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Abstract: The photocatalytic transformation of CO2 to valuable man-made feedstocks is a promising
method for balancing the carbon cycle; however, it is often hampered by the consumption of extra
hole scavengers. Here, a synergistic redox system using photogenerated electron-hole pairs was
constructed by employing a porous carbon nitride with many cyanide groups as a metal-free photo-
catalyst. Selective CO2 reduction to CO using photogenerated electrons was achieved under mild
conditions; simultaneously, various alcohols were effectively oxidized to value-added aldehydes
using holes. The results showed that thermal calcination process using ammonium sulfate as porogen
contributes to the construction of a porous structure. As-obtained cyanide groups can facilitate charge
carrier separation and promote moderate CO2 adsorption. Electron-donating groups in alcohols
could enhance the activity via a faster hydrogen-donating process. This concerted photocatalytic
system that synergistically utilizes electron-hole pairs upon light excitation contributes to the con-
struction of cost-effective and multifunctional photocatalytic systems for selective CO2 reduction and
artificial photosynthesis.

Keywords: concerted catalysis; CO2 reduction; alcohol oxidation; photocatalysis; metal-free catalyst

1. Introduction

The capture and conversion of excess anthropogenic CO2 are of great significance for
repairing the current natural carbon cycle and relieving the global energy and environmen-
tal crisis [1–3]. However, due to chemical inertness and extremely high bond energies of
the C=O bond (806 kJ/mol), the effective activation and reutilization of CO2 under mild
conditions are great challenges but are also of utmost importance for practical applica-
tions [3–5]. Photochemical reduction via artificial photosynthesis is a promising method
to convert solar to chemical energy in the form of CO2-fixation feedstocks under mild
conditions [6–8]. Since pioneering work in the 1980s, great varieties of photoinduced CO2
capture and/or transformation systems involving efficient light-absorbing semiconductors,
such as CN, TiO2, and CuIn5S8 [9–11], and electron transfer mediators, such as metals
and/or metal−ligand complexes [12–14], have been developed. However, with respect to
effectiveness and scale-up considerations, cost-effective and specifically nonnoble metal
photocatalysts are highly desired.

Carbon nitride (CN), an inexpensive, metal-free semiconductor that absorbs visible
light, is a promising photocatalyst candidate that enables the generation of high-energy
electrons for H2O and/or CO2 reduction catalysis [15–18]. Moreover, the tris-triazine-based
covalent framework in CN contains abundant surface sites with different basicities, such
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as cyanide groups and amido groups, which can facilitate the capture and activation of
thermodynamically stable CO2 to different extents. Various products, such as CO, CH4, and
HCOOH, can be obtained by tuning the basic surface groups or deposited metal species [19].
CNs have been widely employed for photochemical CO2 fixation with the assistance of
hole scavengers [20–22], which are used to accelerate the slow oxidation half-reaction
and to promote the separation of photogenerated charges. However, the consumption
of hole scavengers increases costs and decreases atomic economy. Alternative systems
that fully utilize photogenerated electron–hole pairs for the manufacture of CO2-fixation
feedstocks and value-added oxidized chemicals are more attractive from the viewpoint of
green chemistry [23–25].

Recently, coupled photocatalysis systems that synergistically utilize electrons and
holes for the controllable synthesis of value hydrogenated and oxidized chemicals, such
as N-alkyl drugs, have been reported [26–28]. To fulfill these goals, photocatalysts with
fine structure are vital for reaching high efficiency. Huang et al. reported a facile process
to fabricate sulfur-doped carbon nitride to facilitate the separation of photogenerated
electrons and holes [29]. Due to severe environmental issues and increasing concerns
on carbon neutralization, the conversion of CO2 into value-added chemicals on various
advanced catalysts has drawn more attentions [30,31]. The abundant nitrogen atoms
within the framework of carbon nitride also help in constructing single metal sites and
converse CO2 into deep reductive products [32]. Based on these achievements, a porous
CN with abundant cyanide groups was synthesized via thermal calcination processes using
ammonium sulfate as a porogen, and the as-obtained porous carbon nitride can facilitate
CO2 adsorption and charge separation. An effective concerted photocatalytic system was
constructed for selective CO2 reduction to CO in the gas phase, and a series of alcohols
was simultaneously oxidized to value-added aldehydes and ketones in the liquid phase.
The results provide more insight into the relationship between structure and photocatalytic
performance and contribute to the design of cost-effective multifunctional photocatalysts
and concerted green photocatalytic systems for value-added fine chemical production.

2. Results and Discussions

XRD was first performed to determine the structure of the synthesized CNs. As shown
in Figure 1a, representative diffraction peaks of the (002) plane centered at approximately
27.5◦ were observed; the peak at ~13◦ for carbon nitride originated from a planar ordering
parallel to the c-axis, which also illustrates the nature of carbon nitride. These results
suggested that the synthesized samples had a typical carbon nitride structure. [15,24] With
the increase in porogens ((NH4)2SO4), tiny diffraction peaks emerged at approximately
21.8◦; these peaks may be a result of the minor reconfiguration of structural units via
the incomplete thermal condensation process [24,33,34]. In addition to the bulk structure,
porogen also resulted in the rearrangements of surface functional groups, which were also
observed in the FT-IR spectra (Figure 1b). The typical vibration peaks at approximately
800 cm−1 were assigned to the triazine/heptazine rings, and the strong adsorption at
3000–3500 cm−1 can be assigned to stretching mode of N-H groups, while the peaks be-
tween 1200 and 1700 cm−1 were assigned to the vibrations of CN heterocycles [33–35].
Remarkably, enhanced response peaks assigned to the cyano group (−C≡N) at approxi-
mately 2180 cm−1 [24,33,34] were observed in the CN-S samples instead of the bulk CN.
This result indicates that the decomposition of porogen in the pore-forming process may
have led to incomplete condensation; thus, more terminal groups were formed instead of
highly polymerized heterocycles and/or long chains. Furthermore, porogen contributes to
the construction of porous structures that benefit substrate adsorption/desorption and mass
transfer. With the increase in porogens, a higher BET surface area of CN-S samples of more
than 22 m2·g−1 was obtained compared with that of bulk CN (9.8 m2·g−1) (Figure 1c). All
these samples showed typical mesoporous characteristics in the N2 adsorption–desorption
isotherms, suggesting the absence of inherent microporosity. The majority of mesopores
were in a narrow range of 2~3 nm (Figure 1d). In addition, a broad distribution from
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5 to 50 nm, which was attributed to the stacking holes, was observed, while the number
of mesopores gradually increased with increasing porogen content. Nevertheless, excess
porogen blocked the creation of mesopores (Figure 1d, CN-S6). Thus, an appropriate
amount of porogen could lead to the reconfiguration of the surface groups and improve
both structural and textural properties that might enhance catalytic activities.
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Figure 1. Structural characterizations of as-synthesized bulk CN, CN-S50, CN-S24, and CN-S6
samples: (a) XRD patterns; (b) FT-IR spectra; (c) N2 adsorption–desorption isotherms; (d) pore
size distributions.

Subsequently, the morphologies and compositions of the synthesized CNs were
characterized by TEM and EDS. In contrast to that of the bulk CN (Figure 2a), a meso-
porous structure was obtained via thermal polymerization with the assistance of am-
monia sulfate porogen (Figure 2b); this observation coincides with the N2 adsorption–
desorption results. Significantly, O and trace S were detected by both EDS and XPS
(Figures S1 and S2), suggesting that S is not incorporated into the structure, which is
quite different with results reported in previous literature [29]. Gaseous sulfur-containing
compounds may be generated via the high-temperature calcination process and result in
structural porosity and a larger surface area that are favorable for catalysis.

Next, the band structure of the synthesized CNs was determined by UV–vis DRS and
Mott–Schottky plots (Figure 3). The pore-making process will hinder polymerization to
form CN heterocycles and follow the triazine/heptazine rings, which respond to visible
light absorption. Thus, light absorption gradually decreased with increases in porogen,
and the bandgaps of those CN-S samples were slightly broadened. As shown in Figure 3c,
the bandgaps of all samples were sufficient for water splitting, alcohol oxidation, and
CO2 reduction reactions. CO2 reduction to CH4 is more thermodynamically favorable
than CO formation; however, the formation of CH4 involves an eight-electron transfer
process, which is much more kinetically difficult than two-electron reduction to CO. To
accelerate photoinduced electron separation and transfer, photogenerated holes paired with
electrons are usually quenched by excess highly reductive scavengers, such as methanol
and triethanolamine [20–22]. In this manner, the photocatalytic activities of the reduction
half-reaction could be greatly enhanced; however, the consumption of the hole scavengers
increases the cost and limits the atomic economy. In this regard, the synthesized catalysts
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are capable of being employed in synergistic photocatalytic systems and are expected to
fully utilize the photogenerated electron–hole pairs to generate value-added oxidation
products and simultaneously enhance CO2 reduction to desired C1 fuels such as CO,
CH3OH, and CH4.
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(a) UV–vis diffuse reflectance spectra. (b) Mott–Schottky plots in a 0.5 M Na2SO4 aqueous solution.
(c) Calculated bandgaps.

To determine the best photocatalyst candidate and optimize the reaction’s conditions, alco-
hol oxidation was first conducted over the synthesized CN-S samples under an O2 atmosphere,
and the yields were determined by GC-MS characterization (Table S1). An approximately 32%
yield of benzaldehyde was obtained over bulk CN within 4 h, while porous CN-S24 achieved
the highest yield of up to 93% when the reaction time was prolonged to 8 h in MeCN. Remark-
ably, an approximately 65% yield was obtained under an Ar atmosphere, demonstrating that
the photogenerated holes are capable of oxidizing aromatic alcohols and releasing hydrogen
without the assistance of O2. In addition, functional groups on the benzene ring noticeably
impacted photocatalytic activities. Electron-withdrawing groups such as nitro and halogen
groups reduced activities, while electron-donating groups such as methoxy groups enhanced
activities (Figure 4a) [24]. These results enabled the construction of a green concerted photocat-
alytic system that utilizes photogenerated holes for the oxidation of alcohols to value-added
aldehydes and/or ketones and furnishes H atoms that could be involved with photoexcited
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electrons for the production of CO2-fixation feedstocks (CO (Figure 4b)). CN-S24 yielded much
more benzaldehyde (~9.1 µmol·h−1) than bulk CN. When p-methoxybenzyl alcohol was used
as the substrate, the yield of p-methoxybenzaldehyde increased to approximately twice that
of bulk CN (~11.3 µmol·h−1). Simultaneously, hydrogen furnished by alcohol oxidation was
transferred to reduce the CO2 gas with the assistance of photogenerated electrons. Approxi-
mately 1.8 µmol·h−1·g−1 CO was obtained over bulk CN, which is much lower than that over
CN-S24 (6.5 µmol·h−1·g−1). The performance of the CN-S24 sample for photocatalytic CO2
reduction surpassed that of most carbon nitride photocatalysts and was even comparable to that
of metal-loaded carbon nitride catalysts (Table S2). In addition, the obtained CN-S24 sample
exhibited good reusability over three cycles (Figure S3) and maintained a typical carbon nitride
structure, as indicated by the XRD patterns (Figure S4). These results demonstrated that CN-S24
is a robust and efficient photocatalyst that can achieve the green utilization of photogenerated
electron–hole pairs for synergistic alcohol oxidation and CO2 fixation.
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Figure 4. (a) Substrates with different substituent groups involved in the oxidation half-reaction
over CN-S24. Reaction conditions: 0.1 mmol of substrates, 5 mL of CH3CN, 20 mg of catalyst, room
temperature, 4 h, and Ar atmosphere. (b) Simultaneous CO production and alcohol oxidation over
the synthesized CN-S24 and control photocatalysts. Reaction conditions: 0.1 mmol of substrates,
5 mL of CH3CN, 20 mg of catalyst, room temperature, 2 h, and CO2 atmosphere. (c) PL spectra of
bulk CN and CN-S24. (d) On/off photocurrent response of bulk-CN and CN-S24 in 0.5 M Na2SO4

solution. (e) CO2-TPD of bulk-CN and CN-S24. (f) Proposed reaction pathway of CO2 reduction to
CO and alcohol oxidation on the photocatalyst.
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Subsequently, photoluminescence spectroscopy (PL), photocurrent response, and CO2-
TPD experiments were conducted. CN-S24 exhibited a lower fluorescence intensity than
bulk CN, indicating more efficient charge separation (Figure 4c), which further strength-
ened the photocurrent of CN-S24 (Figure 4d) [24–27,36]. These enhanced photoelectronic
properties may be due to the reconfiguration of surface functional groups and an increase
in cyanide groups. It has been reported that the strong electron withdrawing capacity of
−C≡N groups contributes to the delocalization of the isolated valence electrons in the π-
conjugated heterocyclic rings and, thus, increases the concentration of delocalized electrons,
which could facilitate the photocatalytic generation of active radical species [24,33,34]. In
addition, enhanced CO2 adsorption was observed in the temperature region beyond 150 ◦C
(Figure 4e). This result indicates that more chemical adsorption sites with moderate CO2
adsorption capacity may emerge in CN-S24, which may facilitate CO2 adsorption and
activation for the subsequent transformation of CO [37]. Thus, due to those enhanced struc-
tural and photoelectronic properties, CN-S24 achieved much better performance toward
the utilization of photogenerated electron–hole pairs for synergistic alcohol oxidation and
CO2 reduction to CO via the proposed reaction path (Figure 4f).

3. Materials and Methods
3.1. Preparation of Carbon Nitride with Porogens

Cyanamide (Aladdin Biochemical Technology Co., Ltd., Shanghai, China, 98 %),
ammonium sulfate (Adamas Reagent Co., Ltd, Shanghai, China, 99%), acetonitrile (HPLC,
Adamas Reagent Co., Ltd, Shanghai, China, 99.9%), and benzyl alcohol (Adamas Reagent
Co., Ltd, Shanghai, China, 99%) were used as received.

First, 1 g of cyanamide and 0.13 g of ammonium sulfate (mol ratio 24:1) were dissolved
in 3 mL of deionized water under sonication for 10 min. The solution was then transferred
to a crucible with a cover. After heating at 550 ◦C for 4 h with a ramp rate of 2.3 ◦C min−1

in air, light-yellow carbon nitride was obtained (0.58 g in total); this product is referred to
as CN-S24. CN-6 and CN-50 samples were prepared following the above procedures, with
the exception that ammonium sulfate was used at 0.52 g and 0.062 g, respectively. A bulk
carbon nitride sample was prepared with pure cyanamide.

3.2. Photocatalytic Reactions

For the photocatalytic oxidation of alcohols, typically, 20 mg of catalyst, 0.1 mmol of
alcohol, and 5 mL of solvent were mixed in a sealed 30 mL quartz bottle and saturated with
oxygen or Ar gas. Then, the suspensions were irradiated under a 15 W LED lamp (420 nm).
The products were analyzed with a GC–MS System (Agilent Technologies, G7036A, Santa
Clara, CA, USA) using toluene as an external standard. For the photocatalytic reduction
of CO2, 20 mg of catalyst, alcohol (0.1 mmol) and 5 mL solvent were mixed in a 30 mL
sealed quartz bottle and saturated with CO2. Then, the suspensions were irradiated under
a 15 W LED lamp (420 nm) for 2 h. The products were analyzed with a GC System (Fuli
instrument, GC9720).

3.3. Electrochemical and Photoelectrochemical Measurements

A conventional three-electrode cell system connected to a CHI 660E (Chenhua, Shang-
hai, China) electrochemical workstation was applied for further evaluation. Samples
dropped on an ITO slide served as the working electrode, and a saturated calomel electrode
(SCE) and a Pt wire were used as the reference electrode and counter electrode, respectively.
Mott–Schottky plots and on/off photocurrent responses were obtained in 0.5 M Na2SO4
aqueous solution. A 300 W Xe lamp (PLS-SXE300/300UV, Perfect Light, China) equipped
with a 420 nm cutoff filter was used for photocurrent detection.

3.4. Characterization

Scanning electron microscopy (SEM) measurements were performed on a MIRA3
TESCAN scanning electron microscope. Transmission electron microscopy (TEM) measure-
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ments were performed with a HITACH HT7700 microscope operated at an acceleration
voltage of 80 kV. X-ray diffraction (XRD) (Ultima IV, Rigaku) was performed at 40 kV
and 40 mA (Cu Kα X-ray radiation source) with a scanning speed of 6◦ min−1. X-ray
photoelectron spectroscopy (XPS) measurements were conducted on a Thermo Scientific
K-Alpha XPS system using monochromate Al Kα radiation. Nitrogen sorption exper-
iments (BET) were performed on a Micromeritics ASAP 2460 (samples were degassed
at 250 ◦C for 12 h before measurements). EPR (electron paramagnetic resonance) tests
were conducted on a BRUKER A300-10/12 instrument. IR (infrared spectroscopy) was
performed on a Nicolet 6700. UV–vis spectra were taken with an Agilent Cary Series
UV–vis-NIR spectrophotometer.

4. Conclusions

Porous carbon nitrides with substantial cyanide groups were synthesized and em-
ployed as metal-free photocatalysts for simultaneous alcohol oxidation and CO2 reduction
to CO by the synergistic utilization of photogenerated electron–hole pairs. This method of
preparing cheap but efficient carbon nitride photocatalysts is facile and easy to produce
in large scale, and the optimized CN-S24 showed the best performance mainly due to the
improved structural properties and exposed cyanide groups that helped facilitate charge
separation and CO2 adsorption. It was found that alcohols with electron-donating groups
could enhance activities via a faster hydrogen-donating processes, and an appropriate
CO production rate of 6.5 µmol·h−1·g−1 was achieved. These results contributed to the
fabrication of highly efficient photocatalysts and the construction of concerted photocat-
alytic systems that fully utilize electron-hole pairs. The developed synergistic system for
photochemically producing value-added chemicals as well as for reducing CO2 molecules
can facilitate the kinetic process, and it can be applied in other systems such as water
splitting and organic synthesis.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/catal12060672/s1, Figure S1: EDX of as-synthesized CN-
S24 sample; Figure S2: XPS survey spectra of as-synthesized CN, CN-S50, CN-S24, and CN-S6
samples; Figure S3: Photocatalytic CO yields on CN-S24 sample for different cycles; Figure S4: XRD
pattern of CN-S24 sample after reaction; Table S1: Photocatalytic activities over as-synthesized CNs
samples for alcohol oxidation; Table S2: Photocatalytic activities over reported carbon nitride-based
samples for CO2 reduction. References [38–47] are citied in the Supplementary Materials.
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