change the skewness of the
particle distribution.
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Figure 1. FESEM image and particle size distribution for PKAC and the monometallic catalysts at
30k magnification.
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Figure 2. EDX spectra for PKAC and the monometallic catalysts at 100 magnification. 
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phology. PKAC/Cu20 and PKAC/Cu30 represent catalysts with 20 wt% and 30 wt% load-
ings, correspondingly, as compared to only 10 wt% loading on PKAC/Cu (in Figure 1). 
The particle size distribution exhibits the 20 wt% loading generated particles of a more 
uniform size than 30 wt% loading because higher levels of particle introduction onto the 
surface increased the agglomeration effect (shown in orange circles). It was expected that 
higher agglomeration would contribute to the inactivation of the catalytic sites [19]. 
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Figure 2. EDX spectra for PKAC and the monometallic catalysts at 100 magnification.

Figure 3 compares the effects of higher catalyst loading on the catalyst surface mor-
phology. PKAC/Cu20 and PKAC/Cu30 represent catalysts with 20 wt% and 30 wt%
loadings, correspondingly, as compared to only 10 wt% loading on PKAC/Cu (in Figure 1).
The particle size distribution exhibits the 20 wt% loading generated particles of a more
uniform size than 30 wt% loading because higher levels of particle introduction onto the
surface increased the agglomeration effect (shown in orange circles). It was expected that
higher agglomeration would contribute to the inactivation of the catalytic sites [19].
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The same effect was exhibited over the bimetallic catalyst PKAC/FeCu, as shown
in Figure 4. However, the agglomerates have smaller sizes compared to those observed over
PKAC/Cu30 and the sizes are more uniform, as can be seen from the size distribution analysis.
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Figure 4. FESEM image, particle size distribution, and EDX spectrum for the bimetallic catalyst.

2.2. SAXS

Figure 5 shows the SAXS profiles and size distribution of the monometallic and
bimetallic catalysts. The SAXS profiles were fitted to a power law described by Equation (1).

I(q) = q−α (1)

where α is the power exponent; this calculates a simple power law with a flat background.
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Figure 5. SAXS profiles and size distribution of monometallic and bimetallic catalysts.
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The SAXS profiles show the behavior of the power law scattering with the characteristic
mass fractal (1≤ α≤ 3). Furthermore, the power-law exponent is associated with the fractal
dimension, Ds = 6 − α; its increase indicates that the surface roughness becomes larger. The
pristine PKAC presents α = 2.31 ± 0.016 (Ds = 3.682) but when the monometallic catalyst
was incorporated, α = 1.85 ± 0.021, and α = 1.88 ± 0.016 for the Fe and Cu inclusions,
respectively, thus demonstrating increasing trends in surface roughness. On the other hand,
increasing the amount of the monometallic catalyst (copper loading) increased α from
1.88 ± 0.016 to 2.24 ± 0.01, while smoothing the surface morphology. A more complicated
behavior of the power law exponent was observed when bimetallic catalysts were used:
for the samples with 20 wt% of Cu and with 10 wt% each of Fe and Cu, α changed from
2.31 ± 0.16 to 2.11 ± 0.25 and 1.62 ± 0.006, respectively.

Subsequently, the size distribution of monometallic and bimetallic catalysts was devel-
oped using Igor Pro. The particle size distribution analysis of the PKAC sample shows two
different sizes, 9.47 Å and 19.26 Å, the former being the dominant size of the sample. When
monometallic catalysts were used, most of them showed a bigger size than the pristine
PKAC. The main size in PKAC (9.47 Å) could have worked as a seed or nucleation center,
and, therefore, bigger sizes are observed in the samples with additives. Increasing the
amount of Cu on the pristine PKAC, the size distribution analysis shows a shift to smaller
sizes, from 23.27 Å to around 20 Å, on the samples containing 20 wt% and 30 wt% of Cu. A
similar trend was observed when the bimetallic catalyst was used, with a larger size than
the pristine PKAC, in the order of 20 Å. However, when Cu and Fe were used together,
a smaller size (6.13 Å) was dominant, which is likely due to the presence of unreacted
raw material.

2.3. WAXS

More information could be obtained by knowing which particle belongs to which
active sites. This may be achieved through the WAXS analysis that can reveal the species
and crystal structure information of the catalysts. Figure 6 displays the WAXS patterns
obtained for all catalysts in this study.
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The copper species detected on PKAC/Cu, PKAC/Cu20, and PKAC/Cu30 include
Cu (at 16◦), CuO (at 13, 14, 22, and 23◦), and Cu2O (at 15.5◦) [20], with the latter exhibiting
the highest crystallinity. The increment of copper loading saw an increase in intensity,
especially for Cu2O. Meanwhile, the iron species observable in PKAC/Fe included only
Fe2O3 (at 12, 14.5, and 16◦) [21] with very low intensity, thereby showing the almost
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amorphous behavior of the catalyst and indicating the species was highly dispersed into
the surface pores. Furthermore, a dramatic decrease in intensity was seen for the copper
species when the catalyst was co-impregnated with iron, which also decreased crystallite
sizes. There are certainly synergistic effects when combining the two catalysts over biomass-
activated carbon, as the crystallization and dispersion effects are altered by increasing the
monometallic loading [22].

Synergism between copper and iron in NOx reduction was reported by Ma et al. [23],
who concluded that the bimetallic catalysts increased NO oxidation to NO2 as well as
the adsorption of NO2 and NH3, which accelerated the reaction. However, dependence
on the performance of this bimetallic catalyst (Fe-Cu) supported over activated carbon in
H2-SCR on the composition of the two metals, to our knowledge, has not been reported
in the literature. Therefore, the present work intends to reveal the effects of a different
combinations of Fe-Cu impregnation loadings on the performance of the catalyst. The
catalysts were prepared with each metal loading in the range of 10 wt% to 30 wt% and were
analyzed for the metal content via AAS (refer Section 3.5). The resulted metal composition
is summarized in Table S1 (Supplementary Material). The ratio between Fe and Cu loadings
is plotted against the most dominant size of the catalyst (obtained from WAXS studies), as
shown in Figure 7.
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The plot shows that over all ranges of metal ratios under study, co-impregnation
between iron and copper via subsequent incipient wetness produced particles of nano-size,
and the doping of different amounts of copper over iron influenced the crystallite size of
both metals. With smaller amounts of copper doped over the iron-impregnated carbon,
from a ratio of 0.2 to 0.8, Fe2O3 particles increased in size while Cu2O kept an almost
constant crystallite size. Thereafter, Fe2O3 exhibits an increase in size while the size of
Cu2O crystals decreases. Nevertheless, Fe2O3 always has a larger crystallite size compared
to Cu2O over the studied ranges of metal ratios. It is interesting to conclude from the plot
that the crystal growth over activated carbon is controlled by the relative concentration of
the metals during incipient wetness.

2.4. Catalyst Activity

Figure 8 shows the performance of the synthesized catalysts in terms of NOx conver-
sion and N2 selectivity at different temperatures. Due to the toxicity of NOx gas used in the
experiment, only selected runs were repeated to obtain the standard deviation. The error
bars can be seen to be only significant at lower temperatures when PKAC/Cu was used,
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but when iron was co-impregnated (PKAC/FeCu), the error bars became insignificant over
all temperatures. Furthermore, both NOx conversion and N2 selectivity were low at lower
temperatures for all catalysts, while the catalyst activity improved at elevated temperatures
(higher than 200 ◦C). The selectivity was highest at 200 ◦C for all catalysts even though
the NOx removal was still below 25%, while the conversion was highest at 300 ◦C for all
catalysts. It was determined in this study that the selectivity is low due to the formation
of by-products, especially nitrous oxide (N2O) and ammonia (NH3), indicating that the
following reactions ((2) to (4)) occurred simultaneously (where M is metal catalyst site) [6];

2NO + 4H2 + O2 → N2 + 4H2O (2)

2NO + 3H2 + O2 → N2O + 3H2O (3)

M−N + 3M−H→ 4M + NH3 (4)
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It can be noticed that the range of selectivity achieved by the bimetallic catalyst
(PKAC/FeCu) improved in comparison to the monometallic catalyst of the same catalyst
dosage (PKAC/Cu20), increasing from 30–98% to 50–100%. As discussed in the succeeding
sections, this was contributed to by the different crystallite sizes where higher catalyst
dosage exhibited agglomeration, while the incorporation of a second metal reduced the
agglomerate size.

Therefore, it is important to investigate the influence of different crystallite sizes on
the performance of bimetallic catalysts in the NOx reduction system. By varying the Fe/Cu
ratio and determining the catalyst activity, the following sections extend the use of this
information to predict the performance of a newly developed iron-copper catalyst by
analyzing the crystallite size.

2.5. Prediction of NOx Removal

Figure 9 displays the performance curve produced by the ANN model, which indicates
that the best validation performance was achieved at epoch 1, for a total of 7 epochs. The
training status in predicting NOx conversion percentage, X, is observed in Figure 10. It
is noticed that the validation stops after 7 epochs, replicating the same viewpoint as that
exhibited in Figure 9. It is demonstrated in Figure 10c that after epoch 1, the error occurs 6
times, implying incidents of data-overfitting. Therefore, the weighted values computed at
epoch 1 are employed to construct the desired descriptive model from the ANN training.
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Figure 9. Performance curve for predicting NOx conversion percentage, X.

The ANN-regressed outcomes are inspected in Figure 11 in terms of training, valida-
tion, test, and overall responses. In these subfigures, ‘Target’ values indicate the ‘measured
X’, while the ‘Output’ values are the predicted X, as calculated by the ANN model. A set of
somewhat high R2 values are produced in each of these steps. Even so, due to the lack of
data, the data points are concentrated near the early and end regions of all regressed curves.
The computed relationship for predicting X, as determined in the form of Equation (12),
takes the following form:

X = [0.519412 0.072857 0.057157]Pi − 52.2415 (5)

Equation (5) demonstrates the best forecasting ability in determining X for both
temperatures of 250 ◦C and 300 ◦C, displaying errors ranging merely from 4.4 to 9.4%.
Under the influence of lower temperatures, the errors of prediction could go as high as
76%. This is attributed to two reasons. Firstly, the input data fed to the ANN model
are insufficient to offer enough examples for ANN learning. Secondly, selective catalytic
reduction favors a higher range of temperatures. Temperatures in the higher regime seem
to be the optimal condition for the conversion of NOx. This observation is later replicated
in Section 2.6 in terms of N2 selectivity.
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2.6. Prediction of N2 Selectivity

The regression plots in the case of N2 selectivity are shown in Figure 12. Again, data
points are populated near both edges in all subfigures. In comparison to Figure 11, the R2

coefficients are slightly lower. This is due to a slightly more dispersed arrangement of data
points, relative to those presented in Figure 11. Having specified this, it should be empha-
sized that using the same amount of data for training in predicting the NOx conversion
has resulted in a high R-value in Figure 11. The explicit mathematical expressions derived
from the ANN model for predicting N2 selectivity are obtained as shown in Equation (6):

S = [0.423943 0.36269 0.347461]Pi − 63.518 (6)
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The strong predictive ability, noted in Section 2.5, for NOx conversion is also replicated
here for the high-temperature range between 250 ◦C and 300 ◦C. Errors found in conforming
to measure outcomes range from 0.3 to 15.3%, the range of which is slightly wider compared
to the prediction of the NOx conversion. In the presence of lower temperatures, the errors
increase to 3.7–100%. Upon closer inspection, 100% errors are found in the cases of 0
N2 selectivity, suggesting a numerical issue rather than the modeling capability of the
proposed ANN model.

Nevertheless, it is worth noting, given the two main reasons described, that the pre-
diction of the measured outcomes (target) by the explicit analytical model derived from the
ANN, remains within a well-acceptable regime of accuracy. In general, Equations (5) and (6)
effectively capture the determination of the percentages of NOx conversion and N2 selectiv-
ity, respectively, specifically in the presence of the high temperatures of 250 ◦C and 300 ◦C.
The model capability could surely be improved through the provision of a larger dataset.
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This could also imply that at low temperatures, the chemical processes were not well-
optimized or did not fully interact, thereby causing low predictability of the formulated
models. A future study is recommended to resolve this observation.

3. Materials and Methods
3.1. Materials

Palm kernel shell-activated carbon (PKAC) was obtained from a local supplier in
Sarawak, Malaysia. The metal salts used in this study were copper (II) nitrate trihydrate
(Cu(NO3)2.3H2O, 99.999%) and iron (III) nitrate nonahydrate (Fe(NO3)3.9H2O, 99.999%).
All were supplied by Sigma Aldrich, Gilligham, UK.

3.2. Catalyst Preparation

No further pre-treatment was required for PKAC besides drying in an oven (Memmert
GmbH + Co. KG, Schwabach, Germany) at 110 ◦C for 72 h to remove the adsorbed water
and carbon dioxide. The carbon was ground using a ball mill and sieved to particle sizes
of 600 µm–710 µm [24,25]. Metallic catalysts were doped over the carbon via the incipient
wetness method with a 1:1 ratio of activated carbon pore volume to metal salt solution
volume. Consequentially, the wastewater produced via this method was largely reduced.
The catalyst was then washed and filtered using deionized water and dried at 80 ◦C for
24 h before calcination at 350 ◦C and 510 ◦C for Cu and Fe, respectively (based on the
decomposition temperature of the metal nitrates), under a helium ambient (to prevent
excessive carbon combustion, which could lower the carbon mass). Two types of catalyst
designs were investigated: monometallic and bimetallic catalysts. The former involved
impregnating the metals individually over carbon, while the latter was synthesized by com-
bining two metals using sequential impregnation. The catalyst loading was 10 wt% unless
otherwise specified to be 20 and 30 wt%, which were denoted as PKAC/MX (M = metal,
X = 20 or 30) for monometallic oxide catalysts, and as PKAC/M1X1M2X2 for bimetallic
oxide catalysts (M1 = first metal, X1 = loading of first metal, M2 = second metal, and
X2 = loading of second metal).

3.3. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray

Surface morphology and the dispersion of metallic catalysts were studied using a
NOVA NANOSEM 230 Ultra High-Resolution Scanning Electron Microscope (FEI, Hills-
boro, OR, USA) at an accelerating voltage of 5 kV and working distance between 4.5 and
10.0 mm. At a magnification of 30,000 times, the particles in the samples were analyzed
using Image-J software to determine their size distribution following the protocol pub-
lished by [26]. The error from using this method was reported to be less than 2% [27].
The equipped Energy Dispersive X-ray Spectroscopy (EDX) was employed to inspect the
distribution of the active sites over the carbon surface.

3.4. Small-Angle and Wide-Angle X-ray Scattering

Measuring the atomic spatial arrangement on a scale down to 10−8 cm is usually
achieved by the application of diffraction. A diffraction pattern, obtained upon the record-
ing of scattering waves over a material, was found to correlate with the crystal structure of
a particular material. Three types of suitable waves for this process are X-ray, electron, and
neutron [28]. Small-angle X-ray scattering (SAXS) is a powerful technique used to investi-
gate material structures at large distances. It helps to determine the shape, size distribution,
and surface structure of particles much smaller than those observed by optical microscopy
or by the naked eye. Typically, sizes ranging from 1µm to several Å are measured. While
wide-angle X-ray scattering (WAXS) has been used to determine lattice constants of some
particles similar to X-ray diffraction (XRD), it is typically carried out along with SAXS. The
size of the nano-crystal is determined using the Scherrer formula with the breadth values
of the WAXS diffraction peaks.



Catalysts 2022, 12, 779 13 of 17

In this project, SAXS and WAXS were employed to evaluate the crystalline phase
and size of the catalysts impregnated over the carbon support. This was performed at
a 9ID beamline at the Advanced Photon Source, Argonne National Laboratory, Lemont,
IL, USA. For this, powdered samples were prepared and placed on the sample seats. The
facility used synchrotron light produced from the acceleration of electrons as the source
of the high-energy and high-brightness X-ray beams, with a monochromatic beam of the
generated X-ray (21 keV) bombarded over the sample. This caused the atomic electrons to
move and generated a scattering wave. A detector placed behind the specimen collected
the scattered wave and recorded the intensity of the wave at a range of incidence angles,
θ. This generated a diffraction pattern in a 2D image that was converted into 1D data for
analysis [29]. In this study, the data collection time was about 2 min. In addition, profiles
of blank air were subtracted as background and instrumental slit smearing was removed
during data reduction. For visualization, intensity data were placed on an absolute intensity
scale. Bragg’s law relates the incident wavelength, λ, to the interplanar spacing, d, between
atoms in the specimen, as presented in Equation (7). Each interplanar spacing is a plane of
dimension labeled by Miller indices (hkl). A peak at this location implies the existence of
this plane, which is also measured as 2θ, as expressed in Equation (8):

2dsinθ = λ (7)

2θ = 2arcsin

(
λ
√

h2 + k2 + l2

2a0

)
(8)

The diffraction pattern of a specimen was then matched with the Joint Committee on
Powder Diffraction Standards (JCPDS), which maintains a large collection of diffraction
patterns for thousands of materials. A computer program, such as Igor Pro 8 [29], was used
for peak matching, peak search, and fitting for the crystallite size calculation. The latter
was calculated using the Scherer Equation (9):

L =
Kλ

B(2θ)cosθ
(9)

where L is the mean size of crystallite diameter, K is the shape factor depending on the
crystallite shape (with a value of 0.9 often near many shape factors), and B(2θ) is the full
width at half the maximum intensity of the peak (FWHM).

3.5. Metal Content Determination

The composition of metals in the carbon-based catalysts was measured by digesting
the catalyst in an acidic solution for chemical element analysis in atomic absorption spec-
troscopy (AAS). In AAS, samples containing metals were atomized in an air-acetylene flame
to produce an analyte of the excited state, which absorbed a specific wavelength unique to
a particular element. The source of the wavelength emission was a hollow-cathode lamp
made of cobalt-chromium-copper-iron-manganese-nickel (depending on the element of
interest), and the intensity of absorbance related to the concentration of the analyte via the
Beer-Lambert law [30]. Approximately 5 mL of sample was injected into the Analyst 400 AA
(PerkinElmer, Inc., Massachusetts, UK), which automatically calculated the concentration
of the metal based on the calibration carried out prior to the sample run. Subsequently, the
Fe/Cu ratio was calculated based on the mass of each metal in the catalyst.

3.6. Catalyst Activity

The catalysts were tested for the nitric oxide reduction capacity in terms of NO
conversion and N2 selectivity. Approximately 1 g of the catalyst was placed inside a
fixed-bed reactor before being reduced in-situ at 250 ◦C under 5% H2/He at 7175 h−1.
Subsequently, the system was cooled/heated to the desired temperature, in the range
of 120 to 300 ◦C before feeding in a gas mixture of 500 ppm NO + 4% H2 + 1.5% O2 in
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helium. The gas exiting the system was analyzed continuously using an HPR-20 mass
spectrometer (Hiden, Warrington, UK). NO conversion and N2 selectivity were calculated
via Equations (10) and (11):

Conversion, X (%) =
FNOx ,in − FNOx ,out

FNOx ,in
× 100% (10)

Selectivity, SN2(%) =
2× FN2

∑ aFp
× 100% (11)

where FNOx,in, FNOx,out, FN2, Fp, and a are the flow rates of NOx at the inlet and outlet, flow
rate of nitrogen at the outlet, flow rate of each product, and the number of nitrogen moles
in each of the products’ molecules, respectively.

3.7. Artificial Neural Network Model

To begin the modeling, the input data were first subcategorized into three subsets
according to the following settings: training (70%), validation (15%), and test (15%). In
brief, the training step exercises allows the subset to learn from examples, such that an
acceptable accuracy is reached for a certain number of epochs; the validation step displays
how well this subset has been trained in estimating the modeled behaviors; and the test step
demonstrates the performance of the trained subset. In the current scope, only three inputs
were considered: temperature (x1), iron crystallite size (x2), and copper crystallite size
(x3) with two separate outputs, i.e., the NOx conversion percentage (%) and N2 selectivity
percentage (%). Therefore, for the training of the ANN model, the factors or independent
variables that influence the performance of the nitric oxide reduction (Section 3.6) are
temperature, iron crystallite size, and copper crystallite size. These three parameters were
defined as the inputs. To measure the performance of the nitric oxide reduction, the
NOx conversion percentage and N2 selectivity percentage, as determined in Section 3.6,
for various sets of temperature, iron crystallite size, and copper crystallite size, were
taken as the outcomes (dependent variables) or the parameters to be predicted by the
to-be-formulated ANN equations. The MATLAB ANN program was employed with the
network architecture as presented in Figure 13. The computation was compartmentalized
into four components, i.e., input, hidden layers, an output layer, and output. The feed-
forward backpropagation algorithm was selected as the network type. It was proven by
Khademi et al. [8] that one hidden layer is enough to provide good predictability for a multi-
layer network, the choice of which is evidenced also in numerous existing works. Thus,
only one hidden layer was employed in the present study with one output layer. Further,
the Levenberg-Marquardt algorithm was adopted as the training function with the mean
squared normalized error as the chosen performance function. The pure linear transfer
function, PURELIN, was utilized for both the hidden and output layers. Furthermore,
seven hidden neuron nodes were used in the hidden layer following the (2n + 1) function,
where n = number of input variables.

Catalysts 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑋 (%) = 𝐹ேைೣ,௜௡ − 𝐹ேைೣ,௢௨௧𝐹ேைೣ,௜௡ × 100% (10)

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑆ேమ(%) = 2 × 𝐹ேమ∑ 𝑎𝐹௣ × 100% (11)

where FNOx,in, FNOx,out, FN2, Fp, and a are the flow rates of NOx at the inlet and outlet, flow 
rate of nitrogen at the outlet, flow rate of each product, and the number of nitrogen moles 
in each of the products’ molecules, respectively. 

3.7. Artificial Neural Network Model 
To begin the modeling, the input data were first subcategorized into three subsets 

according to the following settings: training (70%), validation (15%), and test (15%). In 
brief, the training step exercises allows the subset to learn from examples, such that an 
acceptable accuracy is reached for a certain number of epochs; the validation step displays 
how well this subset has been trained in estimating the modeled behaviors; and the test 
step demonstrates the performance of the trained subset. In the current scope, only three 
inputs were considered: temperature (x1), iron crystallite size (x2), and copper crystallite 
size (x3) with two separate outputs, i.e., the NOx conversion percentage (%) and N2 selec-
tivity percentage (%). Therefore, for the training of the ANN model, the factors or inde-
pendent variables that influence the performance of the nitric oxide reduction (Section 3.6) 
are temperature, iron crystallite size, and copper crystallite size. These three parameters 
were defined as the inputs. To measure the performance of the nitric oxide reduction, the 
NOx conversion percentage and N2 selectivity percentage, as determined in Section 3.6, 
for various sets of temperature, iron crystallite size, and copper crystallite size, were taken 
as the outcomes (dependent variables) or the parameters to be predicted by the to-be-
formulated ANN equations. The MATLAB ANN program was employed with the net-
work architecture as presented in Figure 13. The computation was compartmentalized 
into four components, i.e., input, hidden layers, an output layer, and output. The feed-
forward backpropagation algorithm was selected as the network type. It was proven by 
Khademi et al. [8] that one hidden layer is enough to provide good predictability for a 
multi-layer network, the choice of which is evidenced also in numerous existing works. 
Thus, only one hidden layer was employed in the present study with one output layer. 
Further, the Levenberg-Marquardt algorithm was adopted as the training function with 
the mean squared normalized error as the chosen performance function. The pure linear 
transfer function, PURELIN, was utilized for both the hidden and output layers. Further-
more, seven hidden neuron nodes were used in the hidden layer following the (2n + 1) 
function, where n = number of input variables. 

 
Figure 13. ANN architecture adopted in MATLAB. 

ANN-Derived Symbolical Model 
The desired responses, in the current-case NOx conversion percentage, X (%), and N2 

selectivity percentage, S (%), were computed in the vectorized output form. It is notewor-
thy that a separate ANN model was formulated for X and S. Furthermore, it is notable 
that most existing ANNs have been used to produce the desired results in numeric form 

Figure 13. ANN architecture adopted in MATLAB.



Catalysts 2022, 12, 779 15 of 17

ANN-Derived Symbolical Model

The desired responses, in the current-case NOx conversion percentage, X (%), and N2
selectivity percentage, S (%), were computed in the vectorized output form. It is noteworthy
that a separate ANN model was formulated for X and S. Furthermore, it is notable that
most existing ANNs have been used to produce the desired results in numeric form only.
For practicality, it is convenient to formulate a symbolical model that can be reused for
future predictions for the same input and output types without having to rerun the ANN.
The formulation of such a model is described as follows:

By setting n = 7 neurons, the input weight matrix, IW, of n × m size and hidden
layer bias matrix, b1, of n × 1 size are obtained, where m = number of input variables.
Accordingly, the output layer has a layer weight matrix, LW1×n, and an output layer bias
matrix, b2(1×1). The universal mathematical expression between input variables and output
response is explicitly defined by Equation (12):

R = ξiPi + η (12)

where R and Pi are the output and input vectors, respectively, ξi is the weighted respon-
siveness ratio vector, and η is the weighted bias constant. ξi and η are, respectively, defined
in Equations (13) and (14), while the remaining Equations (15)–(21) are related to the
ANN computation.

ξi =
m

∑
i=1

R̂2

P̂
wi (13)

η =
R̂1 + R̂2γ

2
−

m

∑
i=1

{
R̂2

P̂
wiPi min +

R̂2

2
wi

}
(14)

whereas,
R̂1 = Rmax + Rmin, R̂2 = Rmax − Rmin, P̂ = Pi max − Pi min (15)

such that
a = LW b1 + b2 (16)

with wi described by
wi = LW × IW (17)

The IW, LW, b1, and b2 matrices are generated as weighted products by the ANN
model. The intermediate matrices are defined by T, T1, and T2, with the transferring
function of the pure linear type, PURELIN.

T = IWP + b1 or Tj =
n

∑
j=1

m

∑
i=1

IWjiPi + b1j (18)

T1 = purelin(T) = T (19)

T2 = LWT1 + b2 or T2 =
n

∑
j=1

LWjT1j + b2 (20)

R = purelin(T2) = T2 (21)

in which m = 3 and n = 7 in the current case. By defining the input parameters, Pi = {x1, x2,
x3}T, and the corresponding output, R as X and S, are then determined.

4. Conclusions

The effects of copper and iron oxides’ crystallite sizes on their performance in re-
ducing NOx, and the development of a predictive model that correlates the crystallite
size with H2-SCR performance, had been discussed. Two types of catalyst designs were
investigated—monometallic and bimetallic catalysts doped over palm kernel shell-activated
carbon. Observation on the catalyst surface via FESEM showed that PKAC/FeCu possessed
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particles of uniform size. Furthermore, SAXS analysis revealed that the particle size distri-
bution shifted to the left (smaller sizes) when there was an increase in metal composition
in monometallic catalysts. When copper and iron oxides were co-doped, the dominant
particle size reduced even more, down to 6.13 Å. Using WAXS analysis, it was discovered
that there were various crystal phases of metal oxides on PKAC/FeCu, with copper having
the highest crystallinity. It was found that the concentration of copper metals affects the
crystal phase and sizes of the bimetallic catalyst. The performance of the various combina-
tions of Cu and Fe bimetallic catalysts in reducing NOx was tested in a fixed-bed reactor
and calculated in terms of NOx conversion and N2 selectivity. Two predictive equations
were developed to determine the performance of the catalysts based on temperature and
crystallite size, both showing high reliability at the high-temperature range of 250–300 ◦C.
Notwithstanding, further improvements to this model could be achieved with more data
from both low and high temperatures. Lower predictability could be relevant to the less
optimal performance or only partial occurrence of interaction at lower temperatures. These
are two open areas for exploration in future studies.
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catalysts in this study.
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