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Abstract: The present research aimed to evaluate the photocatalytic activity of reduced graphene
oxide and manganese ferrite nanocomposite supported on eucalyptus wood ash waste (WA) from
industrial boilers, for the decolorization of methylene blue (MB) solutions, using sunlight as an irradi-
ation source. For this, the photocatalyst named MnFe2O4-G@WA was synthesized by a solvothermal
method and characterized by analyzes of scanning electron microscopy, transmission electron mi-
croscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer–Emmett–Teller and
zeta potential. Firstly, the photocatalyst was evaluated for photocatalytic decolorization of MB under
different reaction conditions. Then, the influence of pH, photocatalyst dose and H2O2 was evaluated.
MnFe2O4-G@WA showed 94% of efficiency for photocatalytic decolorization of MB under operating
conditions of solar irradiation, 0.25 g/L of catalyst, 300 mg/L of H2O2. The proposed degradation
reaction mechanism suggested that the photodegradation of MB was through a synergistic mecha-
nism of photocatalysis and photo-Fenton reactions, with the combined action of the three materials
used. The data adjusted to the first order kinetics from the Langmuir–Hinshelwood model. In
addition, MnFe2O4-G@WA showed high stability, maintaining its efficiency above 90% after 5 cycles.
The results indicated that the nanophotocatalyst is a potential technology for the decolorization of
MB solutions.

Keywords: calcite; dye; eucalyptus ash; magnetic nanoparticles; photodegradation

1. Introduction

Synthetic organic dyes are frequently used in numerous industrial activities, such as
textiles, food and plastics [1]. Various techniques for removing these types of contaminants
from water have been studied. Advanced oxidant processes (AOP) are effective wastewater
treatment methods, especially for degradation of non-biodegradable compounds such as
dyes. These approaches, when under appropriate conditions, can oxidize pollutants from
the production of a large number of reactive species, mainly hydroxyl radicals (•OH) [2–4].

The heterogeneous photocatalysis, an emerging AOP, is a degradation method that em-
ploys semiconductors as catalysts. The chemical or photochemical interaction (UV/Visible)
with the solid surfaces of these materials induce redox reactions and catalytic formation
of hydroxyl radicals (•OH) from water oxidation as well superoxide radicals from the
reduction of oxygen (O2

•−) [5]. The process starts when the energy irradiated is higher
than that of its band gap, then electrons from valence band are displaced to the conduction
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band, forming electron/photo-hole pairs that are responsible for inducing these redox
reactions [6].

Many studies have been developed exploring the photocatalytic potential of inorganic
nanoparticles. Among them, titanium dioxide (TiO2) has become one of the most used
materials in the area of photodegradation due to its high effectiveness [7,8]. However,
despite its wide application, it is known that TiO2 has some limitations, such as the wide
band gap (3.2 eV) that limits the absorption of photons only of UV light (λ < 380 nm), which
corresponds to approximately 4% of sunlight, making its application difficult in systems
using real sunlight as a source of irradiation [7,9,10].

The heterogeneous photocatalysis can be considered a greener technology and more
economically attractive when sunlight is used as irradiation source. The solar light is a
naturally and inexhaustible source of energy that can be used on heterogeneous photo-
catalysis processes, with an appropriate photocatalyst that have good response to visible
light [11,12].

In contrast, the spinel-type oxides stand out in the middle of photocatalysis due
to a narrow band gap, specifically manganese ferrite (MnFe2O4) has a gap of around
1.9 eV, thus having a good response to visible light, in addition to being highly thermally
and chemically stable [13]. This material also has characteristics such as great adsorption
capacity, biocompatibility, good magnetic properties and functional surface, however when
used on a large scale, there is a difficulty regarding its recovery due to its small size,
magnetic interaction and tendency to cluster [14,15].

Another widely used AOP is the photo-Fenton system, which uses the incidence
of UV/Visible radiation to induce the photoreduction of ferrous compounds from the
catalyst, and also the photolysis of hydrogen peroxide (H2O2), with •OH as a product that
can oxidize pollutants [16,17]. It is known that the association of these two mechanisms
increases the degradation capacity of catalysts, since the photogenerated electrons induce a
rapid conversion of Fe (II) and Fe (III) in the photocatalyst, resulting in extra •OH radicals.
Thus, the use of catalysts containing iron may be preferred for the synergistic application
of both mechanisms. However, it is also known that pure ferrous compounds have an
accelerated recombination of electron-hole pairs, which can compromise the degradation
efficiency [18,19].

The graphene-family encompass materials with structures similar to graphite, includ-
ing graphene; graphene oxide (GO); reduced graphene oxide (G) [20,21], have been shown
to be allies to solve issues of spinel-type oxides, since they have properties that prevents ex-
cessive agglomeration of the magnetic nanoparticles from occurring [22]. In addition, they
also improve the photocatalytic capacity of semiconductors due to the excellent electron
mobility, which reduces the rate of recombination of electron-hole pairs [13]. They also ex-
hibit outstanding properties such as good conductivity, good adsorption capacity, thermal
and chemical stability, are material with a large surface area and mechanical strength and
also perform the function of electron dissipators [20,23–26].

Furthermore, the use of carbonaceous materials associated with semiconductors has
already been reported, Gautam et al. [27] used MnFe2O4 dispersed in graphitic carbon sand
composite and bentonite to mineralize the antibiotics ampicillin and oxytetracycline under
sunlight irradiation. Huang et al. [13] used MnFe2O4 associated with G, for degradation of
methylene blue dye (MB) under visible irradiation from a Xenon lamp.

The ash originating from the burning of eucalyptus from industrial boilers can act as a
promising support material for the deposition of catalyst nanoparticles, since it has low cost,
chemical stability, porous structure, and enhances the degradation capacity of photocatalyst
materials, in addition to facilitate their recovery at the end of the process [11]. Research
in this regard has also been reported, Kanakaraju et al. [10] synthesized a photocatalyst
combining titanium dioxide doped with copper and fly ash to remove dye by adsorption
and photocatalysis. Lum et al. [28] developed a bibliographic review highlighting the use of
ash-based nanocomposites in terms of preparation methods and conditions, morphologies,
physicochemical properties and their photocatalytic performances for dyes degradation.
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Considering the aforementioned, it is known that the use of renewable energy sources,
such as sunlight as a source of irradiation, can make photocatalytic methods more econom-
ically and environmentally attractive [12,29]. Thus, the present research aimed to evaluate
the photocatalytic efficiency of manganese ferrite reduced graphene oxide nanocomposite
supported on eucalyptus wood ash (MnFe2O4-G@WA) to remove MB under real sunlight
irradiation. The experimental conditions were varied (pH, catalyst and oxidant concentra-
tion), in order to evaluate the influence of each parameter on the decolorization efficiency
of the catalyst.

2. Materials and Methods
2.1. Chemicals and Reagents

Graphite powder (Biotec, 100%), hydrochloric acid (HCl, Alphagec, 37%), sulfuric
acid (H2SO4, Química Moderna, 98%), potassium persulphate (K2S2O8, Biotec, 99%), phos-
phorus pentoxide (P2O5, Êxodo Científica, 99.5%), potassium permanganate (KMnO4,
Biotec, 99%), hydrogen peroxide solution (H2O2, Synth, 30%,), ethylene glycol (C2H6O2,
Nuclear, 99%), ferric chloride hexahydrate (FeCl3·6H2O, Biotec, 97%), sodium acetate
(C2H3NaO2·3H2O, Biotec, 99%), manganese dichloride (MnCl2·4H2O, Biotec, 98%), ethanol
(CH3CH2OH, Biotec, 95%), MB (C16H18ClN3S, All Chemistry do Brasil Ltd.a) were all pur-
chased with analytical grade and were used without additional decontamination. WA was
was kindly provided from Eucalyptus burning in a biodiesel industry with a particle size
of 435–600 µm. Distilled water was used in all processes of aqueous solutions, suspensions
and washing processes.

2.2. Synthesis of Nanophotocatalysts

GO was synthesized using the modified Hummers method [22,30]. The process, in
short, encompasses the stages of pre-oxidation and oxidation of graphite. Initially, 5 g
of powdered graphite, 2.5 g of K2S2O8 and 2.5 g of P2O5 were added to a 250 mL flask
with 18 mL of H2SO4 (98%) was kept under constant stirring at 80 ◦C for 5 h. Then, the
pre-oxidized graphite was collected by filtration and dried at 60◦C for 12 h. The dried
material was then subjected to the oxidation process, and 1 g of pre-oxidized graphite was
dissolved in 23 mL of sulfuric acid (98%) under stirring. Still under constant stirring, 3 g of
KMnO4 was slowly added and kept at 35 ◦C for 2 h. After this period of time, 140 mL of
deionized water and 2.5 mL of H2O2 (30%) was added to the solution. The material was
then washed with 10% HCl and allowed to decant at room temperature for 24 h. Finally, the
mixture was washed with deionized water, centrifuged (3700 rpm) three times for 15 min
and the supernatant was removed and dried in an oven at 60 ◦C for 12 h, thus, obtaining
the GO.

The nanocomposite synthesis method was based on the methodology proposed by Ya-
maguchi et al. [22,31]. In summary, 3.7 mmol of iron chloride and 1.85 mmol of manganese
chloride (MnCl2·4H2O) were added to a suspension of ethylene glycol and GO, which
was kept in ultrasonication for 30 min. After, 3 g of sodium acetate, 15 g of washed and
sieved WA and an additional 20 mL of ethylene glycol were added to the solution, which
was kept under magnetic stirring for 30 min. This mixture was taken to a stainless-steel
autoclave with an internal Teflon capsule and kept at 200 ◦ C for 10 h. Finally, the resulting
material was washed with 100 mL of ethanol and 2 L of deionized water and dried in an
oven at 60 ◦C for 12 h. The resulting material obtained was the hybrid nanocomposite of
reduced graphene oxide and manganese ferrite supported on WA (MnFe2O4-G@WA). In
this research, reduced graphene oxide will be treated only as G to facilitate understanding.
All these steps are represented in Figure 1. Adopting the same methodology, a composite
was synthesized only with manganese ferrite and G without WA, named MnFe2O4-G.
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2.3. Nanophotocatalysts Characterization

Several techniques were used to characterize the WA, MnFe2O4-G and MnFe2O4-
G@WA. The morphology of the materials was analyzed by scanning electron microscopy
(SEM) and transmission electron microscopy (TEM). The Shimadzu SS-550 Scanning Elec-
tron Microscope and the JEOL transmission electron microscope model JEM-1230 were
used. The X-ray diffraction (XRD) analysis aimed to determine the purity of prepared
catalysts and their crystal structure. It was executed in equipment model Shimadzu XRD
6000, with Cu Ka radiation source (wavelength k = 1.54 Å), over a range from 10 to 80◦ of
2θ value.

The images were recorded in a digital file. The functional groups were detected by
Fourier-transform infrared spectroscopy (FTIR), Shimadzu, model IR PRETIGE 21. KBr
pellet method was used in the scanning range of 4000–400 cm−1. The surface area of the
composites was determined by BET (Brunauer–Emmett–Teller), under low pressure range
and degassed temperature at 70 ◦C for 3 h.

The zeta potential analysis was carried out with the objective of determining the
nanocomposite surface charge, the isoelectronic point (IEP), and the effect of pH on the
behavior of surface charges. The materials were suspended in deionized water and 0.1 M
solutions of NaOH and HCl were used to reach different pH (3 to 11). The zeta potential
was analyzed with Delsa NanoTM C Beckman Coulter equipment.

2.4. Photocatalytic Activity

The photocatalytic activity of the MnFe2O4-G@WA nanocomposite was evaluated
based on the decolorization of an artificially contaminated MB solution with a known
concentration of 10 mg L−1, following methodological processes previously cited in the
literature [13,31]. First, 50 mg of the nanocatalyst was dispersed in a beaker containing
200 mL of this solution, which was kept under constant agitation. The total reaction
time was 120 min. In the first 40 min, the samples were kept without the presence of
light irradiation, to obtain the adsorption equilibrium. After that time, 300 mg/L of
H2O2 solution was added, and then the solutions were exposed to real sunlight irradi-
ation. At regular intervals of 20 min, throughout the process, 4 mL aliquots were col-
lected, centrifuged for 10 min at 3200 rpm, and then their respective absorbances were
measured by UV-VIS spectrophotometry, with the equipment adjusted at 664 nm. The
intensity of sunlight was measured with the aid of an Instrutemp digital luxmeter, model
ITLD260 (90–140 W/m2). The experiments were conducted in Maringá-PR (Brazil), between
10:00 a.m and 3 p.m., on predominantly sunny days during the months of August to De-
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cember. All experiments were carried out in triplicate in order to improve the level of
accuracy. The decolorization efficiency was calculated using Equation (1):

Decolorization efficiency (%) =
(C0 − Ct)

C0
× 100 (1)

where C0 is the final concentration of MB and Ct is the concentration of MB at time t.
In order to find the optimum conditions and also evaluate the influence that each pa-

rameter has on the decolorization efficiency, the catalyst dose (1 g/L; 0.5 g/L;
0.25 g/L; 0.125 g/L; 0.05 g/L), dose of H2O2 (0 mL; 1 mL; 5 mL; 10 mL) resulting in
different concentrations of peroxide (0 mg/L; 300 mg/L; 1500 mg/L; 3000 mg/L) and the
pH of the medium (2; 7; 12) were varied. The same procedures elucidated previously were
adopted in all tests.

With the established optimal conditions, the tests were also performed without the
presence of light, aiming to evaluate the influence of sunlight irradiation on the MB pho-
tocatalytic decolorization efficiency. Furthermore, the efficiency results using MnFe2O4-
G@WA were compared with the results obtained using different photocatalysts: MnFe2O4-
G, WA, MnFe2O4@WA and no photocatalyst.

Finally, the recyclability of the synthesized material was evaluated under optimal con-
ditions obtained in the tests previously described, where it was subjected to 5 consecutive
cycles of MB photocatalysis, being recovered by filtration, washed with distilled water
and dried at 60 ◦C after each cycle. The recovery of the nanocomposite was carried out
with a filtration system (Millipore Sterifil, Burlington, MA, USA) using a 0.45 µm acetate
membrane (Sartorius, Göttingen, Germany).

3. Results and Discussion
3.1. Nanophotocatalysts Characterization
3.1.1. SEM and TEM Analysis

The morphology analysis of WA, MnFe2O4-G and MnFe2O4-G@WA samples were
analyzed by SEM and TEM, as shown in Figure 2. In regard to the WA micrograph
(Figure 2A,D), it can be seen that its surface has irregularities, showing to be rough and
compact, characteristics also observed by Lum et al. [32], who analyzed the morphology
of ash based photocatalytic nanocomposites. The same authors pointed out that this type
of porous structure, with the presence of cavities on its surface, indicates that it has good
surface area availability for semiconductor deposition. In addition, it is possible to verify
that the particles have grooves, cracks and small heterogeneous agglomerations arranged
on larger surfaces, characteristics also observed by Kim et al. [33] and Mushtaq et al. [11].

In SEM and TEM micrographs of MnFe2O4-G (Figure 2B,E), the MnFe2O4 nanopar-
ticles have spherical shape and showed to be adhered to the graphene nanosheets ho-
mogeneously, which are characterized by having a rough and translucent surface [13].
Additionally, it was observed larger MnFe2O4 microspheres, as a result of the grouping
of MnFe2O4 nanoparticles, measuring from 150 to 350 nm and from 10 to 20 nm, respec-
tively, in accordance with other results in the literature [22,34,35] and with our previous
results [22,31].

From the SEM and TEM images of the nanocomposite MnFe2O4-G@WA (Figure 2C,F),
it was possible to identify each nanomaterial used. As indicated in the images, graphene
is characterized by having a translucent appearance [31,36]. Additionally, clusters of
MnFe2O4 nanoparticles well distributed are also observed, this fact can be attributed to the
graphene nanosheets, which prevents the excessive aggregation of MnFe2O4 nanoparticles,
thus, providing a larger surface area [37]. As remarked also by Luciano et al. [31], it was
possible to identify MnFe2O4 nanoclusters adhered to the graphene nanosheets, which are
adhered to the surface of WA, the supporting material.



Catalysts 2022, 12, 745 6 of 23
Catalysts 2022, 12, x FOR PEER REVIEW 6 of 24 
 

 

  

  

  

Figure 2. SEM images of (A) wood ash, (B) MnFe2O4-G, (C) MnFe2O4-G@WA, and TEM images of
(D) wood ash, (E) MnFe2O4-G and (F) MnFe2O4-G@WA.
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3.1.2. X-ray Diffraction (XRD)

The results of the structural characterization of the materials by the X-ray diffraction
(XRD) analysis are presented in Figure 3. The sharp peaks (111), (220), (311), (400), (422),
(511) and (440) at 2θ = 18.4◦, 30.2◦, 35.5◦, 43.3◦, 53.5◦, 57.1◦ and 62,7◦, respectively, are
relative to crystal planes of spinel structure of MnFe2O4 and reveal the good crystallinity of
the MnFe2O4 sample. The same peaks were observed in previous studies for XRD analysis
of MnFe2O4-G and bare MnFe2O4 [22,31]. Furthermore, the peak (311) at 2θ = 35.5◦ was
also observed in XRD pattern of MnFe2O4-G@WA indicating the presence of MnFe2O4
nanoparticles in WA (JCPDS 10-031) [38–42].
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The Debye–Scherrer equation was used to estimate the average crystallite size of
MnFe2O4 [22]. The nanoparticles of MnFe2O4 sizes were found to be 5.9 nm and 3.8 nm
of MnFe2O4-G and MnFe2O4-G@WA samples, respectively. Similar results were reported
before [22]. The decrease in the size of the nanoparticles in the nanocomposite with WA
can be attributed due to the growth blockage of nanoparticles on the micropores of WA.

It is important to mention that, regarding the MnFe2O4-G sample, it is possible to notice
that there is no diffraction peak of GO or G. This can be associated with the destruction of
the regular layer stacking of GO by the crystal growth of MnFe2O4 between the interlayers
during the reduction reaction, in accordance with previous studies [22,31,43].

The XRD pattern of wood ash exhibited an intense peak at 2θ = 23.5◦ as well, this
result is characteristic of the amorphous silica and aluminosilicate, which is a component
commonly found in ash from burning coal and/or biomass [28,44,45]. Additionally, it
is possible to observe an intense peak at 2θ = 29.7◦, which indicates the presence of
CaCO3 (JCPDS 47-1743), which is a compound normally found in the composition of
biomass ash [46,47].

3.1.3. FTIR

The FTIR analysis results are shown in Figure 4. It was possible to identify peaks in
the spectra of GO, WA, MnFe2O4-G and MnFe2O4-G@WA samples, in the range of 4000 to
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400 cm−1. The peak located at 3400 cm−1 range corresponds to the stretching vibration of
the O-H group, which can be attributed to the moisture adsorbed by the nanomaterials [36].
This group can also be observed on the GO spectra at a wavelength of 1405 cm−1 [48].
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The peaks at 1625 cm−1 and 1740 cm−1 found in GO and MnFe2O4-G spectra are
located in a band that indicate carbon-oxygen bonds, specifically the stretching vibration
of the C=O group [10,27]. The carbon-oxygen bonds, also appear in the GO spectra at
1210 cm−1, which can be related to the epoxy group indicating C–O–C bonds.

Furthermore, the peak at 1050 cm−1, found in GO spectra, is assigned to the stretching
vibrations of C–O [48]. In the spectra of MnFe2O4-G@WA and WA, this peak is wider,
reaching the characteristic wavelength of silica (1040 cm−1), indicating the presence of the
Si–O–Si bond, characteristic compound of biomass ash [28,45]. In addition, it was observed
at MnFe2O4-G@WA spectra, the tendency of peaks at shorter wavelengths, that can be
related to the intense interaction and chemical bond formation between Si present in WA
and MnFe2O4 nanoparticles [11].

Specifically in the WA spectra, there is a peak at 1398 cm−1, this band is attributed
to polymorphic calcium carbonate (CaCO3), but due to burning at high temperatures its
presence is smaller and its peak is less prominent than the peak attributed to silica [49,50].
The presence of these compounds, both silica and carbonates, are minerals naturally
present in plant materials or resulting from the combustion process [51,52]. It is also known
that for temperatures at 600 ◦C, CaCO3 is frequently found in wood ash while at higher
temperatures such as at 1300 ◦C, CaO is more commonly found in wood ash samples [53].
Furthermore, Scheepers et al. [54] performed a review study on the use of wood ash and
found that calcite was present in more than 40% of industrial samples.

The peaks identified at shorter wavelengths correspond to metal-oxygen bonds, show-
ing the formation of these metal-oxygen bounds at tetrahedral and octahedral sites in the
spinel structure [55]. The peaks at 592 and 575 cm−1 are considered characteristics of the
Fe–O bond present in iron, so its greatest intensity was observed in MnFe2O4 nanoparti-
cles [56,57]. The peak identified at 484 and 450 cm−1 in MnFe2O4-G@WA and MnFe2O4
samples, represents the Mn-O stretching vibrations [27].

Additionally, comparing MnFe2O4-G and GO spectra, it was noted that some peaks of
oxygen-containing groups disappear, indicating the efficient reduction of GO to reduced
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graphene oxide during the adopted solvothermal process, as previously observed by
Yamaguchi et al. [22].

3.1.4. Zeta Potential Analysis

The polarity of the surface charge as a function of the pH of the nanomaterials and
their IEP determination can be obtained through the analysis of zeta potential [58]. The
IEP of MnFe2O4-G@WA, WA and MnFe2O4-G is approximately at pH 4. Thus, the results
obtained of IEP indicate that at a pH higher than 4, the catalysts become negatively charged
(Figure 5). As the photocatalysis tests were carried out at neutral pH, the MB adsorption by
the nanocatalysts was favorable, as MB has positive charges [59].
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Figure 5. pH dependent zeta-potential plots of MnFe2O4-G@WA, WA, MnFe2O4-G and GO. Figure 5. pH dependent zeta-potential plots of MnFe2O4-G@WA, WA, MnFe2O4-G and GO.

In regard to GO, it was observed that in all tested pH the material presented a negative
charge, which indicate that the incorporation of this material in the catalyst is advan-
tageous [34], not only because it avoids the excessive agglomeration of the MnFe2O4
nanoparticles, as previously mentioned, but also because it intensifies the adsorption ca-
pacity of MB due to its negative charge. However, probably due to the small amount of
graphene used, the charge of the other materials used (MnFe2O4 and WA) prevailed.

3.1.5. BET Analysis

The characteristics of surface area of the nanocomposites were investigated using N2
adsorption–desorption volumetric analysis (Figure 6). WA presented type II adsorption
isotherm according to International Union of Pure and Applied Chemistry (IUPAC) classi-
fication, which is characterized by multilayer adsorption [60]. The uptake continuously
increases even when the pressure ratio is close to unity. This type of behavior is found for
microporous adsorbents [61]. Furthermore, the nitrogen adsorption–desorption isotherm
for the WA (Figure 6A) shows the hysteresis loop type H3 pores according to IUPAC
classification, which is attributed to wedge-shaped pores with narrow necks and/or both
open-ends [60].
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The adsorption isotherm of MnFe2O4–G@WA sample (Figure 6B) presented the
type I classification according to IUPAC. This type of isotherm is found mostly in nar-
row microporous adsorbents, normally with pore size less than 1 nm, with a small external
surface, with the limiting uptake of adsorbate governed by the accessible micropore volume
rather than by the internal surface area [60,61].

Moreover, the calculated BET surface area of WA was found to be 123 m2/g, comparing
with the BET surface area of MnFe2O4-G@WA decreased with the addition of MnFe2O4-G
to 111 m2/g. This behavior is an indicative that the magnetic material may have obstructed
the pores of WA. Additionally, this is also an indicative that physisorption is the main
governing adsorption mechanism process [62].

3.2. Photocatalytic Efficiency
3.2.1. Efficiency of Different Photocatalysts

Different photocatalysts were tested and the results are presented in Figure 7. In
addition, the behavior of MB under the same conditions (light and H2O2) without any
photocatalyst is also demonstrated. Firstly, without the presence of photocatalyst, it can be
observed that the decolorization efficiency was much lower compared with the photocata-
lysts, not even reaching 30% of MB removal efficiency. In the absence of a catalyst material,
the production of electron-hole pairs is compromised, consequently H2O2 has fewer active
sites available to react and form radicals [63].

The efficiencies of the MnFe2O4@WA and WA showed a significant decolorization
efficiency of MB, and reached 85% of MB removal. Indicating that both materials have
favorable properties as photocatalysis. Manganese ferrite, specifically, has a narrow band
gap, which is a determining factor as it favors its response to visible light due to the greater
ease of generation of electron-hole pairs [13,64].

WA, in addition to being an excellent adsorbent (Figure S1), which is an important
property for the efficiency of a photocatalyst, also contains the presence of CaCO3 in its
composition, which is a compound that has been widely studied in the area of photodegra-
dation [65,66]. This is because during the photocatalytic process, calcite can generate, in an
aqueous medium, chemical species such as CO3

2−, HCO3
−, which can react with the •OH

produced and generate carbonate radicals (•CO3
−), which is also a potent oxidant [67,68].
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Regarding the MnFe2O4-G system, the decolorization efficiency was only 44%, a result
below the expected, since the G has the function of acting as an electron scavenger and
prevents the rapid recombination of the electron-hole pairs of MnFe2O4, which theoretically
enhances the efficiency of the semiconductor [35]. However, without the support of WA and
at a concentration of 0.25 g/L of photocatalyst, an increase in the turbidity of the sample
solution was observed, a fact that hinders the penetration of photons and compromises the
synergistic reaction of photocatalysis and photo-catalyst. Fenton, a behavior also observed
by Wei et al. [42]. Furthermore, due to the larger surface area of WA, the nanoparticles
are better distributed, and their photocatalytic potential is optimized as there is a greater
availability of active sites to react with the pollutant molecules [28].

Finally, it can be observed that the association of the three materials (MnFe2O4,
graphene, WA) optimized the MB decolorization process, reaching a removal percentage of
94%. Therefore, the synergy between the photocatalytic potential of the three materials has
been shown to play an important role in the efficiency of the system.

3.2.2. Decolorization in Different Reactions Conditions

The photocatalytic efficiency for MB decolorization in different conditions was verified
(Figure 8). It was observed that when MnFe2O4-G@WA was kept in contact with the MB
solution in the absence of light irradiation, the catalyst presented an efficiency of 70% of
MB removal, thus, demonstrating that it can be considered a good adsorbent for MB in
aqueous solution [10], as well as WA alone, as demonstrated in the WA adsorption kinetics
(Figure S1). However, with the addition of the sunlight irradiation factor (MnFe2O4-G@WA
+ Light), the percentage of decolorization reached 75% after 120 min, hence, indicating that
the synthesized catalyst does not degrade MB only by the photogenerated holes [37]. When
only adding H2O2 without sunlight irradiation (MnFe2O4-G@WA + H2O2) the maximum
decolorization efficiency reached 66%. This behavior can be explained because in absence of
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light, the Fe (II, III) circulations of the photo-Fenton reaction is affected and then a reduction
in extra hydroxyl radical generation occurs, fact that impair the degradation efficiency and
indicate that the main mechanism of MB degradation by MnFe2O4-G@WA is through •OH
radicals [64]. In addition, this behavior can also be attributed to the decomposition of the
oxidant (H2O2) by the hydroxyl radicals generated. In other words, the H2O2 becomes a
second contaminant that •OH tend to degrade, causing inefficient consumption of H2O2
by •OH radicals, as shown in Equation (2), thus compromising the effectiveness of MB
removal [69].

H2O2 + •OH → HO2 •+ H2O (2)
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irradiation intensity: 90–140 W/m2).

Although the MB dye removal by only adsorption reached an efficiency of 70%,
the combination MnFe2O4-G@WA + H2O2 + light favored the faster and more efficient
decolorization of MB reaching 94%, which indicates that the synergy between these three
factors play an important role in the degradation of MB [70].

In addition, the immobilization of a photocatalyst on WA as support showed to be
advantageous because it improves the initial adsorption, an important step for obtaining
an efficient process. Due to the porous characteristic of the WA and its high surface area,
the concentration of pollutant is increased on the MnFe2O4-G@WA porous, that enhance
the photodegradation reaction [28].

3.2.3. Effect of Photocatalyst Concentration

The photocatalyst concentration resulted in different efficiencies of MB removal
(Figure 9). The increase in the photocatalyst concentration from 0.05 g/L to 0.5 g/L
resulted in an increase from 82% to 95% of MB removal efficiency. This increase can be
attributed to a greater availability of active surfaces for adsorption of MB molecules. This
fact can be confirmed by observing the portion of the graph that represents only adsorption
(0–40 min), without sunlight irradiation. In addition, a greater number of active sites for



Catalysts 2022, 12, 745 13 of 23

the absorption of photons after 40 min (with sunlight irradiation), induce the potential
formation of hydroxyl radicals, which allows better decolorization efficiency [32].
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Figure 9. Efficiency of methylene blue decolorization using different MnFe2O4-G@WA dose
(200 mL of MB solution 10 mg L−1; photocatalyst: 0.05–1.0 g/L; H2O2: 300 mg/L; Sunlight irradiation
intensity: 90–140 W/m2).

It is possible to observe that when using 1 g/L of photocatalyst the peak of decol-
orization efficiency is reached at 60 min and is followed by a decline. Such behavior can
be attributed to the obstruction of the pores on the surface of the material and also to its
saturation [71–73].

However, the use of 0.25 g/L or 0.5 g/L of photocatalyst dose did not result in a
significant increase in the efficiency of final decolorization of MB, as it was 94% and 95%,
respectively. This result revealed that it is not viable to use a greater mass of catalyst.
Additionally, doubling the photocatalyst dose to 1 g/L, the MB removal efficiency dropped
to 74%. This behavior can be justified primarily by the addition of catalyst above the
saturation limit, which can lead to the excessive agglomeration of the catalyst particles and
to the photon absorption block.

Further, the excess of Fe ions on the catalyst surface can lead to inefficient consumption
of the active radicals that should react with the MB molecules, resulting in the reduction in
the degradation efficiency [31,32]. Moreover, the excess of catalyst can also contribute to an
increase in the turbidity of the solution, thus causing a weakening of the light penetration
by scattering, which compromise the incidence of photons on the surface of the catalyst and
hinder the induction of photodegradation process [24,74]. In addition, it can be observed
that when using 1 g/L dose, a high decolorization was achieved by adsorption (0–40 min),
which resulted in the adsorption saturation. The high concentration of MB molecules
adhered to the surface of MnFe2O4-G@WA acted as a filter preventing the incidence of light
irradiation, also compromising the effective photoactivity of the catalyst, resulting in less
radical production •OH [27].

3.2.4. Effect of H2O2

The effect of H2O2 on the decolorization efficiency, is represented in Figure 10.
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MB solution 10 mg L−1; photocatalyst: 0.25 g/L; H2O2: 0–3000 mg/L; Sunlight irradiation intensity:
90–140 W/m2).

In general, an increase in H2O2 dose leads to an increase in the efficiency of MB
removal due to the greater availability of oxidant for the generation of hydroxyl radicals,
which act in the degradation of the dye [57]. However, it was observed that the use of
1500 mg/L and 3000 mg/L of H2O2 resulted in similar MB removal efficiency when
compared with the use of only 300 mg/L of oxidant. This fact was also observed by
Lai et al. [64] and Wang [69], who point out that the increase in the oxidant dosage, may
result in residual H2O2 without active sites available to react. Thus, generating a kind of
competition with MB for •OH radicals, due to the side reaction (Equation (1)) previously
mentioned. Hence, the use of 5–10 times more reagent is not justifiable, considering that
when using a smaller volume, the overall performance is practically the same [74].

3.2.5. Effect of pH

The efficiency of MB decolorization by the photocatalyst MnFe2O4-G@WA was not
affected by the pH of the medium. In Figure 11, is observed that all pH tested obtained a
similar result of efficiency, above 90%, after 120 min.

The high efficiency of MB removal of the nanocomposite at pH 7 and 12 can be at-
tributed to the negative surface charge of MnFe2O4-G@WA, as the IEP of the nanocomposite
is 4 (Figure 5), and at pH greater than the IEP, the nanocomposite is negatively charged,
favoring the adsorption of cationic materials, such as MB [59]. Furthermore, in alkaline
media, H2O2 and NaOH can reacted and produce O2 which can react with h+ and generate
•O2

−, potentiating the photocatalytic effect [42].
However, at pH 2 the MnFe2O4-G@WA obtained an efficiency similar to that observed

in an alkaline and neutral medium. This fact can be attributed to the negative surface
charge of graphene in this pH range, as shown in the IEP analysis (Figure 5). According
to Anjum et al. [75] and Luciano et al. [31], at very acid pH, occurs a dissolution of the
metal ions, and, consequently, the surface charges of graphene predominate, favoring
the adsorption of the cationic MB molecules. In addition, with the H2O2 a classic Fenton
reaction mechanism occurs, that are more efficient around pH 3 [76].
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Nevertheless, the decolorization efficiency was maintained at high level in all pH
tested, indicating the photocatalyst synthetized can be applied in a wide pH range and
without pH adjustment, what is more conducive to practical application [77–79].

3.2.6. Mechanism and Kinetic Analysis

According to the results obtained for the photocatalytic efficiency for MB removal in
different conditions, different degradation reaction mechanisms were proposed (Figure 12).
One of the pathways of MB photodegradation occurs from the formation and of •OH
radicals. The mechanism for the generation of hydroxyl radicals happens by the reaction
between H2O2 and Mn2+, the circulation of Mn (II/III) that reacts with H2O2 and also by
the reaction between Fe2+ and the H2O2 as the classic Fenton reaction producing more
•OH radicals. The H2O2 can further reduce Mn3+ resulting in superoxide radicals. The
photoreduction can also occur from Fe3+ to Fe2+, which can either be oxidized by Mn3+

and generate Mn2+ and Fe3+, or react with H2O2 and by photolysis generate •OH radicals.
In addition, this reversible reaction mechanism of MnFe2O4 also favors the adsorption of
MB molecules, as there are more holes available in the valence band and electrons in the
conduction band [20,64,69,80,81]. The oxidative states and electron circulation of both Fe
and Mn have already been confirmed by XPS analysis in previous reports using manganese
ferrite as photocatalysts [41,82,83]. These possible photocatalytic process pathways are
described by the Equations (3)–(7). Thus, the decolorization of MB by MnFe2O4-G@WA
can be attributed to the photodegradation (photocatalysis and photo-Fenton) increased by
adsorption, due to the presence of the oxidizer H2O2 and sunlight irradiation [24].

Mn2+ + H2O2 → Mn3+ + HO− + •OH (3)

Mn3+ + H2O2 → Mn2+ + H+ + HO•2 (4)

Fe2+ + H2O2 → Fe3+ + HO− + •OH (5)

Fe3+ + H2O2 + hv→ Fe2+ + H+ + HO•2 (6)

Fe2+ + Mn3+ → Fe3+ + Mn2+ (7)
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Throughout this process, G acts as a kind of electron scavenger, as it has excellent
electron transport and charge separation properties. Thus, the recombination of electrons
pairs (e−) and holes (h+) becomes more difficult, which potentiates the photodegradation
process of the nanocomposite [35,84]. Furthermore, these electrons attracted by G can still
react with oxygen and result in superoxide radicals (Equations (8)–(10)), which are also
highly oxidative species and can optimize the decolorization process [85,86].

MnFe2O4 + hv→ MnFe2O4
(
e− + h+) (8)

MnFe2O4
(
e− + h+)+ G→ MnFe2O4 (h

+) + G
(
e−

)
(9)

G
(
e−

)
+ O2 → G + •O−2

2 (10)

Furthermore, WA has the ability to act as a potential adsorbent to initiate the pho-
todegradation process [32]. In addition, the presence of CaCO3 was found in WA and
MnFe2O4-G@WA characterization analysis. This compound can potentiate the decoloriza-
tion process because in aqueous medium it can generate chemical species (HCO3

− and
CO3

2−) capable of reacting with •OH and producing •CO3, which are considered oxidants
with high potential for degradation of organic compounds (Equations (11)–(14)) [67,68].

CaCO3 → Ca2+ CO2−
3 (11)

CO2−
3 + H2O→ HCO−3 + OH− (12)

•OH + HCO−3 → •CO−3 + H2O (13)

•OH + CO2−
3 → •CO−3 + OH− (14)

The role of the initial adsorption is detached analyzing the reaction kinetics of the
decolorization process. To demonstrate the kinetics of heterogeneous photocatalysis pro-
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cesses, usually the data are adjusted to the first order kinetics derived from the Langmuir–
Hinshelwood (LH) model, as follows Equation (15) [87]:

ln
(

C0

C

)
= kt (15)

where C0 (mg/L) is the initial concentration of MB in t = 0, C (mg/L) is the dye concentration
of time t (minute) and k is the pseudo-first order rate constant. The constant can be obtained
from a plot of ln(C0/C) versus irradiation time, as shown in Figure 13.
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200 mL of MB solution 10 mg L−1; Photocatalyst: 0.25 g/L; H2O2: 300 mg/L; Sunlight irradiation
intensity: 90–140 W/m2).

The results suggest that data were well adjusted to this kinetic model, because of the
high coefficient of determination (R2= 0.9815) and constant k of 0.0341 (min−1). These
data indicate the photocatalysis process followed a kinetics of pseudo-first order, which
indicate that the oxidizing species and the molecules of MB are adsorbed to the surface of
the nanocomposite before the oxidation process, as proposed by the LH model [88,89] and
is also in accordance with the N2 adsorption results (Figure 6) that indicated the presence
of micropores.

Table 1 shows the degradation efficiency of different dyes of hybrid photocatalysts
with manganese ferrite. Firstly, the three mentioned studies rely on the use of an artificial
lamp to investigate the degradation of their respective dyes, which makes the system more
expensive and complex, taking into account that they presented lower efficiency than that
achieved in this study. Wei et al. [42] studied a similar photocatalyst used in this study, but
without the support of WA, however, they reached an efficiency of only 62%. These results
are another indication that the association of MnFe2O4 with G and WA is advantageous for
the synergistic photo-Fenton photocatalysis process for MB dye decolorization.
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Table 1. Degradation efficiency of different dyes of hybrid photocatalysts with manganese ferrite.

Photocatalysis Pollutant Light Source
Pollutant

Concentration
(ppm)

Catalyst
Concentration

(g/L)

Reaction
Time
(min)

Decolorization
(%) Reference

g-C3N4/TiO2-
MnFe2O4
halloysite

Crystal
violet Xenon lamp 10 0.05 90 91 [83]

MnFe2O4@SnS2 MB Xenon lamp - 0.05 120 93 [41]
MnFe2O4-rGO MB Xenon lamp - 0.60 150 62 [42]

MnFe2O4-
G@WA MB Sunlight 10 0.25 120 94 This work

3.2.7. Stability and Reusability

The stability and reusability of a photocatalyst are important factors when trying to
evaluate the possibility of using it in practical applications [90]. Thus, MnFe2O4-G@WA
was tested in five consecutive cycles under the optimal conditions previously found and
are showed in Figure 14.
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photocatalyst: 0.25 g/L; H2O2: 300 mg/L; Sunlight irradiation intensity: 90–140 W/m2).

The maximum efficiency reached in the first cycle was 94%, and after five consecu-
tive cycles, MnFe2O4-G@WA presented a MB removal efficiency of 91%. The negligible
reduction in the efficiency demonstrated that MnFe2O4-G@WA is stable and that it can
be recycled preserving its high catalytic activities even after five cycles, being effective in
degrading MB [13,91].

4. Conclusions

The synthesis of the nanophotocatalyst MnFe2O4-G@WA by the solvothermal method
was successful, as the images of the morphological analyzes showed the MnFe2O4 nanopar-
ticles, with clusters of average size of 200 nm, adhered to the exfoliated graphene nanosheets
and well distributed on the WA. The photocatalytic efficiency reached a maximum effi-
ciency of 94% in MB decolorization after 120 min under optimal conditions of 0.25 g/L
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of catalyst, 300 mg/L concentration of H2O2 and solar irradiation. The pH did not show
significant effect on MB removal efficiency, indicating the photocatalyst synthetized can be
applied in a wide pH range. The photocatalyst MnFe2O4-G@WA was more efficient when
compared with MnFe2O4-G, demonstrating that the use of WA act as an excellent support
material and enhances the adsorption capacity of the photocatalyst. The decolorization of
MB by MnFe2O4-G@WA can be attributed to the photodegradation (photocatalysis and
photo-Fenton) increased by adsorption, due to the presence of the oxidizer H2O2 and sun-
light irradiation, with the synergic combined action of the three materials used. MnFe2O4
with its narrow band gap makes the decolorization process faster due to its good response
to visible light and electron circulation capacity, graphene acts as an electron scavenger pre-
venting the rapid recombination of photoexcited of electron-hole pairs. which potentiates
the formation of •OH, and the ash, in addition to being an excellent adsorbent, also has
CaCO3 in its composition, a compound that collaborates with photodegradation due to the
formation of carbonate radicals (•CO3

−). Therefore, for future research, it is suggested the
investigation of the efficiency of the novel material on a pilot and/or industrial scale, as
well as its use in the treatment of real effluents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12070745/s1. Figure S1: Methylene blue adsorption kinetics
by wood ash adsorbent (300 mL of MB solution 10 mg L−1; Photocatalyst: 0.5 g/L).
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