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Abstract: Reactive oxygen species (ROS) can be used as an effective method to treat tumors. Artificial
oxidase has received increasing attention as a catalyst for ROS generation in fields ranging from
bioinorganic chemistry to pharmaceutical chemistry. In this study, an artificial oxidase based on a
binuclear zinc complex and Keggin-type silicotungstate [Zn2(4,4′-bpy)(Phen)2][SiW12O40] (ZSW)
(4,4′-bpy = 4,4′-bipyridine; Phen = 1,10-phenanthroline) was synthesized and structurally featured in
terms of its X-ray photoelectron spectrum (XPS), bond valence sum (Σs) calculation, IR spectra, and
single-crystal X-ray diffraction (SXRD). ZSW is an ionic compound in which the cation is a binuclear
zinc complex [Zn2(4,4′-bpy)(Phen)2]4+ and the anion is a α-Keggin-type silicotungstate [SiW12O40]4–

cluster. Notably, the Zn ions in the [Zn2(4,4′-bpy)(Phen)2] exist in tri-coordination, which was first
obtained in polyoxometalate (POM) chemistry. It was also demonstrated that ZSW is capable of
efficiently catalyzing the production of ROS, which, according to the computational calculations,
may be due to the synergistic action of zinc complexes and POM building blocks. Furthermore, ZSW
exhibited inhibition ability toward ROS-sensitive tumor cells, such as PC12 cells.

Keywords: silicotungstate; tri-coordination binuclear zinc; reactive oxygen species; artificial oxidase;
anti-tumor ability

1. Introduction

Reactive oxygen species (ROS), as the most common response medium in biochemistry,
are ubiquitous in pathological procedures [1,2]. Hence, research on and developments of
materials that are able to catalyze the production of ROS have attracted more and more
attention from researchers and clinicians [3–5]. Metal ions, such as copper, iron, and
manganese, are considered strong catalytic centers for the composition of reactive proteins
in viable organisms that can produce ROS efficiently [6–8]. Recently, the synthesis of a
series of ROS-catalyzing artificial enzymes has been achieved [9–11]. In such research,
the study of copper complexes occupies a dominant position; however research on other
essential bio-metal ions, such as zinc ions, is relatively behind [11]. Since zinc also exhibits
excellent bio-activity [12], further research will likely lead to the construction of novel zinc
complexes combined with catalysts capable of catalyzing ROS.

Polyoxometalates (POMs), a particularly attractive family of late metal oxygen clusters,
possess multiform structures and various useful properties [13–16]. POMs have several
features that allow them to act as bulky polydentate ligands; for example, nanosized
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dimensions, an oxygen-abundant surface, nucleophilic properties, and poly-bond-making
sites, which may allow them to bond with transition-metal ions in flexible coordination
configurations [17–25]. Recent research has noted that the oxidation catalytic activity of
Keggin-type POM fragments is remarkable [26,27] and that it could potentially facilitate
the catalyzation of transition-metal ion-triggered production of ROS [28]. Moreover, these
POMs can induce the formation of poly-nuclearity clusters of transition metal ions and,
further, maintain these clusters for relatively long times [29]. Therefore, a hybrid molecule
originating from Keggin-type POMs partnered with poly-nuclearity Zn clusters has the
potential to retain the best characteristics of both base constituents, while also exhibiting
additional positive characteristics.

In this work, a newly designed POM, [Zn2(4,4′-bpy)(Phen)2][SiW12O40] (ZSW)
(Phen = 1,10-phenanthroline; 4,4′-bpy = 4,4′-bipyridine), was synthesized and studied. The
new molecule was constructed from a pure inorganic structure Keggin-type silicotungstate
anion [SiW12O40]4– and a binuclear zinc complex [Zn2(4,4′-bpy)(Phen)2]4+. Notably, ZSW
is able to catalyze the production of ROS efficiently and exhibits activity that inhibits
ROS-sensitive tumor cells, such as PC12 cells.

2. Results and Discussion
2.1. X-ray Single-Crystal Structures

In this study, SXRD was used to determine the structure of ZSW. The crystallographic
data and selected bond lengths are given in Table 1 and Table S1, respectively. The data
details were deposited at the Cambridge Crystallographic Data Centre with the CCDC
number 2103951. As shown in Figure 1, X-ray structural analysis revealed that the unit of
ZSW consists of two parts: the binuclear zinc complex [Zn2(4,4′-bpy)(Phen)2]4+ and the
Keggin-type [SiW12O40]4– cluster.

Table 1. Crystallographic data and structural refinements for ZSW.

Empirical Formula C68H48N12O40SiW12Zn4

Formula weight 4168.95
Crystal system Orthorhombic

Space group Ibam
a/Å 13.297(3)
b/Å 25.304(5)
c/Å

α/deg
26.922(5)

90
β/deg
γ/deg

90
90

V/Å3 9058(3)
Z 4

Dc/g cm–3 3.057
µ/mm–1 16.308

T/K 296(2)

Limiting indices
–15 ≤ h ≤ 15
–25≤ k ≤ 30
–32 ≤ l ≤ 28

Measured reflections 22599
Independent reflections 4084

Rint 0.0403
Data/restraints/parameters 4084/12/326

GOF on F2 1.051

Final R indices (I > 2σ(I)) R1 = 0.0310
wR2 = 0.0956

R indices (all data)
R1 = 0.0415

wR2 = 0.1019
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Figure 1. (A) Polyhedral view of the [SiW12O40]4– unit; (B) ball-and-stick view of the binuclear copper 
complex [Zn2(4,4′-bpy)(Phen)2]4+; (C) ball-and-stick view of the [SiW12O40]4– unit; (D) structural dia-
gram of [Zn2(4,4′-bpy)(Phen)2]4+ in [Zn2(4,4′-bpy)(Phen)2][SiW12O40] (ZSW). 

As shown in Figure 1B,D, the [Zn2(4,4′-bpy)(Phen)2]4+ in ZSW has an inversion center 
located at the center of the 4,4′-bpy ligand, which consists of two zinc ions, two Phen lig-
ands and one 4,4′-bpy ligand. Each zinc ion is coordinated by three N atoms from the 4,4′-
bpy and Phen ligands, with Cu–N distances ranging from 1.892 to 2.029 Å. The sum of the 
different angles around the Zn ion is 360°, which indicates a trigonal-planar geometry 
around the center metal ion. The roles of the Phen and 4,4′-bpy ligands coordinating with 
Zn2+ are different, with the 4,4′-bpy serving as a bridging ligand linking the two Zn2+ ions, 
while the two Phen ligands act as chelating agents coordinated with Zn2+. Alternatively, 
the 4,4′-bpy ligand can join two [Zn(Phen)]2+ ions to form a binuclear zinc complex. 

In coordination chemistry, zinc ions always have a tetra-, penta-, and hexa-coordina-
tion configuration. The tri-coordination metal ion is usually the intermediate state in the 
REDOX process, such as Cu2+-Cu+ [30]. To our knowledge, in the solid state, the stable tri-
coordination zinc ion complex is very rare. Based on hybrid orbital theory, zinc ions in 
ZSW may adopt the sp2 hybrid configuration, which has a p orbital perpendicular to the 
plane. The p orbital of C in the organic ligand is also perpendicular to the molecular plane. 
These p orbitals are parallel to each other and may form a conjugated π bond. Electrons 
on the π bond flow through the system, so it is possible that, at some point, the electron 
cloud on zinc will become a little denser, causing its valence state to deviate from +2, and 
this exchange of electrons through a conjugated π bond might improve the catalytic ability 
of zinc cores [31]. 

As shown in Figure 1A,C, tetrahedral {SiO4} is located at the center of the [SiW12O40]4– 
cluster and shares four oxygen atoms with four {Mo3O13} triads. Those four {Mo3O13} clus-
ters are connected to each other by the sharing edge and Oμ, forming an α-Keggin-type 
cluster. The valence of the tungsten ions in ZSW was assessed using X-ray photoelectron 
spectroscopy (XPS). As shown in Figure 2, the XPS spectrum with two wide peaks located 
at 36.9 and 34.8 eV may have been caused by W 4f7/2 and W 4f5/2, respectively [32]. The 
fitted dashed plots in Figure 2 suggest the association of the W 4f peaks with W6+ [32]. 
These results imply that the +6 valence W ions are present in ZSW, as is evident from the 
peak intensities. 

Figure 1. (A) Polyhedral view of the [SiW12O40]4– unit; (B) ball-and-stick view of the binuclear copper
complex [Zn2(4,4′-bpy)(Phen)2]4+; (C) ball-and-stick view of the [SiW12O40]4– unit; (D) structural
diagram of [Zn2(4,4′-bpy)(Phen)2]4+ in [Zn2(4,4′-bpy)(Phen)2][SiW12O40] (ZSW).

As shown in Figure 1B,D, the [Zn2(4,4′-bpy)(Phen)2]4+ in ZSW has an inversion center
located at the center of the 4,4′-bpy ligand, which consists of two zinc ions, two Phen
ligands and one 4,4′-bpy ligand. Each zinc ion is coordinated by three N atoms from the
4,4′-bpy and Phen ligands, with Cu–N distances ranging from 1.892 to 2.029 Å. The sum of
the different angles around the Zn ion is 360◦, which indicates a trigonal-planar geometry
around the center metal ion. The roles of the Phen and 4,4′-bpy ligands coordinating with
Zn2+ are different, with the 4,4′-bpy serving as a bridging ligand linking the two Zn2+ ions,
while the two Phen ligands act as chelating agents coordinated with Zn2+. Alternatively,
the 4,4′-bpy ligand can join two [Zn(Phen)]2+ ions to form a binuclear zinc complex.

In coordination chemistry, zinc ions always have a tetra-, penta-, and hexa-coordination
configuration. The tri-coordination metal ion is usually the intermediate state in the RE-
DOX process, such as Cu2+-Cu+ [30]. To our knowledge, in the solid state, the stable
tri-coordination zinc ion complex is very rare. Based on hybrid orbital theory, zinc ions in
ZSW may adopt the sp2 hybrid configuration, which has a p orbital perpendicular to the
plane. The p orbital of C in the organic ligand is also perpendicular to the molecular plane.
These p orbitals are parallel to each other and may form a conjugated π bond. Electrons on
the π bond flow through the system, so it is possible that, at some point, the electron cloud
on zinc will become a little denser, causing its valence state to deviate from +2, and this
exchange of electrons through a conjugated π bond might improve the catalytic ability of
zinc cores [31].

As shown in Figure 1A,C, tetrahedral {SiO4} is located at the center of the [SiW12O40]4–

cluster and shares four oxygen atoms with four {Mo3O13} triads. Those four {Mo3O13}
clusters are connected to each other by the sharing edge and Oµ, forming an α-Keggin-type
cluster. The valence of the tungsten ions in ZSW was assessed using X-ray photoelectron
spectroscopy (XPS). As shown in Figure 2, the XPS spectrum with two wide peaks located
at 36.9 and 34.8 eV may have been caused by W 4f 7/2 and W 4f5/2, respectively [32]. The
fitted dashed plots in Figure 2 suggest the association of the W 4f peaks with W6+ [32].
These results imply that the +6 valence W ions are present in ZSW, as is evident from the
peak intensities.

The bond valence sums (Σs) of the oxygen (O) atoms in ZSW were also calculated
using the method from [33]. Formula (1) is shown below:

Vi = ∑
j

sij = ∑
j

exp

(
r0
′ − rij

B

)
(1)
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in which rij is the detected and r0
′ the theoretical bond distances between two atoms; B was

set to 0.37 [34]. The theoretical values for r0
′(W6+–O) (1.906 Å), r0

′ (Si4+–O) (1.622 Å), and r0
′

(Zn2+–N) (1.770 Å) were obtained from the literature [34,35]. The calculations indicate that,
for the W, Si, and Zn in ZSW, the Σs was 6.1678(4), 4.1078(8), and 1.7342(3), respectively.
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The computation of Σs can also be done using measured bond distances. The results are
given in Table 2 and Figure 3. POMs can easily be protonated, as their fragments are highly
negatively charged and contain abundant basic surface O atoms [36]. We can categorize
the 40 O atoms in ZSW into terminal Ot and bridging Oµ2, Oµ3, and Oµ4 types. As shown
in Figure 3, delocalized protons are located on the O atoms with Σs ranging between
0 and 1.70, which serve as proton-donors, while those O atoms with Σs ranging between
1.95 and 2.00 hold dense electrons. Multiple protons delocalized across the entire POM
fragment is a frequent occurrence that has been described in many previous studies, such as
[Ni(enMe)2]3[H6Ni20P4W34(OH)4O136(enMe)8(H2O)6]·12H2O [33], [H3W12O40]5– [37], and
[Ni(en)3]2[H2Nb6O19]·8H2O [38]. As these findings suggest, delocalization of a few counter-
positive charges in ZSW occurs in the [SiW12O40]4– skeleton, which probably facilitates
proton absorption and, by extension, valence state balancing upon valence alteration of
metal ions [39].

Table 2. Bond valence and Σs of Si, W, Zn in ZSW.

Bond Valence Bond Valence Bond Valence Atom Σs

Si (1)-O (4) 0.9246 (1) Si (1)-O (8) 1.1293 (2) Si (1)-O (4)# 0.9246 (1)
Si (1)-O (8)# 1.1293 (2) Si (1) 4.1078 (8)
W (1)-O (1)

W (1)-O (3)#
W (2)-O (3)
W (2)-O (6)
W (3)-O (7)

W (3)-O (8)#
W (4)-O (2)#
W (4)-O (10)

1.8122 (9)
1.0000 (0)
1.0357 (5)
1.0844 (5)
1.0218 (5)
0.2762 (3)
1.0218 (5)
1.0583 (9)

W (1)-O (2)
W (1)-O (2)#
W (2)-O (8)
W (2)-O (7)

W (3)-O (7)#
W (3)-O (10)
W (4)-O (4)#
W (4)-O (11)

1.0027 (1)
1.0027 (1)
0.2165 (9)
1.0136 (1)
1.0218 (5)
0.9602 (7)
0.2868 (9)
1.8122 (9)

W (1)-O (3)
W (1)-O (4)
W (2)-O (5)

W (2)-O (12)#
W (3)-O (8)

W (3)-O (10)#
W (4)-O (6)#
W (4)-O (12)

1.0000 (0)
0.2393 (7)
1.7928 (1)
1.0246 (2)
0.2762 (3)
0.9602 (7)
1.0218 (5)
1.0413 (7)

W (1)
W (2)
W (3)
W (4)

6.0570 (1)
6.2320 (1)
6.1277 (7)
6.2426 (7)

Zn (1)-N (1) 0.5185 (3) Zn (1)-N (2) 0.7191 (1) Zn (1)-N (3) 0.4965 (8) Zn (1) 1.7342 (3)



Catalysts 2022, 12, 695 5 of 12Catalysts 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 3. The bond valence sums (Σs) of O atoms in the Keggin unit of [Zn2(4,4′-
bpy)(Phen)2][SiW12O40] (ZSW). The extent of protonation for each oxygen atom is indicated by dif-
ferent colors. 

The IR spectrum of ZSW has similar asymmetric vibrations to those silicotungstate-
containing complexes [40]. As shown in Figure 4A, four characteristic peaks were ob-
served at 1043, 938, 828, and ~722 cm–1, which were assigned to v(Si–Oµ4), v(W–Ot), v(W–
Oµ2), v(W–Oµ3), and v(W–Oµ4), respectively [40]. In comparison with those of the 
[SiW12O40]4– cluster, the ν(W–Ot) vibrational bands for ZSW are split, which may indicate 
structural distortion and a consequent reduction in symmetry [31]. The IR spectra of 4,4’-
bpy and Phen were also tested and are shown in Figures S1 and S2. Comparing these IR 
spectra to ZSW, the peaks observed at 1616~1116 and 3300~3500 cm–1 in Figure 4A may be 
attributable to the peaks of 4,4′-bpy and Phen, which would be consistent with the litera-
ture [41]. PXRD was performed with the bulk samples. As shown in Figure 4B, the as-
synthesized PXRD peaks of ZSW were basically consistent with the simulated ones. 

 
Figure 4. (A) IR spectrum for [Zn2(4,4′-bpy)(Phen)2][SiW12O40] (ZSW), 4,4′-bipyridine (4,4′-bpy), 1,10-
phenanthroline (Phen); (B) PXRD patterns of ZSW. 

2.2. Catalytic Property 

Figure 3. The bond valence sums (Σs) of O atoms in the Keggin unit of [Zn2(4,4′-
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The IR spectrum of ZSW has similar asymmetric vibrations to those silicotungstate-
containing complexes [40]. As shown in Figure 4A, four characteristic peaks were observed
at 1043, 938, 828, and ~722 cm–1, which were assigned to v(Si–Oµ4), v(W–Ot), v(W–Oµ2),
v(W–Oµ3), and v(W–Oµ4), respectively [40]. In comparison with those of the [SiW12O40]4–

cluster, the ν(W–Ot) vibrational bands for ZSW are split, which may indicate structural
distortion and a consequent reduction in symmetry [31]. The IR spectra of 4,4′-bpy and
Phen were also tested and are shown in Figures S1 and S2. Comparing these IR spectra to
ZSW, the peaks observed at 1616~1116 and 3300~3500 cm–1 in Figure 4A may be attributable
to the peaks of 4,4′-bpy and Phen, which would be consistent with the literature [41]. PXRD
was performed with the bulk samples. As shown in Figure 4B, the as-synthesized PXRD
peaks of ZSW were basically consistent with the simulated ones.
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2.2. Catalytic Property

A dichlorofluorescein (DCF) fluorescence assay was employed to study the ZSW-
mediated production of ROS. DCF is a fluorescent probe derived from the reaction of
DCFH-DA (non-fluorescent) with ROS in the presence of HRP, which can indicate the
release of ROS from a system [42]. As seen in Figure 5, ZSW showed a stronger and more
intense fluorescent spectrum (λem = 528 nm) than that of the control group, which suggests
there was richer ROS production with ZSW than without. The K4[SiW12O40] (C1) and
ZnCl2 + Cyclen (ZnL) groups also possessed catalytic activity. However, the ZSW group
showed three to four times more fluorescence than the C1 and ZnL groups. It is of note that
the DCF fluorescence intensity of the Zn2+ group sample was extremely low, even lower
than that of the control group, which indicated remarkably lower production of ROS by
the group with Zn2+. These phenomena can probably be attributed to the metal ion–HRP
enzyme interaction, causing a loss in the Zn2+ group’s catalytic properties [43].
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Figure 5. The intensity of the fluorescence of DCF (λex = 485 nm, λem = 650 nm) in pH 7.4 Tris-buffer
(20 mM Tris-HCl/150 mM NaCl) induced by ZSW (0.025 mM), K4[SiW12O40] (C1, 0.025 mM), ZnCl2
(Zn2+, 0.025 mM), ZnL (Zn2+ + Cyclen, 0.025 mM), and the control group samples.

The Gaussian 09 package was used to perform the optimization and frequency com-
putational calculations at the DFT B3LYP/Lanl2dz level [44]. Frontier molecular orbitals
represent an invaluable method for analyzing the electric characteristics of coordination
compounds. The selected electron-occupied (HOMO) and -unoccupied (LUMO) MOs for
[Zn2(4,4′-bpy)(Phen)2]4+ and the Keggin-type [SiW12O40]4– cluster are shown with energy
values in Figure 6AB, respectively. For [Zn2(4,4′-bpy)(Phen)2]4+, the electron clouds of
the HOMO were distributed on the molecular skeleton of the aromatic ring at both ends.
Those of the LUMO were homogeneously well-distributed on the molecular skeleton. As
for the [SiW12O40]4– cluster, the electron clouds in the HOMO were mainly accumulated
in the molecular center; however, in case of the LUMO, the function groups on the outer
molecular layer contributed to the electron cloud of the LUMO. As also shown in Figure 6,
the values of the ∆E (ELUMO–EHOMO) for [Zn2(4,4′-bpy)(Phen)2]4+ (A) and [SiW12O40]4–

cluster (B) were 0.01164 and 0.20083 a.u., respectively.
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In addition, the chemical potential (µ), the chemical harness (η), and the fraction
number of electrons (∆N) for the electronic transmission between A and B were also
analyzed using a DFT calculation based on the literature [45,46]. Equations 2–4 were used
to calculate these parameters:

µ =
1
2
(ELUMO+EHOMO) (2)

η =
1
2
(ELUMO − EHOMO) (3)

∆N =
µB − µA

2(ηA + ηB)
(4)

where µA and µB and ηA and ηB are the chemical potentials and chemical harnesses
of the [Zn2(4,4′-bpy)(Phen)2]4+ system and [SiW12O40]4– cluster, respectively. Calcu-
lated using Equations (2)–(4), the µ and η for [Zn2(4,4′-bpy)(Phen)2]4+ were –0.09856 a.u.
and 0.00582 a.u., respectively. As for [SiW12O40]4–, the µ and η were –0.17613 a.u. and
0.10041 a.u., respectively. In addition, the ∆N between [Zn2(4,4′-bpy)(Phen)2]4+ and the
[SiW12O40]4– cluster was –0.12242. The negative values illustrate that [SiW12O40]4– acted
as an electron acceptor and [Zn2(4,4′-bpy)(Phen)2]4+ acted as an electron donor for the
[Zn2(4,4′-bpy)(Phen)2]4+ and [SiW12O40]4– cluster systems. Therefore, it is likely that, as
well as avoiding disturbance of the catalytic centers, the POM fragment in concert with the
Zn complexes may also facilitate synergistic production of ROS.

2.3. Anti-ROS-Sensitive Tumor Activity

Since ZSW possesses excellent catalytic ability in producing ROS, ZSW may also
provide good inhibition of ROS-sensitive tumor cells, such as neuroma cells [47]. Hence,
the inhibitory ability of ZSW toward neuronal pheochromocytoma cells (PC12) was investi-
gated with an MTT assay [48]. As shown in Figure 7A, the viability of PC12 cells decreased
gradually with the addition of ZSW from 0 to 20 µM, which may suggest that ZSW can
suppress the viability of PC12 cells. The concentration of 20 µM was chosen to carry out the
following experiment. As shown in Figure 7B, the presence of ascorbic acid (VC) helped to
reduce the cytotoxicity of ZSW, implying that ZSW inhibits PC12 cells through oxidation.

Next, the details of the damage from ZSW in the PC12 cells were studied by examining
the cell morphological changes under the above condition. As shown in Figure 8A, the
PC12 cells in the normal modality showed a polygonal shape with a network of synapses
connected in all directions. However, after co-incubation with ZSW, as shown in Figure 8B,
the PC12 cell morphology atrophied and spheroidized, and synapses disappeared alto-
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gether with widespread death observed. As can be seen from Figure 8C, although the
viable number of cells increased after the addition of VC, the morphology of the PC12
cells still changed greatly, with their bodies turning into spheres, in comparison to the
normal morphology in which the synapses of those cells begin to break. Hence, it may be
concluded that VC can only inhibit oxidative damage of ZSW to some extent, but cannot
completely reverse the damage.
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3. Materials and Methods
3.1. Materials and Methods

All reagents employed in this work were analytically pure and used as received.
2′,7′-dichlorofluorescin diacetate (DCFH-DA), 3-(4,5-dimethyl-2-thiazolyl)- 2,5-diphenyl-2-
H-tetrazolium bromide (MTT), nerve growth factor 7S (NGF-7S), and tris(hydromethyl)
aminomethane (Tris) were purchased from Sigma-Aldrich Inc. (Shanghai, China). ZnCl2·2H2O,
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Na2WO4·2H2O, Na2SiO3·9H2O, 1,10-phenanthroline (Phen), 4,4′-bipyridine (4,4′-bpy),
oxalic acid, and 1,4,7,10-tetraazacyclododecane (Cyclen) were obtained from J & K Scientific.
Pheochromocytoma cells (PC12 cells) were purchased from the American Type Culture
Collection (ATCC) (Manassas, VA, USA). Milli-Q water (Merck) was used to prepare all of
the solutions, and a Millipore filter (0.22 µm) was used for all filtrations.

DCF fluorescence was conducted with a Thermo Scientific Varioskan Flash microplate
reader (Thermo Fisher Scientific Inc., Singapore). The X-ray photoelectron spectrum (XPS)
was tested with a PHI5000 VersaProbe instrument (Ulvac-PHI Inc., Chigasaki, Kanagawa
Ken, Japan). Elemental analysis was performed on a PQEXCeII ICP-MS. IR spectra were
recorded in the range of 4000–400 cm−1 on a Bruker Vector 22 FT-IR spectrophotome-
ter using KBr pellets (Bruker Inc., Saarbrücken, Saarland, Germany). Intensity data of
single crystals were collected on a Bruker Apex-2 diffractometer with a CCD detector
using graphite-monochromatized Mo Kα radiation (λ = 0.71073 Å) at 296 K (Bruker Inc.,
Saarbrücken, Saarland, Germany).

3.2. Synthesis of ZSW

Two solutions were prepared separately. Solution A: Na2WO4·2H2O (3.30 g, 10.00 mmol)
and Na2SiO3·9H2O (1.90 g, 6.70 mmol) were dissolved in water (50 mL) under stirring.
Solution B: ZnCl2·2H2O (1.73 g, 10.00 mmol), Phen (0.52 g, 2.5 mmol), 4,4′-bpy (0.4 g,
2.0 mmol), and oxalic acid (C2H2O4·2H2O, 0.25 g, 2.0 mmol) were added to water (50 mL)
under stirring. The resulting mixture of B was added to solution A. The mixture was stirred
for 10 min at room temperature and then the pH value was adjusted to 4.0 by adding
6 mol·L–1 HCl dropwise. The solution was sealed in a 25 mL Teflon-lined autoclave and
kept at 150 ◦C for 5 days, then cooled to room temperature. Then, the colorless crystals
of ZSW were separated with a 26% yield (based on Na2WO4·2H2O). Elemental analysis
(%) calcd for [Zn2(4,4′-bpy)(Phen)2][SiW12O40]: C 11.60, N 2.38, Si 0.80, Zn 3.62, W 62.72;
found: C 11.69, N 2.44, Si 0.74, Zn 3.64, W 62.60.

3.3. X-ray Data Collection and Structure Refinement

A single ZSW crystal was mounted in an Apex-2 diffractometer (Bruker Inc., Saar-
brücken, Saarland, Germany) with a CCD detector using graphite-monochromatized Mo
Kα radiation (λ = 0.71073 Å) at 296 K. The SAINT software package (Bruker) was used for
data integration [49]. Lorentz and polarization corrections were made in the standard way.
Adsorption corrections were made using the multiscan approach with the aid of the SAD-
ABS software package (Bruker) [50]. After solving it directly, we refined the structure with
the full-matrix least-squares procedure on F2. This same refinement was performed suc-
cessively along with Fourier syntheses for the remaining atoms. The SHELXL-97 package
(Georg-August-Universität Göttingen, 2014, University of Göttingen, Göttingen, Nieder-
sachsen, Germany) was used for all computations [51]. The Fourier difference map did
not show the positions of any of the water molecule-related hydrogen atoms. Geometrical
positioning was used for hydrogen atoms attached to C and N atoms. Isotropic refinement
was done for all the hydrogen atoms using the riding model, adopting the default variables
within SHELXL.

3.4. Catalytic ROS Production of ZSW

A 1 mM stock solution of DCFH-DA was prepared using a Tris-buffer (20 mM Tris–
HCl/150 mM NaCl pH 7.4) and the procedure described in [52]. The same buffer was
used to prepare a 4 µM HRP (horseradish peroxidase) stock solution. All samples were
incubated at ambient temperature after adding 10 µM ascorbate that either contained or
did not contain ZSW (0.025 mM), and then 200 µL of each solution was pipetted into one
well of a black 96-well flat-bottomed microplate. DCFH-DA (100 µM) and HRP (0.04 µM)
were supplemented, and then the samples were left in the dark at ambient temperature
for an additional 12 h. Fluorescent spectra were captured over a range from 505 nm
to 650 nm with a microplate reader (Varioskan Flash, Thermo Scientific Inc., Singapore)
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with λex = 485 nm. Spectra of K4[SiW12O40] (C1, 0.025 mM), ZnCl2 (Zn2+, 0.025 mM),
ZnCl2 + Cyclen (Zn2+ + Cyclen, 0.025 mM), and the control group were also captured for
comparison under the same conditions as presented above.

3.5. Anti-ROS Sensitive Tumor Activity

PC12 cells were cultured according to a method from the literature [52]. The mature
PC12 cells were incubated with ZSW at different concentration gradients from 0 to 20 µM
for 24 h. Ascorbic acid and ZSW (20 µM) were incubated together as the control group.
The MTT kit was then used for testing. Cell morphology was observed under an inverted
fluorescence microscope.

4. Conclusions

In this study, a hybrid polyoxometalate (POM) based on a binuclear zinc complex
and Keggin-type silicotungstate [Zn2(4,4′-bpy)(Phen)2][SiW12O40] (ZSW) (Phen = 1,10-
phenanthroline; 4,4′-bpy = 4,4′-bipyridine) was synthesized successfully. The novelty of
the structure is that the zinc ions in the [Zn2(4,4′-bpy)(Phen)2]2+ exist in tri-coordination in
a solid state, and this phenomenon was first observed in POM chemistry. The synthetic
method may serve as a good example for subsequent synthesis and formation of such POMs
clusters. Moreover, ZSW is effective in catalyzing ROS generation, which can probably
be attributed to the synergic interplay between POM fragments and zinc complexes, and
further inhibits ROS-sensitive PC12 cells. The novel structure and interesting properties
mean that ZSW may have broad application prospects in biochemistry and inorganic
chemistry research into ROS catalysts.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/catal12070695/s1, Table S1: Selected bond lengths (Å)
for ZSW, Figure S1: IR spectrum for Phen, Figure S2: IR spectrum for 4,4′-bpy.
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