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Abstract: Cu and Co have shown superior catalytic performance to other transitional elements, and
layered double hydroxides (LDHs) have presented advantages over other heterogeneous Fenton cata-
lysts. However, there have been few studies about Co–Cu LDHs as catalysts for organic degradation
via the Fenton reaction. Here, we prepared a series of Co–Cu LDH catalysts by a co-precipitation
method under different synthesis temperatures and set Rhodamine B (RhB) as the target compound.
The structure-performance relationship and the influence of reaction parameters were explored. A
study of the Fenton-like reaction was conducted over Co–Cu layered hydroxide catalysts, and the
variation of synthesis temperature greatly influenced their Fenton-like catalytic performance. The
Co–Cut=65◦C catalyst with the strongest LDH structure showed the highest RhB removal efficiency
(99.3% within 30 min). The change of synthesis temperature induced bulk-phase transformation,
structural distortion, and metal–oxygen (M–O) modification. An appropriate temperature improved
LDH formation with defect sites and lengthened M–O bonds. Co–Cu LDH catalysts with a higher
concentration of defect sites promoted surface hydroxide formation for H2O2 adsorption. These
oxygen vacancies (Ovs) promoted electron transfer and H2O2 dissociation. Thus, the Co–Cu LDH
catalyst is an attractive alternative organic pollutants treatment.

Keywords: Cu–Co LDH; oxygen vacancy; hydroxyl radicals; RhB; Fenton-like reaction

1. Introduction

Rhodamine B (RhB) is a cationic xanthene dye with an aromatic structure and persis-
tent stability. It is commonly used in the printing and dyeing industries [1]. However, it
is harmful if swallowed by human beings and animals, and causes irritation to the skin,
eyes, gastrointestinal tract, and respiratory tract [1]. Furthermore, it also causes phototoxic
and photoallergic reactions. The carcinogenicity, reproductive and developmental toxic-
ity, neurotoxicity, and chronic toxicity to humans and animals have been experimentally
proven [2]. Therefore, the insufficient disposal of RhB-containing wastewater can lead to
severe environmental problems and threaten human health. Many methods have been de-
veloped for dye wastewater treatment, such as adsorption [3,4], advanced oxidation [5–8],
biological treatment [9,10], and photodegradation [11,12].

Among advanced oxidation processes (AOPs), the Fenton reaction has drawn great
attention from the academic and industrial fields as an effective wastewater treatment
owing to its low operating cost, low toxicity, and high degradation efficiency [13,14]. How-
ever, the homogeneous Fenton reaction has disadvantages, like a narrow working pH
range, poor recyclability, and secondary pollution of residual sludge [15,16]. To overcome
these drawbacks, the heterogeneous Fenton-like reaction with better stability and recy-
clability has been promoted as a promising alternative to the decomposition of refractory
organics. Moreover, Cu and Co have exhibited superior catalytic performance to other
transitional elements, so they have attracted a lot of research attention in the field of Fenton
reaction [17–21].
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Owing to their unique layered structure, layered double hydroxides (LDHs) have
presented clear advantages over other heterogeneous Fenton catalysts, with negligible
metal leaching during the reaction [22–24]. The LDH is a two-dimensional (2D) layered
hydrotalcite formulated as [M2+

1−xM3+
x(OH−)2] x+(An−)x/n·mH2O, in which M2+ and

M3+ represent divalent and trivalent cations in the host layers, respectively, and An– stands
for the compensative anion in the interlayer [25]. Moreover, abundant alkaline sites in the
LDH structure can benefit the maintenance of a weak alkaline condition during reaction,
which greatly depresses the leaching condition of catalysts [26,27]. Moreover, the metal
component in the positive layer with low redox potential, such as Cu, Fe, Ni, and Co,
can favor the electron transfer in reaction [28]. Furthermore, the oxygen vacancies (Ovs)
with rich electrons can stretch the O–O bond in H2O2 after adsorption and thus facilitate
the production of ·OH [29–31] with accelerated degradation of organics. In recent years,
Cu-containing LDHs have drawn great attention among LDH catalysts for Fenton-like
reactions. Wang et al. prepared the Cu1Ni2Sn0.75 LDH catalyst with almost total (97.8%)
phenol mineralization with a neutral pH value [32]. Tao et al. fabricated Cu–Fe LDHs
to treat methyl orange, with a nearly 100% removal in 13.5 min [33]. A Cu–Zn–Fe LDH
was also developed for the decomposition of an acetaminophen-containing sample, with a
degradation efficiency up to 100% within 24 h [34]. However, there have been few studies
on Co–Cu LDHs as catalysts for organic degradation via the Fenton reaction.

In this work, we prepared a series of Co–Cu LDH catalysts by a co-precipitation
method under different synthesis temperatures and set RhB as the target compound. In
addition, the structure–performance relationship and the influence of reaction parameters
were also explored.

2. Results
2.1. Bulk-Phase and Electronic Structure Characterization

Nitrogen adsorption–desorption isotherms of all catalysts are displayed in Figure 1a.
The isotherms show that all catalysts possessed the typical IV type isotherms with obvious
hysteresis loops at high relative pressures (0.6 < P/P0 < 1), indicating the presence of meso-
pores. Meanwhile, there were almost no microspores in the samples, as there was little N2
adsorption for all catalysts at low relative pressures (P/P0 < 0.1), which can also be clearly
observed from the pore size distribution curves (Figure 1b). In addition, as shown in Table 1,
the specific surface area of the catalysts decreased with increased synthesis temperature, to
65 ◦C, yet it exhibited slightly increasing return when the synthesis temperature reached
75 ◦C and 85 ◦C. A larger specific surface area usually provides more active sites, yet it
had little relationship with the catalytic activity in this case, as Co–Cut=65◦C exhibited the
highest RhB removal with the smallest surface area. In addition, the catalysts had a higher
specific surface area, which often exists in more active sites, and the specific surface area of
the catalyst synthesized at 65 ◦C was the smallest. The result indicates that the structure
of the catalyst is sensitive to the synthesis temperature. Furthermore, according to the
experimental results of ICP and XPS (Table 1), the molar ratio of copper and cobalt elements
in the catalyst is about 4.15 and 4.2, respectively, which were very close to the theoretical
value of 4 for the molar ratio of copper and cobalt elements.

Table 1. BET surface area, BJH mean pore size, pore volume, and elemental composition of catalysts.

Sample SBET
(m2 g−1)

Volume
(cm3 g−1)

Pore Size
(nm)

Co:Cu Molar
Ratio

Surface
Co:Cu Molar

Ratio

Cu–Cot=45◦C 65.99 0.32 13.96 4.12 4.4
Cu–Cot=55◦C 62.86 0.36 17.52 4.15 4.3
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Table 1. Cont.

Sample SBET
(m2 g−1)

Volume
(cm3 g−1)

Pore Size
(nm)

Co:Cu Molar
Ratio

Surface
Co:Cu Molar

Ratio

Cu–Cot=65◦C 46.47 0.22 13.38 4.14 4.2
Cu–Cot=75◦C 57.33 0.32 17.19 4.14 4.1
Cu–Cot=85◦C 60.33 0.36 17.26 4.1 4.3

The Co:Cu molar ratio was analyzed by ICP, the surface Co:Cu Molar ratio was analyzed by XPS.
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Figure 1. (a) N2 adsorption/desorption isotherms and (b) pore size distribution curves of catalysts.

The bulk-phase structure of catalysts was further studied by XRD analysis. As shown
in Figure 2a, when the synthesis temperature was in the range of 45–75 ◦C, all catalysts
exhibited a group of characteristic diffractions corresponding to (003), (006), (012), and
(015) crystalline planes of the hydrotalcite-like (JCPDS#35-0965) structure at 2θ of 11.7,
23.4, 33.7, and 39.1, respectively [35]. The basal spacing d(003) around 0.74 nm was in
line with the presence of carbonate in the interlayer space, as in previous reports [25].
Moreover, a second phase was Cu(OH)2 (JCPDS#80-0656) owing to the excessive Cu
existence besides the necessary composition for LDH or the Jahn-Teller effect. This is
because Cu2+ could be situated in near-lying octahedra with the formation of the copper
compound with distorted octahedra, which is energetically preferred to the compound
of LDH [25]. A higher synthesis temperature would enhance the crystallinity of the LDH
structure, with an improved intensity of (003) reflection in the range of 45–65 ◦C. This
may be highly related to the promoted oxidation of Co2+, which resulted in the improved
LDH structure with increasing temperature. However, the condition for Co–Cut=75◦C
inversed for the decomposition of LDH framework under the circumstances. When the
synthesis temperature was 85 ◦C, the LDH structure of the catalyst disappeared. Thus,
the Co–Cut=65◦C catalyst had a better LDH structure. As shown in Figure 3, the catalyst
presented sheet-like structures, as is typical for LDH materials.

FT-IR characterization was then carried out to investigate the special Co–Cu interac-
tion, LDH property, and their influence on catalytic performance. The patterns in Figure 2b
show some vibrational information of different catalyst structures. There are three types of
O–H stretching modes in the catalysts. One is the νO–H vibration of the metal hydroxide
located at about 3570 cm−1 and 3623 cm−1 for Cu(OH)2 and Co(OH)2, respectively [36].
Another broad band in the region of 3300–3500 cm−1 can be attributed to the O–H stretch-
ing of the adsorbed and interlayer water [25]. Furthermore, the weak band at 1634 cm−1

was associated with the hydroxyl deformation mode of the water molecules in the in-
terlayer [37]. In addition, the peaks at c.a. 1361 cm−1, 992 cm−1, and 683 cm−1 can be
attributed to different stretching modes of carbonate [25], indicating carbonates as the
primary compensating anions in the LDH interlayer, which is in line with XRD results.
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Moreover, the peaks located below 683 cm−1 were related to M–O vibrations (M = Co
and/or Cu) [36], which varied across samples, indicating that the different M–O bonds
may determine their corresponding catalytic performance.
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Figure 2. (a) XRD patterns of catalysts; (b) FT-IR spectra of catalysts.
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Figure 3. TEM images of Co–Cut=65◦C catalyst (a) lager-scale image (b) small-scale image.

Raman spectra analysis was further conducted to investigate these M–O bonds’ prop-
erties. As shown in Figure 4a, the four vibrational modes exhibited at ca. 189, 461, 527,
and 688 cm−1 all belonged to cobalt oxides corresponding to F1

2g, Eg, F2
2g, and A1g species,

respectively [38–40], and no Cu-related peaks were detected in all catalysts. In particular,
the shifts for Eg suggested that this is probably related to the incorporation of Cu in the
Co-related lattice. Specifically, the bands at 688 cm−1 (A1g) and 189 cm−1 (F1

2g) could be as-
signed to the Raman vibration of Co3+–O2− at octahedral sites and Co2+–O2− at tetrahedral
sites, respectively [41]. The bands at 461 cm−1 (Eg) and 527 cm−1 (F2

2g) can be attributed
to the combined vibrations in tetrahedral sites and octahedral oxygen motions [42]. Par-
ticularly, the band of 527 cm−1 can be ascribed to Co-related doubly occupied Ovs bound
with donor defects [43]. According to our previous study, the band’s peak intensity was
positive to the concentration of surface Ovs. With the improved LDH crystallinity and peak
intensity, shown in Figure 4a, F2

2g modes exhibited the same enhanced tendency, indicating
an increasing Ov density.
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As shown in Figure 5, the convolutions of O1s XPS spectra were carried out for detailed
information, especially for oxygen defects. The core level spectra were fitted into three
identified peaks. Peaks at 529.8 and 530.6 eV were attributed to oxygen atoms bound to
lattice oxygen for metal oxides and hydroxyl species, respectively [31]. It is noted that
the peak at ca. 533.4 eV can be ascribed to the presence of defect sites in the low oxygen-
coordination [44]. In addition, Co–Cut=65◦C presented the highest defect density (Table 2),
with its changing agreeing well with the Raman analysis.
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Figure 5. O1s XPS spectra of catalysts. (a) Co–Cut=45◦C; (b) Co–Cut=55◦C; (c) Co–Cut=65◦C;
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Table 2. Oxygen defect density of catalysts.

Sample Oxygen Defect Density (%) O1s BE for Defect Sites (eV)

Cu–Cot=45◦C 5.6 533.2
Cu–Cot=55◦C 7.8 533.1
Cu–Cot=65◦C 12.8 533.8
Cu–Cot=75◦C 9.2 533.7
Cu–Cot=85◦C 3.19 532.3

The density of defects was calculated by atomic ratio depending on the area percentage of defect site oxygen in
total area for all peaks from XPS.

UV-Vis DRS spectra (Figure 4b) shed more light on the special electronic property of Ov
and the LDH structure. The absorption peak observed at 230 nm can be attributed to ligand-
to-metal charge-transfer excitations occurring in the MO6 coordination [45]. Moreover, the
peaks at c.a. 323–364 nm and 642 nm can be associated with O2−→Co2+ and O2−→Co3+,
respectively [41,46,47]. The shifts of the peaks also depicted the different doping conditions
of Cu in the LDH structure for different catalysts. In addition, the distinctive peak at
532 nm is related to the special metal–metal charge transfer of the Co–O–Cu oxo-bridge
in the MO6 environment for LDH, as it included the transitions of dz

2→dx
2−y2 for Cu2+,

1A1g→1T1g for Co3+, and 4T1g(F)→4T1g(P) for Co2+ with weak-field ligands [48–51], which
is also related to the generation of surface Ov, according to previous publications [52]. A
stronger peak intensity suggested a higher Ov concentration, with its changing agreeing
well with the Raman analysis. Thus, it can be concluded from the above discussion that
improved LDH structure is likely to possess more Co–O–Cu oxo–bridge interaction with
more lattice disorder resulting from the incorporation of Cu in Co sites. This special Co–O–
Cu structure can promote the generation of surface Ov, which is positively related to the
catalytic performance [35,41].

2.2. Catalytic Performance

The catalytic activity for all catalysts with different synthesis temperatures are shown
in Figure 6a. The RhB removal was raised from 82.5% to 99.3% as the fabricated temperature
increased from 45 ◦C to 65 ◦C, respectively. However, a further increment in the synthesis
temperature to 75 ◦C and 85 ◦C decreased the RhB degradation efficiency to 85.10% and
65.99%, respectively. Moreover, the adsorption only counted for less than 10% of the
total removal without the addition of H2O2, indicating that self-decomposition and/or
adsorption of RhB by catalysts can be excluded in this case, and the Fenton oxidation is
the key factor for total organic elimination. The homogeneous Fenton test showed that the
degradation resulting from metal leaching only contributed 9.3% of the total removal from
the homogeneous part (Figure 6b). Furthermore, the quenching experiment showed that
·OH was the main reactive oxygen species of the reaction, as the RhB removal declined to
9.8% with the existence of a scavenger (Figure 6c). Thus, the RhB decomposition can be
mostly ascribed to the ·OH generation over the catalyst surface rather than ·OH produced
by leaching metals.

The results of the catalytic performance tests reveal that the synthesis temperature had
a great impact on catalytic activity, as the optimum synthesis temperature of the catalyst
was 65 ◦C. However, the Co–Cut=65◦C LDH catalyst had the smallest specific surface areas
in the BET analysis, indicating that the catalyst performance is more structurally dependent
than the surface area in the Fenton-like reaction. In addition, among other catalysts, the
Co–Cut=65◦C LDH catalyst had the best performance, which can be attributed to its excellent
LDH structure and high density of Ov based on the XRD and Raman analyses. According
to a previous study [35], Ov is the main active site of the LDH structure, and it promotes
H2O2 adsorption, electron transfer, and H2O2 dissociation during reaction, which benefit
the generation of effective ·OH. In addition, the Co–Cut=65◦C LDH catalyst exhibited better
RhB removal efficiency compared with other catalysts (Table 3). Therefore, we selected the
Co–Cut=65◦C LDH catalyst to carry out the following experiments.
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Table 3. Comparison of RhB removal among different catalysts.

Catalysts Conditons Removal Ref.

Fe/MCM–41 1 g/L catalysts, 20 mM H2O2, 100
ppm RhB, pH = 4.0, 80 ◦C, 30 min. 99.1% [53]

MgFe2O4

0.625 g/Lcatalysts, 1.00 vol%H2O2,
10 ppm RhB, 45 ◦C, pH = 6.44, 180

min
90.0% [54]

Cu/Al2O3
1 g/Lcatalyst, 10 ppm RhB, 1000

ppm H2O2, pH = 5.14, 50 ◦C, 30 min 98.5% [55]

Fe3O4/MI 0.5 g/Lcatalyst, 20 mM H2O2, 10
ppm RhB, pH = 7, 25 ◦C, 30 min 99.6% [56]

Co–Cu LDH 0.1 g/Lcatalyst, 240 ppm H2O2, 10
ppm RhB, pH = 7, 40 ◦C, 30 min 99.3% This work

2.3. Investigation of Reaction Parameters

To better understand the reaction process, we also performed condition experiments
to investigate the influence of different reaction parameters such as H2O2 dosage, reaction
temperature, and pH surroundings for RhB removal, and find out the optimum reaction
parameters for the catalyst Co–Cut=65◦C. All experiments were carried out in conditions of
100 mL, 10 ppm RHB, 10 mg catalyst, 240 ppm H2O2, and 50 ◦C under 700 rpm-stirring for
60 min with initial pH = 5.15 unless otherwise specified for investigations of each parameter.
The kinetic study was based on the first-order reaction in the first 7.5 min to obtain a more
satisfactory fitting model.

2.3.1. Effect of Initial H2O2 Dosage

The effect of the initial H2O2 dosage on degradation of RhB was investigated in the
range of 160 to 960 ppm. As shown in Figure 7, as the H2O2 dosage rose from 160 to 480 ppm,
the RhB removal also improved from 77.71 to 96.19% in 5 min, with its corresponding
reaction rate constant kG (min−1) surging from 0.1924 to 0.4938 min−1 (Table 4). This
phenomenon can be ascribed to the fact that the adequate dose-up of initial H2O2 can
directly promote the generation of ·OH with further improvement for RhB removal [57].
However, a further increase of the initial H2O2 dosage to 960 ppm brought about a drop of
the catalytic performance, as excessive H2O2 and ·OH can quench ·OH and decrease the
degradation efficiency [35,55,58].
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Table 4. The influence of H2O2 concentration on kG for the first 7.5 min and RhB removal in the first
5 min.

H2O2
Concentration/ppm

kG for First 7.5 min
(min−1) R2

RhB Removal in
First 5 min (%)

160 0.1924 0.9895 77.7
240 0.2070 0.9928 83.4
320 0.3930 0.9898 93.4
480 0.4938 0.9900 96.2
640 0.3019 0.9795 91.1
960 0.2943 0.9929 86.7

2.3.2. Effect of Reaction Temperature

Figure 8 shows the positive relationship between the reaction temperature and RhB.
Specifically, the RhB removal in the first 5 min was 38.09%, 48.93%, 65.55%, and 84.07%
with the reaction temperature of 27 ◦C, 33 ◦C, 40 ◦C, and 50 ◦C, respectively. In addition,
the reaction rate constant k also increased with the rise of the reaction temperature (Table 5).
This is attributable to the fact that a higher temperature promotes the collision between
molecules, in which case more molecules obtain energy exceeding the activation barrier [59].
Thus, the reactions for the generation of ·OH and degradation of RhB were both improved
simultaneously.

Table 5. The influence of reaction temperatures on kG for the first 7.5 min and RhB removal in the
first 5 min.

Reaction
Temperature/◦C

KG for the First
7.5 min (min−1) R2

RhB Removal in the
First 5 min (%)

27 0.0303 0.9841 38.1
33 0.0628 0.9967 48.9
40 0.1256 0.9915 65.5
50 0.2070 0.9929 84.1
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2.3.3. Effect of pH Surroundings

It has been well established that the reaction surroundings, especially for the pH value,
play an important role in Fenton or Fenton-like reactions. Thus, HNO3 and NaOH were
used to adjust the initial pH value in this work to better understand its influence on RhB
removal. As shown in Figure 9, the catalyst presented excellent performance within 30 min
over a wide pH range. Moreover, as the pH value increased from 5.2 to 7.9, the reaction
rate constant kG (Table 6) significantly improved within the first 5 min. In addition, the
highest RhB removal of 97.5% was achieved at pH = 7.0. However, a further increase of
the pH value had a negative impact on the reaction, with the removal in the first 5 min
dropping to 61.7%.
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Table 6. The influence of pH on kG for the first 7.5 min and RhB removal in the first 5 min.

pH KG for the First 7.5
min (min−1) R2

RhB Removal in the
First 5 min (%)

5.15 0.2075 0.9784 84.3
6.12 0.2070 0.9928 82.6
7.00 0.3930 0.9898 93.0
7.91 0.3405 0.9760 94.9
8.95 0.1418 0.9911 61.7
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There are a few possible reasons for this phenomenon. In an acidic environment,
the greater stability of H2O2 [60] and the metal leaching of catalysts lead to a decrease in
catalytic activity. However, in strong alkaline solutions, the self-decomposition of H2O2
and the side reactions for ·OH scavenging are aggravated with a decline of the oxidation
potential for ·OH/H2O [61], which adversely affects the reaction.

2.3.4. The Reusability and Stability of Catalysts

To explore the stability of the Co–Cut=65◦C catalyst, repeated experiments of catalyst
recycling and reuse were carried out under the same experimental conditions. Experiments
were carried out in conditions of 100 mL, 10 ppm RHB, 10 mg catalyst, 240 ppm H2O2,
40 ◦C under 700 rpm-stirring for 60 min with initial pH = 5.15. As shown in Figure 10a,
the efficiency of RhB dye degradation was only slightly decreased after being reused three
times, but the removal rate of RhB could still exceed 85% after being reused three times.
Hence, the catalysts showed good reusability in catalytic degradation. For the stability, the
XRD spectra of Co–Cut=65◦C catalyst before and after the third run cycle are depicted in
Figure 10b, where the spectra appear identical except for the slightly lower peak intensity of
the (003) reflection at 2θ of 11.7, which presented a new Cu(OH)2 phase after the recycling
reaction. This can be attributed to the leaching of metal elements of the Co–Cut=65◦C catalyst
after three cycles.

Catalysts 2022, 12, x FOR PEER REVIEW 10 of 15 
 

 

Table 6. The influence of pH on kG for the first 7.5 min and RhB removal in the first 5 min. 

pH KG for the First 7.5 
min (min−1) 

R2 RhB Removal in the First 5 
min (%) 

5.15 0.2075 0.9784 84.3 
6.12 0.2070 0.9928 82.6 
7.00 0.3930 0.9898 93.0 
7.91 0.3405 0.9760 94.9 
8.95 0.1418 0.9911 61.7 

There are a few possible reasons for this phenomenon. In an acidic environment, the 
greater stability of H2O2 [60] and the metal leaching of catalysts lead to a decrease in cat-
alytic activity. However, in strong alkaline solutions, the self-decomposition of H2O2 and 
the side reactions for ·OH scavenging are aggravated with a decline of the oxidation po-
tential for ·OH/H2O [61], which adversely affects the reaction. 

2.3.4. The Reusability and Stability of Catalysts 
To explore the stability of the Co–Cu t = 65 °C catalyst, repeated experiments of catalyst 

recycling and reuse were carried out under the same experimental conditions. Experi-
ments were carried out in conditions of 100 mL, 10 ppm RHB, 10 mg catalyst, 240 ppm H2O2, 
40 °C under 700 rpm-stirring for 60 min with initial pH = 5.15. As shown in Figure 10a, the 
efficiency of RhB dye degradation was only slightly decreased after being reused three times, 
but the removal rate of RhB could still exceed 85% after being reused three times. Hence, the 
catalysts showed good reusability in catalytic degradation. For the stability, the XRD 
spectra of Co–Cu t = 65 °C catalyst before and after the third run cycle are depicted in Figure 10b, 
where the spectra appear identical except for the slightly lower peak intensity of the (003) re-
flection at 2θ of 11.7, which presented a new Cu(OH)2 phase after the recycling reaction. This 
can be attributed to the leaching of metal elements of the Co–Cu t = 65 °C catalyst after three 
cycles. 

 
Figure 10. The reusability and stability of Cu–Co t = 65 °C catalyst (a); and XRD diffractograms before 
and after degradation (b). 

2.4. Plausible Mechanism 
According to the above experimental results, the possible heterogeneous Fenton-like 

reaction mechanisms on RhB degradation by the Cu–Co LDH/H2O2 were proposed in 
Equations (1)–(7). Irrespective of the existence of Oxygen vacancy (Ov), the events of 
Equations (1) and (2) occurred [62]. Surface active centers of Co and/or Cu are involved in 

0

20

40

60

80

100

10 20 30 40 50 60 70

In
te

ns
ity

(a
.u

.)

2θ(degree)

♦ LDH  ♥Co(OH)2   

Before degradation RhB

After degradation RhB

♦

∇ ∇♦ ♦ ∇ ♦

•Co4O3 ∇Cu(OH)2

♥
♦♦∇♦

∇

♦

♥♥

1

(b)

3rdcycle2ndcycle

R
hB

 r
em

ov
al

/%

cycles
Fresh 1stcycle

(a)

Figure 10. The reusability and stability of Cu–Cot=65◦C catalyst (a); and XRD diffractograms before
and after degradation (b).

2.4. Plausible Mechanism

According to the above experimental results, the possible heterogeneous Fenton-like
reaction mechanisms on RhB degradation by the Cu–Co LDH/H2O2 were proposed in
Equations (1)–(7). Irrespective of the existence of Oxygen vacancy (Ov), the events of
Equations (1) and (2) occurred [62]. Surface active centers of Co and/or Cu are involved in
one-electron oxidation to catalyze H2O2 to ·OH [30]. Concurrently, M(n+1)+ (M = Co and
Cu) was reduced by H2O2 according to the Haber-Weiss mechanism [63]. When oxygen
vacancy co-existed, Equations (1) and (2) accelerated and the steps of Equations (3)–(6)
were in effect [62]. Firstly, H2O absorbed on the surface vacancy of Vo≡Mn+ defect sites
(Equation (3)) to form the surface hydroxyl group [64]. Secondly, through ligand exchange
of the previous surface hydroxyl group which was prior to electron transfer, H2O2 adsorbed
on the same defect sites [64] (Equation (4)). Thirdly, the existence of Ov stretched of the
O–O bond, which facilitated activation of H2O2 to produce ·OH (Equation (5)) [21,65,66].
Finally, the reactive radicals (·OH) readily attacked RHB that adsorbed nearby the active
sites (Equation (7)):

≡Mn+ + H2O2 →≡M(n+1)+ − OH + ·OH (1)
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≡M(n+1)+ − OH + H2O2 →≡Mn+ + H2O +·O2H (2)

Ov≡Mn+ + H2O→ Ov≡Mn+ − H2O* (3)

Ov≡Mn+ − H2O* + H2O2 → H2O2
* − Ov≡Mn+ − H2O* (4)

H2O2
* − Ov≡Mn+ − H2O* → Ov≡M(n+1)+ − H2O* + ·OH (5)

Ov≡M(n+1)+ − H2O* + H2O2 → Ov≡Mn+ − H2O* + ·O2H + H+ (6)

·OH + RHB→ Intermediates→ CO2 + H2O (7)

Therefore, Ov plays a key role in the heterogeneous Fenton-like reaction. The higher
the content of Ov in the catalyst, the faster the ·OH is generated, which in turn increases
the degradation rate of RhB. It can be seen intuitively from Figure 11 that the Co–Cut=65◦C
catalyst contains more Vo, and this is also the reason for the better performance of the
Co–Cut=65◦C catalyst.
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3. Materials and Methods
3.1. Catalyst Preparation

Cu–Co LDH catalysts were obtained by the co-precipitation method [25,35]. Specif-
ically, mixed salts of Cu (NO3)2·3H2O and Co (NO3)2·6H2O with a Co/Cu molar ratio
of 4:1 was dissolved in 150 mL deionized water. The above solution dropwise added a
mixed alkaline of NaOH (0.4 M) and Na2CO3 (0.2 M) to adjust the pH to 12 under vigorous
magnetic stirring at 25 ◦C for 1 h. The mixture was aged at different temperatures (45 ◦C,
55 ◦C, 65 ◦C, 75 ◦C, 85 ◦C) for 24 h with subsequent centrifugation after being washed by
deionized water several times. The obtained pastes were then dried at 60 ◦C overnight and
denoted as Cu–Cot=x◦C as a final LDH catalyst.

3.2. Characterization

The BET surface area, pore volume, average pore size, and pore size distribution of
samples were calculated from the isotherms of the N2-physisorption, which is measured on
a Micromeritics ASAP 2460 instrument by N2 adsorption-desorption isotherms at −196 ◦C.
All samples were dried at 50 ◦C for 72 h in a vacuum oven and then degassed at 50 ◦C for
72 h by nitrogen before measurements. The specific surface areas were calculated from the
isotherms using Brunauer-Emmett-Teller (BET) method, and the pore size distributions
were calculated by the Barrett-Joyner-Halenda (BJH) method.

Trans-mission electron microscopy (TEM) images were recorded on a TEM FEI Talos
apparatus operating at acceleration voltage of 200 kV.

X-ray diffraction (XRD) was performed on a Bruker D8-Advance X-ray powder diffrac-
tometer with a Cu Kα ray source (λ = 0.154056 Å) at 40 kV and 40 mA. The intensity data
were collected at room temperature in a 2θ range from 10◦ to 70◦ with a scan rate of 6◦/min.
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Fourier transform infrared spectra (FT-IR) experiments were carried out on a FT-
IR/ATR spectrophotometer (Nicolet 50, Thermo Fisher, Waltham, MA, USA). The spectra
were collected from 4000 to 500 cm−1 with 32 scans and a resolution of 4 cm−1.

X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher) was investi-
gated with a source of Al-Kα radiation (1486.6 eV, a pass energy of 30.0 eV). C1s peak at
284.8 eV was used for calibration of all binding energies. The peaks were fitted according
to references for O1s [31].

Laser Raman spectra (LRS) were collected on a confocal Raman (LabRam HR Evolu-
tion, Horiba, Kyoto, Japan) with a 50X objective under the excitation laser of 785 nm in
ambient environment. Laser intensity was set as 3.2% ND Filter with 100 s acquisition time
to ensure no damage of samples was caused during the experiment.

Diffuse reflectance UV-vis spectra in the range of 200–800 nm was recorded on an
UV-3600 Plus (Shimadzu, Kyoto, Japan) spectrophotometer with BaSO4 as reference.

3.3. Catalytic Performance Test

As for the catalytic activity, 10 mg of catalyst was dispersed in 100 mL of a 10-ppm
RhB solution with a stirring rate of 700 rpm at 40 ◦C. The suspensions were first mixed for
1 h at a certain reaction temperature 40 ◦C to reach an adsorption-desorption equilibrium
before H2O2 was added. Then, a 30 min Fenton-like reaction was activated by a dosage
of 240 ppm H2O2 with an initial pH surrounding unless otherwise specified. Then, 3 mL
of the liquid sample was taken from the reaction mixture at a given time and filtrated
through a 0.22 µm Nafion membrane for the analysis of the RhB concentration by a UV-Vis
spectrophotometer (UV-2600, Shimadzu, Kyoto, Japan) at an absorption wavelength of
554 nm. The RhB removal rate can be calculated by the following equation:

RhB removal rate (%) =
c0 − ct

co
× 100% (8)

where C0 is the initial concentration of RhB, and Ct is the concentration of RhB at time t.

3.4. The Homogeneous Experiment

After the catalytic performance test, the metal ion concentration of the catalyst leached
in the reaction solution was obtained by an atomic absorbance spectrometry (TAS-990F,
Beijing Purkinje, Beijing, China) instrument. The conditions for the homogeneous experi-
ment and the catalytic performance test were almost the same; the only difference is that
equivalent metal nitrate salts were used as the catalyst in the homogeneous experiment.

3.5. The Quenching Test

The conditions for the quenching test and the catalytic performance test were also
almost the same; the only difference is that an additional 50 mL of tert-butanol was added
at the beginning of the experiment for the quenching test.

4. Conclusions

In this work, a novel Fenton-like catalyst, Co–Cu LDH, was prepared under different
synthesis temperatures, and its best performance was achieved at a temperature of 65 ◦C.
The superior catalytic activity can be attributed to the catalyst’s structural defects, resulting
from Cu doping, and Co–O–Cu in MO6 surroundings enhanced the generation of Ov.
Moreover, the high density of Ov under a strong Co–Cu interaction could improve the
adsorption and dissociation of H2O2 as well as electron transfer to generate more ·OH,
giving rise to increased RhB removal. Furthermore, the investigation of reaction parameters
depicted the high catalytic activity of Co–Cut=65◦C, which showed the highest removal,
96.2% RhB removal, in the first 5 min, with an H2O2 dosage of 480 ppm. The results indicate
that the Co–Cu LDH catalyst is an attractive alternative organic pollutants treatment.
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