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Abstract: Transition metal (TM) single atomic catalysts (MSAC-N-C) derived from doped zeolite
imidazolate frameworks (ZIF-8) are considered attractive oxygen reduction reaction (ORR) catalysts
for fuel cells and metal-air batteries due to their advantages of high specific surface area, more active
catalytic sites, adjustable pore size, and coordination topology features. This review provides an
updated overview of the latest advances of MSAC-N-C catalysts derived from ZIF-8 precursors in ORR
electrocatalysis. Particularly, some key challenges, including coordination environments regulation
of catalysis center in MSAC-N-C, the active sites loading optimization and synergistic effects between
TM nanoclusters/nanoparticles and the single atoms on MSAC-N-C catalysis activity, as well as their
adaptability in various devices, are summarized for improving future development and application
of MSAC-N-C catalysts. In addition, this review puts forward future research directions, making it
play a better role in ORR catalysis for fuel cells and metal air batteries.

Keywords: oxygen reduction reaction; transition metal single atomic catalyst; zeolite imidazolate
framework (ZIF-8); catalytic performance

1. Introduction

With the ever-increasing issues of environmental pollution and shortage of fossil
energy, renewable energy generation and storage systems with high efficiency, cleanliness
and low cost are especially needed. Among all the new energy generation systems, fuel cells
(especially H2-O2 fuel cells) have gained much attention due to their obvious advantages
of high efficiency, low operating temperature, convenient operation, and no pollution [1–4].
On the other hand, for energy storage systems, metal–air batteries (such as lithium–air
batteries and zinc–air batteries) are becoming attractive owing to their extremely high
energy densities (their heoretical capacity is about three times that of the current commercial
lithium-ion batteries) [5–10]. Nonetheless, the development of both the fuel cells and metal–
air batteries are hurdled by their sluggish reaction in the cathodic oxygen reduction process.
Therefore, developing high-performance cathode catalysts and enhancing their oxygen
reduction reaction (ORR) ability are the major assignments for their promising industrial
application [11,12].

Among many developed state-of-the-art ORR catalysts, Pt-based catalysts have showed
excellent electrocatalytic activity [13,14]. However, due to their high price, instability and
CO poisoning constitution, they are far from meeting the requirements of large-scale appli-
cation [15–21]. At present, developing non-noble metal catalysts, such as transition metals
(TMs) and their corresponding oxides, sulfides, carbides and nitride, etc., with high ORR
activity to replace Pt-based catalysts is considered as a feasible solution [22–27]. Among
them, TM single atomic catalysts (MSAC) loaded on the nitrogen doped carbon (N-C) car-
riers derived from metal-organic frameworks (MOFs) exhibit amazing ORR activity and
stability [28,29]. In MSAC-N-C materials, strong metal-nitrogen coordination bonds prevent
the dissolution, conglomeration, and exfoliation of TM atoms, making the TM dispersed
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atomically in MSAC-N-C catalysts [30,31]. Therefore, the MSAC-N-C catalysts possess many
advantages including: (1) the type, size and proportion of the doped non-metallic elements
can be well controlled by adjusting the preparation procedures of the MOF precursors;
(2) the uniform porous structure of MOFs enables the carbon carriers to have a high specific
surface area, which provides more loading sites for single atoms; (3) the high surface energy
of single active atoms provides fast charge transfer, obtaining high catalytic activities.

Among the developed MOF precursors, zeolite imidazolate framework zinc salt (ZIF-8)
has unique advantages. The aromatic methylimidazole ligand in ZIF-8 is rich in nitrogen
(N/C molar ratio: 1/2), which can provide high density and uniform distribution of active
sites in N-doped porous carbon materials. In addition, ZIF-8 has a caged pore structure,
where the Zn-ions can be evaporated at high temperature above 900 ◦C. In that case, high
density M-Nx monatomic active sites in the MSAC-N-C catalysts can be obtained by one-
step thermal activation process [32]. Moreover, in the MSAC-N-C catalysts, the electron
rearrangement in d-band of a single TM atom promotes adsorption and desorption of
O2, achieving high catalytic efficiency [33]. Therefore, using the ZIF-8 as carbon carrier
precursor, more active TM atoms can be dispersed on the N-C carries to achieve high
catalytic performance [34–36]. However, in spite of their outstanding catalytic performance,
some challenges still need to be taken seriously: (i) It is generally believed that the thermo-
dynamically stable structure for single atomic catalysts is one metal atom surrounded by
four N atoms (M-N4) [26,37,38]. However, some researchers proposed that the stable M-N4
structure did not represent the highest catalytic activity [39,40]. Therefore, understanding
the influence mechanism of coordination environments of TM single atom active centers
and modulating the MSAC-N-C structure are the key to designing and preparing high
performance MSAC-N-C catalysts. (ii) Researchers have pursues high loading amounts of
TM atoms on the MSAC-N-C catalysts to achieving enhanced catalytic performance, but
too many single atoms too easily become agglomerated and form clusters, nanoparticles,
oxides, or carbides with poor activity at high temperature. Although great efforts have
been done achieve atomic dispersion of TMs on N-C matrix, the TM clusters or even
nanoparticles are still inevitable in practical operation. Some researchers have proposed
that the TM clusters or nanoparticles are also beneficial to catalysis [41–43]. Therefore,
optimizing the single atom loading amounts is the key for preparation of high performance
MSAC-N-C catalysts. (iii) Some technological obstacles for their practical applications in
fuel cells and metal air cells remain to be explored. There are still fewer works to evaluate
the application performances of the Pt-free MSAC-N-C catalysts in the devices, compare
with testing using rotation disk electrode (RDE) measurement systems. The advantages
and challenges of the MSAC-N-C derived from ZIF-8 in ORR are summarized in Figure 1.
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Considering this popular ORR catalyst and its recent important progress, herein, we
present an updated review on ZIF-8 precursor derived MSAC-N-C catalysts, based on
their most challenges, including the coordination environments of single atoms in the
ZIF-8 derived N-C matrix, advanced techniques for increasing the single atoms loading
amount in MSAC-N-C catalysts, and the applications of MSAC-N-C catalysts in devices.
Some perspectives regarding to the future research directions of MSAC-N-C catalysts are
also provided.

2. ZIF-8 Precursor
2.1. Structure of ZIF-8 Precursor

The chemical formula of ZIF-8 precursor is Zn[MelM]2 (MelM is 2-methylimidazole),
which consists of 2-methylimidazole and zinc atoms. As shown in Figure 2, each zinc
atom coordinates with four nitrogen atoms on the 2-methylimidazole ring to form a Zn-
N4 cluster. By connecting imidazole rings on 2-methylimidazole, the ZIF-8 becomes a
cage-like coordination compound with regular hexahedron crystals, and possesses some
excellent structural features in high specific surface area, adjustable pore size, and pore
functionalization [44,45]. During pyrolysis process, the evaporation of Zn can form N-
doped porous carbon. Moreover, the rich nitrogen in the ZIF-8 can work as catchers to
anchor the TM atoms during pyrolysis process, avoiding the agglomeration and exfoliation
of TM atoms effectively [46].
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2.2. Preparation of ZIF-8 Precursor

Good synthetic methods for ZIF-8 are of great significance to improve the quality of
MSAC-N-C catalysts and reduce their cost. Here, we aim to selectively introduce two com-
mon preparation methods of ZIF-8 precursor, i.e., solvothermal method and liquid phase
diffusion method. These two representative preparation methods have the advantages of
facile preparation and good quality of ZIF-8 production.

2.2.1. Solvothermal Method

The solvothermal preparation process is usually realized by dissolving the zinc nitrate
and organic imidazole ligand into a mixed solvent of N, N-dimethylformamide (DMF) and
N, N-dimethylacetamide (DEF), followed by heating the sealed solvothermal reaction vessel
containing the above solution to more than 90 ◦C for more than 24 h. After solvothermal
reaction, the obtained precipitation powder is ZIF-8. Hayashi et al. synthesized ZIF-8
precursor by dissolving zinc nitrate and 2-methylimidazole (with a molar ratio of 1:1) in
DMF solvent and reacting at 140 ◦C for 24 h [47]. The synthesized ZIF-8 showed excellent
thermal and chemical stability. The preparation procedure of the solvothermal method
is relatively simple, but it usually takes a long reaction time. Additionally, the solvent
molecules tend to block the pores of ZIF-8, making purification of ZIF-8 difficult.
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2.2.2. Liquid Phase Diffusion Method

The liquid phase diffusion method is more widely used than the solvothermal method
to prepare ZIF-8, because the liquid phase diffusion method can be carried out at room
temperature [48]. The most common procedure of liquid phase diffusion method is disso-
lution of zinc nitrate and organic ligands in methanol solvent. Then, by stirring, the ZIF-8
precipitation can be obtained.

Li et al. successfully obtained a well-designed nanosized ZIF-8 precursor with a
uniform crystal size of about 78.6 nm via combining ultrasonic dispersion treatment with
a room temperature solution reaction [45]. Through high temperature pyrolysis, the
hierarchical nanoporous N-doped carbon ZNC-1000 electrocatalyst was prepared, which
possessed large surface areas and led to sufficient exposed electrochemical active sites,
as well as moderate graphitization degree and suitable hierarchical pores distribution,
resulting in the sufficient interaction between O2 and the electrocatalyst surface.

Venna et al. reported the structural evolution of ZIF-8 in methanol solvent as a
function of time at room temperature and identified the different stages of ZIF-8 formation
(nucleation, crystallization, growth, and stationary periods) [49]. They hypothesized that
the observed semicrystalline-to-crystalline transformation may take place via solution- and
solid-mediated mechanisms, as suggested by the observed phase transformation evolution
and Avrami’s kinetics, respectively. ZIF-8 forms a complete crystalline phase before the
formation of long-range ordered crystals, which demonstrated that the substances involved
in the synthesis of ZIF-8 in methanol solution may form an intermediate structure and then
develop a growth structure through the solution-transport or solid-state (Avrami kinetic
support) transformation mechanism.

Bustamante et al. investigated the effect of the solvent on the synthesis process
and on the nanocrystal characteristics of the ZIF-8 [50]. A synthesis protocol at room
temperature employing a series of aliphatic alcohols, water, dimethylformamide and
acetone was employed. The results showed that the solvent modifies the evolution of the
reaction, altering the crystallization rates and nanocrystal sizes. The materials obtained in
methanol and N-octanol showed the highest crystallinity and crystallite size, which was
suitable solvent to modify the synthesis process and the nanocrystal characteristics of ZIF-8.
When synthesized in alcohol and acetone, these nanocrystals formed globular aggregates
with large sizes. In contrast, under the same synthesis conditions, when using water or
dimethylformamide, the ZIF-8 phase was not developed. In alcohols other than methanol,
the crystals developed pill-shaped morphologies with poorly defined facets.

3. The Coordination Environments of TM Single Atoms in MSAC-N-C

The carbon derived from ZIF-8 precursor contains a large amount of pyridine nitrogen
and micropores. The pyridine nitrogen can effectively anchor the TM atoms to form
catalytic active sites by TM-N coordination; while the porous structure can facilitate the
mass transfer and adsorption ability of O2, thus improving the current density and the
catalytic activity of MSAC-N-C catalysts [51]. Therefore, the MSAC-N-C catalysts usually
have better catalytic activity than the traditional bulk- or nano-catalysts [52]. It is generally
believed that the four-electron ORR reaction in an alkaline environment usually undergoes
the following five steps [53]:

i. O2(g) + *→ O2*
ii. O2* + H2O(l) + e− → OOH* + OH−

iii. OOH* + e− → O* + OH−

iv. O* + H2O(l) + e− → OH* + OH−

v. OH* + e− → OH− + *

(* denotes adsorption position).
Various coordination environments of TM atoms in the MSAC-N-C catalysts lead to dif-

ferent degrees of four-electron ORR reaction. Researchers usually analyze the coordination
environment of TM atoms in MSAC-N-C by combination with the characterizations of X-ray
Photoelectron Spectroscopy (XPS), X-ray Absorption Spectroscopy (XAS), and Mössbauer



Catalysts 2022, 12, 525 5 of 20

Spectrum, and calculate the ORR reaction activation energy by Density Functional Theory
(DFT) to further determine and optimize the coordination of TM atoms in the MSAC-N-C.
They found that tuning the coordination environments of TM atoms could effectively
enhance the catalytic activity of the MSAC-N-C.

3.1. Effect of MSAC-N4 Spin States

In the MSAC-N4-C structure, there are two kinds of coordination structures according
to different spin state of the active center atoms. Xiao et al. proposed that the Fe in the
Fe-N-C catalyst derived from Fe-ZIF-8 precursor exhibited two coordination environments
with nitrogen, one is D1 coordination structure with low-spin Fe2+-N4, another is D2
coordination structure with medium-spin Fe2+-N4 or high-spin Ox-Fe3+-N4 [54]. The in situ
X-ray absorption near edge structure (XANES) results illustrated that the D2 coordination
structure underwent an Fe3+/Fe2+ transition during ORR process, and the active site
nonplanar HO-*Fe(2+)-N4 formed spontaneously and exhibited an ultrahigh turnover
frequency of 1.71 e s−1 sites−1, thus achieving higher ORR performance. Xu et al. prepared
the Fe-N-C catalyst from Fe-doped ZIF-8 precursor using a microwave-assistant method
(M15-FeNC-NH3) [55]. They also proved that there are two kinds of Fe-N4 active sites in
the M15-FeNC-NH3 by Mössbauer spectrum (Figure 3a). By calculating the free energy
evolution of ORR, they found that the activation energies of two kinds of Fe-N4 coordination
(D1 and D2 shown in Figure 3a) for ORR are different. As shown in Figure 3b, the rate-
limiting step energy barrier for D1 (0.29 eV) is much lower than that of D2 (0.43 eV),
indicating that the Fe-N4 coordinated as D1 type is more beneficial for ORR.
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with D1 and D2 sites, H: green, C: grey, O: red, N: blue, Fe: purple; (b) free energy diagrams for
the ORR on the Fe-N4 D1 and D2 sites, Reproduced with permission from Ref. [55], Elsevier: 2021;
(c) atomic structures of Co-N2+2 and Co-N4 active centers of Co-N-C catalyst; (d) the free energy
evolution diagram of 4e− ORR pathway was calculated at the limiting electrode potential U = 0.73 V
and the limiting electrode potential U = 0.67 V. (e) atomic structure of the initial (left), transition
(middle) and final (right) states of the dissociation reaction at the Co-N2+2 (where the gray, blue,
yellow, red and white spheres represent C, N, Co, O and H atoms, respectively), Reproduced with
permission from Ref. [56], Royal Society of Chemistry: 2019.
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Similar to Fe-N-C, the Co-N-C catalyst derived from Co-ZIF-8 precursor also has two
kinds of Co-N coordination structures. He et al. prepared the surfactants modified Co-N-C
catalysts, and found that both Co-N4 and Co-N2+2 coordination structures existed in the Co-
N-C [56]. The DFT results (Figure 3c–e) showed that both Co-N4 and Co-N2+2 could trigger
the ORR reaction by binding O2. However, during the rate limiting *OOH dissociation step,
the reaction at the Co-N2+2 site has much lower activation energy (0.69 eV) than that at
the Co-N4 site (1.11 eV). Therefore, the Co-N2+2 could achieve the ORR with 4e− electron
transfer, but the Co-N4 could not be due to the high activation energy. This research
also demonstrates that the Co-N-C catalyst derived from ZIF-8 possesses more Co-N2+2
active sites, which can improve the selectivity and activity of ORR with 4e− transfer in
both alkaline and acidic electrolytes. The authors further optimized the conditions for the
formation of active Co-N2+2 sites, and found that the critical transition occurs at 700 ◦C and
becomes optimal at 900 ◦C [57].

3.2. Unsaturated MSAC-Nx Coordination

Recently, many studies have confirmed that the unsaturated MSAC-Nx (x < 4) coordi-
nation environment in the MSAC-N-C can lower the O2 adsorption energy barrier, which
will facilitate the ORR catalytic activity. Fan et al. investigated the effect of coordination
of Pt-N on the ORR performance for Pt-Nx-C (1 ≤ x ≤ 4) catalyst [39]. By controlling the
carbonization temperature of the Pt-ZIF-8 precursor, they obtained Pt-Nx-C with various N
coordination number. The experiment and DFT calculation results showed that the catalytic
order for the Pt-Nx-C is Pt-N1-C > Pt-N2-C > Pt-N3-C > Pt-N4-C. This catalytic activity
order mainly depends on the ability of absorption between Pt and *OOH.

Moreover, owing to low overpotentials of Cu-N catalytic centers, Cu-N-C catalysts
have also attracted much attention for ORR [26,40]. Ma et al. innovatively proposed that
decreasing the N coordination number of Cu active center (Cu-N3) could enhance the ORR
catalytic activity [40]. They developed an ionic exchange strategy to fabricate the unsatu-
rated Cu-N3 centers. The DFT calculation result revealed that the O2 adsorption energy
barrier for CuN3 (0.17 eV) was much lower than that of CuN4 (0.87 eV), demonstrating the
high ORR activity for the unsaturated Cu-N3 centers.

3.3. Regulation of Electronic Density

In addition to reducing the M-N binding number, the researchers also found that the
ORR catalytic activity of MSAC-N-C can be further improved by regulating the electronic
density of the central metal atoms. Controlling the N-C structure to modify the MSAC-
N-C is one of the good examples. Ha et al. proved that the pyridinic N is beneficial to
catalytic performance of the Co-N-C catalyst, and the Co-pyridinic N-C structure can
be obtained by introducing lysozyme during the synthesis process [58]. The optimized
Co-pyridinic N-C exhibited an enhanced ORR catalysis activity with positive E1/2 of
0.87 V and 0.83 V in alkaline and acidic media, respectively, surpassing regular Co-N-C
catalysts. Im et al. tuned the Co-ZIF-8 precursor by encapsulating melamine [59]. They
found that the melamine modification could enhanced oxophilicity of the Co-N4 active site
toward the axial coordination environment, achieving higher catalytic activity and stability
compared to the other transition metals. Chen et al. demonstrated the electronic density
of Co active sites in the Co-N-C derived by Co-ZIF-8 can be tailored through regulating
atomic coordination environments [60]. A sulfur and phosphorus co-modified Co-N-C
(Co1-N3PS/HC) catalyst was designed and synthesized. The synergistic coordination of
N, P, and S to atomically dispersed Co active centers played a crucial role of optimized
electronic density of Co-N-C catalyst and remarkable enhanced its ORR performance.

In addition to Co-N-C system, Pt-N-C catalyst can also be modified by adjusting its
electronic structure. Song et al. prepared Pt-N-C catalyst using atomic layer deposition of
Pt atoms on the ZIF-8 derived N-C framework [61]. They found that the electronic structure
of Pt-N-C could be adjusted by adsorption of hydroxyl and oxygen, which greatly lowered
free energy change for the rate-limiting step and enhanced the ORR activity.
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4. Strategies to Increase the Active TMs Loading

Pursuing more active TM single atoms loading amount is the trend to improve the
catalytic performance of MSAC-N-C catalyst. However, owing to the high energy, the single
atoms are easy to agglomerate during high-temperature pyrolysis process to form fewer
active species, such as metal clusters, nanoparticles, oxides, or carbides. Recently, on the
one hand, researchers developed advanced synthesis technologies for constructing MSAC-
N-C with more active single atom loading; On the other hand, the beneficial effects of metal
clusters and nanoparticles on the ORR catalysis for MSAC-N-C catalysts are constantly
being explored.

4.1. Advanced Techniques for Preparing MSAC-N-C with High MSAC Loading
4.1.1. Bimetal Node Doping Strategy

Zinc-based bimetallic ZIF-8 has been most widely used in bimetal node doping strat-
egy [32,62]. During the preparation process, TM ions with catalytic activity (such as Co2+,
Ni2+, Fe2+, etc.) are added into the solution together with Zn2+. In that case, Zn2+ and
TM ions can coordinate with 2-methylimidazole and evenly distribute in the ZIF-8 matrix
by the anchoring effect of nitrogen to form bimetallic dispersion. In the following heat
treatment process, the zinc atoms are vaporized due to their low boiling point (~906 ◦C),
leaving a lot of vacancies on the MSAC-N-C. Such vacancies further separate the TM atoms,
thus avoiding the agglomeration of TM single atoms on the MSAC-N-C.

Wang et al. achieved stable cobalt (Co) single atoms dispersed Co-N-C by this bimetal
node doping strategy [63]. As shown in Figure 4a, the authors firstly designed a (Zn, Co)-
ZIF-8 with uniform distribution of zinc and Co atoms on ZIF-8 matrix, and then removed
the Zn atoms by heating the compound up to 1000 ◦C. The obtained Co-N-C retained
the dodecahedron morphology of its ZIF-8 precursor (Figure 4b,c) with a loading amount
of Co more than 4 wt%. By detection of EDX, they found that the Co atoms distributed
homogeneously throughout the structure of Co-N-C catalyst (Figure 4d). The HAADF-
STEM and SAED techniques further observed directly that there were no cobalt crystals
in the Co-N-C (Figure 4e–g), indicating that the Co atoms remained atomic dispersion
after pyrolysis.

4.1.2. Space Constraint Strategy

In this method, the micropores on the surface of ZIF-8 are used to seize the TM atoms
and prevent them migration and agglomeration. The key to this method is to select an
appropriate TM precursor with the molecular size smaller than the micropores of ZIF-8,
but larger than half of the diameter of micropores. This ensures that only one TM precursor
is embedded in each micropore of ZIF-8 [54]. Chen et al. prepared Fe-ISAS/C-N catalysts
with a Fe loading amount up to 2.16 wt% through this space constraint strategy [53]. The
experimental schematic details are shown in Figure 5a. They used iron acetate [Fe(acac)3]
as the TM precursor, which can be captured in a ZIF-8 pore (pore diameter (dp) of ZIF-8
is 3.4Å) by the size effect. After pyrolysis, the Fe-ISAS/C-N catalyst was obtained. The
XANES and EXAFS results confirmed that separated Fe atoms were anchored in C-N matrix
by Fe-N4 coordination (Figure 5b–f). The authors also calculated the free energy of the
four-electron ORR reaction by DFT. The calculation results showed that the reactivity of
ORR was mainly restricted by the step of *OH accepted electrons to form OH−. Due to
easier transfer of electrons from Fe single atom to the adsorbed *OH, the Fe-ISAS/C-N
exhibited much lower over-potential of 0.65 V than that of the Fe cluster catalyst (1.76 V).
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scanning transmission (HAADF-STEM) and (g) selected area electron diffraction (SAED) images of
Co-N-C sample. Reproduced with permission from Ref. [63], John Wiley & Sons Ltd.: 2018.
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Figure 5. Space Constraint Strategy. (a) Schematic diagram of Fe-ISAS/C-N preparation by space con-
straint strategy; (b) X-ray absorption near edge structure (XANES) spectra (yellow region highlights
near side energy absorption); (c) corresponding X-ray absorption fine structure (EXAFS) curves of Fe-
ISAS/C-N; and Fe K-edge Fourier transform (FT) and Wavelet transform (WT) for (d) Fe-ISAS/C-N,
(e) Fe foils, and (f) Fe2O3 samples. Reproduced with permission from Ref. [53], John Wiley & Sons
Ltd.: 2017.

4.1.3. Surfactant Coating Strategy

Although great advances have been made in synthesis of MSAC-N-C catalysts, further
enhancement of the density of active single atoms is still a challenge [64]. Increasing the
content of TM during the preparation process directly will lead to the serious agglomeration
of TM. Recently, He et al. reported a new method to increase the density of Co single atoms
by introducing surfactants [56]. They found that the surfactants can not only contribute to
single atomic dispersion, but also prevent the collapse of ZIF-8 porous structure during the
pyrolysis process. Among many comparative surfactants, the poloxham (F127) showed the
best modification effect. The modified Co-N-C@F127 exhibited an excellent ORR activity
even in acidic electrolyte, which should be attributed to the increased single Co density
(from 0.9 at.% for the surfactant-free Co-N-C to 1.0 at.% for the Co-N-C@F127).
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4.1.4. Other Strategies for Synthesis of MSAC-N-C

Except the common strategies mentioned above, although some other strategies for
preparing single atomic catalysts may be obviously limited by the reaction of substances
and condition, these innovative findings provided new pathways for the integrated en-
gineering of geometric or electronic structures of single-atom materials to improve their
catalytic performance.

Jiang et al. prepared atomically dispersed Fe−N4 sites anchored on three-dimensional
(3D) hierarchically porous carbon by precisely atomic-level control, which possessed well
defined single-atom sites (SAs), adjustable mass loadings and enhanced active-site acces-
sibility [65]. With 0.20 wt.% of nonprecious metal, the Fe SAs-N/C-20 catalyst exhibited
superior ORR performance with a half-wave potential (E1/2) of 0.915 V (vs RHE) in 0.1 M
KOH. Density functional theory (DFT) results illustrated that hierarchical carbon pores
successfully optimize the electronic structure of Fe−N4 by changing the local coordination
of pyridine-like N, which enables the selective C−N bond cleavage (SBC) adjacent to Fe
centers to form edge-hosted Fe−N4 moieties, and therefore lowers the overall ORR barriers
to acquire excellent activity and long-term durability.

Qu et al. conducted a gas-migration/NH3-mediated strategy that transformed bulk
transition metals into MSAC-N-C was developed and validated, where ammonia molecules
served as a medium to haul out copper atoms and anchor them to the volatilized zinc nodes
of the ZIF-8 at high temperature [66]. The resultant Cu-SAs/N-C catalyst could endow
superior ORR performance and exceptional electrochemical and thermal stability, and the
generality of this approach and critical role of the ammonia molecules were also confirmed
to provide valuable guidance for the direct preparation of MSAC-N-C from non-precious
bulk metals.

Shang et al. developed a mSiO2-protected calcination strategy for the synthesis of
hierarchically porous Co,N-CNF electrocatalysts from Co,N-ZIF precursors [67]. This
protection strategy yielded high specific surface area Co,N-CNF products with graphitic
carbon character, and further allowed good control over the specific surface area and
availability of catalytic active sites through variation of the pyrolysis temperature. The
Co,N-CNF products possessed outstanding ORR catalytic activity, superior to Pt/C at the
same loading in alkaline media and comparable to Pt/C in acidic media. Considering
its low-cost, very positive ORR onset and half-wave potential, excellent durability, and
absolute immunity to methanol crossover, Co,N-CNF is a very promising candidate to
replace Pt/C in the practical fuel cell applications.

Zhou et al. developed a negative pressure pyrolysis strategy that allowed to con-
trollably prepare series of single metal sites supported on three-dimensional graphene
frameworks with high accessibility and stability, which greatly increased the utilization
and catalytic efficiency of the supported metal atoms [68]. The findings not only opened up
a new way of preparing highly accessible single site catalysts, but also provided an under-
standing of defect engineering of single metal sites to enhance their catalytic performance.

Liu et al. presented a direct ZIF-8 thermal melting strategy to synthesize 2D structured
single iron atoms anchored on porous graphene nanosheets [69]. The s-Fe/ZIF-8 was
tightly embedded in GO. During the high-temperature treatment, it suffered from thermal
melting on the graphene sheets and then pyrolysis, resulting in porous ultrathin carbon
layer on graphene sheets. More importantly, abundant Fe-Nx active sites were anchored
in the ultrathin carbon layer, making the single atom Fe active sites on the surface and
realizing their fullest utilization. As a result, the as-prepared Fe-N/GNs exhibited efficient
and stable ORR performances in both alkaline and acidic mediums.

4.2. Beneficial Effects of Metal Clusters and Nanoparticles on MSAC-N-C Activity

It is generally believed that single atomic catalysts possess much higher catalysis
efficiency than that of the metal clusters and nanoparticles [70]. However, during the
practice fabrication process of the MSAC-N-C catalysts, it is difficult to avoid the formation
of metal clusters or nanoparticles due to the high activity of single TM atoms. Fortunately,
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increasing numbers of researchers have proved that the synergistic effect of metal nanoclus-
ters or nanoparticles and single atom can promote the ORR catalytic activity of MSAC-N-C
catalysts [43,71,72].

4.2.1. Synergistic Effect of Metal Clusters and Single Atoms

Although the catalytic performance of metal clusters themselves has been proved to
not be as robust as the single atomic catalysts, their existence in the MSAC-N-C system is
beneficial to improve the activity of single atoms. Ao et al. designed a Fe-N-C catalyst
with both Fe single atoms and Fe nanoclusters embedded in the N-C matrix (FeAC@FeSA-
N-C) [71]. They found that the FeAC@FeSA-N-C catalyst had better ORR activity (with
half-wave potential of 0.912 V vs. RHE) than that of FeSA-N-C (with half-wave potential of
0.844 V vs. RHE). The DFT calculation proved that extra Fe atom/cluster (Fe1 and Fe13)
could enhance the activity of Fe-N4 active sites. Wang et al. also found the synergistic
phenomenon of Fe single atoms and Fe nanoclusters for ORR catalysis, and proposed the
modification mechanism that Fe clusters can break the symmetric electronic structure of
Fe-N4 [73]. Moreover, the 3d orbitals of Fe single atomic centers could be optimized by
introducing Fe clusters and other atoms (such as sulfur), leading to acceleration of the
rate limiting step of ORR by breaking the O-O bond in OOH* (Figure 6a,b). Wang et al.
achieved a Mo-based Mo-N-C2 catalyst by using a cage-controlled pyrolysis route [74].
In the Mo-N-C2 catalyst, the Mo has the size ranging from isolated single Mo atom to
subnanometer clusters (less than 1 nm). They also investigated the ORR electrocatalytic
behavior of Mo with the size from Å to nanometer scale by carefully control of dispersion
of precursors. The EXAFS analysis combined with theoretical calculation demonstrated
that the local coordination environment of Mo in Mo-N-C2 catalyst could promote both the
ORR and OER performances.
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4.2.2. Synergistic Effect of Nanoparticles and Single Atoms

The phenomenon of strong interaction with single atomic sites and promoting their
catalytic activity is also exhibited for the nanoparticles. Wang et al. prepared Co single
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atoms in the form of Co-N4 and Co nanoparticles co-anchored on N-C framework (Co-
SAs/SNPs@NC) [75]. Their DFT calculation results reveal that Co nanoparticles can
increase the valence state of the Co single atoms in Co-SAs/SNPs@NC and moderate the
adsorption free energy of ORR intermediates (Figure 6c,d).

Additionally, by heating the Fe-ZIF-8 precursor in NH3 atmosphere, Liu et al. got
Fe2N nanoparticles decorated Fe-N-C catalyst (Fe-N-C/HPC-NH3) [43]. They analyzed
the adsorption free energies of FeN4-Fe2N, FeN4 and Fe2N species, the results showed
that FeN4-Fe2N could weaken the adsorption of ORR intermediates and reduce the energy
barrier of the rate-limiting step, hence improving the ORR activity.

5. ORR Performances of MSAC-N-C Catalysts Applied in Devices

The MSAC-N-C catalysts derived from M-ZIF-8 precursors usually exhibit better cat-
alytic activity than that of the traditional bulk- or nano-catalysts, due to there are a large
amount of pyridine nitrogen and micropores in the structure of MSAC-N-C catalysts. The
pyridine nitrogen is beneficial for anchoring the TM atoms on the N-C matrix by TM-N
coordination, while the porous structure can facilitate the mass transfer and adsorption
ability of O2, thus improving the current density of MSAC-N-C catalysts [51,52]. So far,
many kinds of MSAC-N-C catalysts derived from M-ZIF-8 precursors have been reported
to boost the ORR kinetics. Some typical MSAC-N-C catalysts with single and double TM
atoms are summarized in Figure 7. However, the MSAC-N-C catalysts used in devices,
such as fuel cells or metal air batteries, are not much enough. This section focusses on
the ORR performances of MSAC-N-C catalysts applied as the air cathode for fuel cells and
zinc-air batteries.
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Figure 7. The comparison of ORR performances of MSAC-N-C catalysts derived from ZIF-8 (solid
points express the performance in alkaline electrolyte, hollow points express the performance in acidic
electrolyte). (Fe-N/GNs [69], Mn-N-C [76], Cr-N-C [77], W-N-C [78], Mo SACs/N-C [74], Cu ISAS/N-
C [79], Fe2-N-C [42], Cu@Fe-N-C [80], (Fe,Co)/N-C [81], FeCo-ISAs/CN [82], Fe/Ni-Nx/OC [83],
Fe,Mn-N/C [84]).

5.1. MSAC-N-C Catalysts Applied for Fuel Cells

Among many MSAC-N-C candidates, the Fe-N-C catalysts with Fe as the active cataly-
sis center have been most studied as the air cathode for fuel cells due to their durability
and high ORR activity [85,86]. For example, Xu et al. prepared the Fe-N-C catalyst from
ferrocene-ZIF-8 precursor and applied it in a H2-O2 fuel cell as cathode ORR catalyst, with
Pt/C as anode catalyst [87]. The maximum power density of 601 mW cm−2 and a current
density of 380 mA cm−2 at 0.7 V were obtained. Qiao et al. modified the Fe-N-C catalysts
by carbonizing the Fe-doped ZIF-8 single crystals, and finally obtained an FeN4-doped
hierarchical ordered porous carbon (FeN4/HOPC) skeleton [88]. In proton-exchange mem-
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brane H2-O2 fuel cell, the optimal catalyst FeN4/HOPC-c-1000 reached 420 mW cm−2 at a
cell voltage of 0.57 V, and a current density of 690 mA cm−2 at 0.6 V. Deng et al. prepared
a hollow nanopolyhedron catalyst (C-FeHZ8@g-C3N4) using the iron acetyl acetone and
g-C3N4 doped ZIF-8 as raw materials [89]. This C-FeHZ8@g-C3N4 catalyst showed superior
ORR activity in both acidic (E1/2 = 0.78 V) and alkaline (E1/2 = 0.845 V) electrolyte solutions.
When working as the cathode catalyst in the H2-O2 fuel cell, the maximum power density
of the fuel cell could reach to 628 mW cm−2 [89].

Despite the Fe-N-C catalysts possess encouraging ORR activity for fuel cells, the
Fenton reaction of Fe-based catalysts are still hard to avoid [76,90]. The Fenton reactions
involves generation of H2O2 via the two-electron ORR and generation of radical oxygen
species [91]. Both of them could attack the FeN4 active sites, thereby accelerating perfor-
mance degradation [57]. Therefore, other TMs, such as Co, Ni and Mn have also been
studied to work as catalyzing active center atoms in MSAC-N-C. He et al. prepared Co-N-C
catalyst from Co-ZIF-8 precursor, and tested in a H2-air fuel cell [57]. The Co-N-C cathode
catalyst displayed a peak power density of 390 mW cm−2. After 15 000 cycles accelerated
stress test, the voltage drop at a current density of 0.8 mA cm−2 was only 10 mV, indicating
good durability. Chen et al. synthesized a series of Co-N-C catalysts with different CoN4
densities [36]. The power density showed a slow linear increase in the low concentration
region and an accelerated increase in the high concentration region of CoN4 active sites,
demonstrating the crucial role of the high active site density to the high power density
of Co-N-C. When 1.6%CoNC@ArNH3 was measured under H2/air PEMFC condition, it
displayed considerable peak power densities of 826 mW cm−2, and also exhibited good sta-
bility at the constant voltage of 0.5 V. Li et al. prepared Mn-N-C catalyst with the atomically
dispersed Mn-N4 moieties embedded in the carbon surface-exposed basal planes, which
exhibited an E1/2 of 0.80 V vs. RHE, along with good stability in acidic media [76]. Then,
the catalyst was further studied as a cathode in membrane electrode assemblies (MEAs) for
H2-O2 fuel cells, which was capable of generating current densities of 0.35 and 2.0 A cm−2

at 0.6 and 0.2V, respectively, at a reasonable 1.0 bar partial pressure. The corresponding
power density was up to 0.46 W cm−2, demonstrating an alternative concept to develop
robust and highly active PGM-free catalysts as replacements for Fe catalysts.

In order to directly compare the performances of various MSAC-N-C catalysts for fuel
cell, some typical MSAC-N-C catalysts performances are summarized in Table 1.

Table 1. The performance of fuel cells with recently reported MSAC-N-C catalysts derived from ZIF-8.

Samples Types of Fuel
Cells

Catalyst Loading
Density [mg cm−2]

Peak Power Density
(mW cm−2) Durability (h) Ref.

Fe-N-C H2-O2 fuel cell 0.5 601 12 [87]
FeN4/HOPC H2-O2 fuel cell - 420 100 [88]

C-FeHZ8@g-C3N4 H2/O2 PEMFC 4 628 8 [89]
Co-N-C@CF127 H2-O2 fuel cell 4.0 870 100 [56]

Co-N-C H2/air cell 4.0 390 27 [57]
CoNC-ArNH3 H2/O2 PEMFC 3 826 20 [36]

20Mn-N-C H2/O2 fuel cell 4.0 460 - [76]
Z8@DA-FIP-950-C H2/O2 PEMFC 3 454 25 [85]

(Fe,Co)/N-C H2/O2 fuel cell ~0.77 505 100 [81]
Fe/Ni-Nx/OC H2/O2 PEMFC 1.0 580 - [83]

5.2. MSAC-N-C Catalysts Applied for Zn-Air Batteries

With unique geometric and electronic structures, MSAC-N-C can effectively catalyze
the sluggish ORR in metal-air batteries, which help to finish a rapid conversion from
chemical energy to electricity. The performance of Zn-air batteries with ZIF-8 derived
MSAC-N-C catalysts applied as the air cathode are introduced and compared as follows.

By coating a surfactant of F127 on the Co-N-C, He et al. increased the active center
density of Co atoms, thus achieving better electrocatalytic performance [56]. The Co-N-
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C@F127 catalyst had a half-wave potential (E1/2) of 0.84 V in the acidic electrolyte (compared
to reversible hydrogen electrode (RHE)), and exhibited excellent stability in corrosive
acidic media. It also demonstrated high initial performance with a power density of
0.826 W cm−2 along with encouraging durability in Zn-air batteries. A molecular-confined
strategy was developed for the synthesis of sub-nano Fe/N/C catalyst pyrolyzed from
the [Fe(CN)6]3−@ZIF-8 precursor, through which the individual [Fe(CN)6]3− ion could be
encapsulated into ZIF-8 crystal [92]. The synthesized sub-nano Fe/N/C-20-900 with high
BET surface area, appropriate graphitization degree and abundant active sites, exhibited
good ORR activity, excellent long-term stability and superb tolerance to methanol. When
utilized in Zn-air batteries as the cathode, the sub-nano Fe/N/C-20-900 showed a high
open circuit voltage (1.34 V) and high peak power density (22.2 mW cm−2), as well as
excellent cycling stability, showing a good application prospect of the sub-nano Fe/N/C-
20-900 as the air cathode. Chen et al. fabricated a catalyst comprised of single iron
atomic sites supported on a nitrogen, phosphorus and sulfur co-doped hollow carbon
polyhedron from a metal-organic framework@polymer composite, which showed promise
for substitution of expensive platinum to drive the cathodic oxygen reduction reaction in
zinc-air batteries [93]. The maximum power density of Fe-SAs/NPS-HC-based battery
achieved as high as 195.0 mW cm−2 with a high current density of 375 mA cm−2. Both
power density and current density of Fe-SAs/NPS-HC-based battery outperformed that of
Pt/C-based battery (177.7 mW cm−2, 283 mA cm−2). Yang et al. reported a copper centered
Cu-ISAS/C-N catalyst with an E1/2 of 0.92 V in the alkaline electrolyte [79], employed
into a primary Zn air battery. The Zn air battery with Cu ISAS/NC catalyst displayed
high performance with the maximum power density of up to 280 mW cm−2, superior to
Pt/C-based Zn-air battery (200 mW cm−2). At the discharge of 50 mA cm−2, the specific
capacity of the Zn-air battery with Cu ISAS/NC catalyst as air-cathode was estimated to be
~736 mAh g−1. More importantly, the Cu ISAS/NC-based battery could robustly serve over
45 h with only a negligible drop of discharge voltage, indicating the excellent stability of the
Cu ISAS/NC catalyst in practical Zn-air device. Jin et al. annealed and subsequently mixed
ZIF-8 with melamine and transition metal salt to finally synthesize Cu-atoms modified N-
doped carbon (NC) catalysts, which exhibited excellent oxygen reduction reaction activity
and kinetic performance in alkaline solution [94]. The constructed rechargeable Zn-air
battery with Cu-NC and benchmark Pt/C catalyst supported on carbon fiber paper as
the cathode and anode, respectively, exhibited high power density (104.5 mW cm−2) at
0.65 V and super good long-term stability with remaining voltaic efficiency of 56% at
a charge/discharge current density of 5 mA cm−2 after running 250 cycles (ca. 42 h).
Wang et al. achieved a Mo-based Mo-N-C2 catalyst by using a cage-controlled pyrolysis
route [74]. In the Mo-N-C2 catalyst, the Mo has the size ranging from isolated single
Mo atom to subnanometer clusters (less than 1 nm). The EXAFS analysis combined with
theoretical calculation demonstrated that the local coordination environment of Mo in
Mo-N-C2 catalyst could promote both the ORR and OER performance. When the Mo
SACs/N-C was applied as the air electrode for a ZAB assembled, its discharging voltages
over a large range of current densities from 10 to 100 mA cm−2 were similar to those of the
Pt/C-RuO2 benchmark, and it delivered a high power density of 78 mW cm−2, approaching
70% of that for Pt/C-RuO2 (112 mW cm−2). Wang et al. successfully synthesized a p-block
antimony single-atom catalyst (Sb SAC) with the Sb-N4 configuration for efficient catalysis
of the oxygen reduction reaction (ORR) [95]. The obtained Sb SAC exhibited superior ORR
activity with a half-wave potential of 0.86 V and excellent stability, which outperformed
most transition-metal (TM, d-block) based SACs and commercial Pt/C. When Sb SAC was
employed as the air cathode catalyst to assemble the Zn–air battery, the Sb SAC presented an
excellent power density of 184.6 mW cm−2 and a high specific capacity (803.5 mAh g−1) in
Zn–air battery, achieving about approximately 98.0% utilization of Zn, which outperformed
that of commercial Pt/C (96.9% utilization).

The MSAC-N-C catalysts with diatomic catalytic centers are considered to further
enhance the ORR activity by the synergistic effect of different TMs. According to the
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d-band electron model, the molecular interaction between the adsorbents and metal surface
obviously relates to the d-band center shift [96]. By introducing heteronuclear TM atoms
with different d-band configurations, the electronic structure of the catalyst can be adjusted
easily. Among variety of diatomic catalysts, iron-based catalysts with iron and another
TM element as co-active centers have attracted the most attention due to the high catalytic
activity of Fe-based MSAC-N-C catalysts [97]. Dual-metal-site MSAC-N-C have also been
fabricated as the cathode catalysts of fuel cells, where a synergistic effect of double metal
sites can lead to excellent catalytic activity and stability.

Gong et al. designed an Fe,Mn-N/C catalyst with Fe and Mn as the diatomic catalytic
centers [84]. Their XANES and DFT calculation results demonstrated that the introduction
of Mn ions can adjust the electronic structure of Fe ions in the active center of Fe-Nx, and the
synergistic interaction between Fe and Mn ions could further reduce the oxygen reduction
energy barrier in the ORR process. The catalyst coated carbon paper severed as air-cathode
and polished Zn-foil as anode in a home-made Zn-air battery, which showed an open-circuit
voltage of 1.45 V and maximal power density of 140 mW cm−2. Zhu et al. innovatively
used the template method combined with ion impregnation method to anchor the single
Fe and Ni atoms onto the carbon carriers with highly ordered macropores [83]. The Fe and
Ni atoms are coordinated in the form of Fe-N4 and Ni-N4, respectively, in the prepared
Fe/Ni-Nx/OC catalyst. When used in zinc-air batteries, the Fe/Ni-Nx/OC catalyst could
exhibit excellent catalytic activity and stability. The Zn air battery with Fe/Ni-Nx/OC-
based air cathode could achieve a high open-circuit voltage of 1.525 V and a peak power
density of 148 mW cm−2 at 210 mA cm−2. Under a high current density of 50 mA cm−2,
the Fe/Ni-Nx/OC-based Zn air battery could generate a specific capacity of 712 mAh g−1.
An insignificant voltage loss from 0.98 to 1.07 V after 300 successive charge/discharge
cycles under a current density of 20 mA cm−2 demonstrated a superior cycle performance
of Fe/Ni-Nx/OC-based cathode. By introducing Fe2+ and Cu2+ in the synthesis process
of ZIF-8, Wang et al. prepared a Cu@Fe-N-C diatomic catalyst. The obtained Cu@Fe-N-C
with many advantages of bimetallic active centers, large specific surface area, high nitrogen
doping level and good electrical conductivity, exhibited better ORR performance than that
of the Pt/C catalyst in alkaline electrolyte, and similar performance in acidic medium [79]. A
home-made zinc air battery was constructed using the Cu@Fe-N-C electrocatalyst dispersed
on the hydro-phobic carbon paper as the air cathode. The Cu@Fe-N-C based zinc air battery
had an open-circuit voltage of 1.48 V, and assembled from Cu@Fe-N-C owned a peak power
density of 92 mW cm−2. When being galvanostatically discharged at a current density of 2
and 20 mA cm−2 for 50,000 s, only a small activity loss was observed, which showed that
the Cu@Fe-N-C based zinc air batteries were also durable.

In order to directly compare the performance of Zn-air batteries with recently reported
MSAC-N-C catalysts derived from M-ZIF-8 precursors, some typical MSAC-N-C catalysts
are summarized in Table 2.

Table 2. The performance of Zn-air batteries with recently reported MSAC-N-C catalysts derived
from ZIF-8.

Samples Catalyst Loading
Density [mg cm−2]

Peak Power Density
(mW cm−2) Durability (h) Ref.

Co-N-C@CF127 4 826 100 [56]
Fe/N/C-20-900 0.5 22.2 10 [92]

Fe-SAs/NPS-HC 0.8 195 55.56 [93]
Cu-ISAS/C-N 1 280 45 [79]

Cu-NC 0.21 104.5 ~42 [94]
Mo SACs/N-C - 78 120 [74]

Sb SAC - 184.6 - [95]
Fe, Mn-N/C-900 1.5 140 6.4 [84]

FeNi0.25-NC 0.255 180 8 [86]
Fe/Ni-Nx/OC 1 148 more than 300 [83]

Cu@Fe-N-C 1 92 ~14 [80]
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6. Conclusions and Prospects
6.1. Conclusions

This review focuses the main challenges of ZIF-8 derived MSAC-N-C catalysts, and
provides an overview of their latest development. In particular, the coordination envi-
ronments of TM single atoms are very important for the catalytic activity of MSAC-N-C
catalysts. Although MSAC-N4 coordination is the most stable in thermodynamics, research
is increasingly proving that the asymmetric coordination environments are conducive to
reducing the reaction activation energy barrier of the rate-limiting step of ORR. In addition,
although it is generally believed that single atomic catalysts possess much higher catalysis
efficiency than that of the metal clusters and nanoparticles, the synergistic effect of metal
nanoclusters or nanoparticles and single atom can significantly promote the ORR catalytic
activity of MSAC-N-C catalysts. This discovery greatly expands the loadable density of
active TM atoms. Furthermore, some typical advanced MSAC-N-C catalysts tested in the
fuel cells and zinc-air batteries are comparatively summarized, allowing us to understand
intuitively the feasibility of MSAC-N-C catalysts in the future electrochemical conversion
and storage devices.

6.2. Prospects

Although researchers have achieved significant progress regarding the MSAC-N-C
catalysts derived from ZIF-8, from the practical view, some challenges still need to be
taken seriously. (i) The coordination environment has a great influence on the catalytic
performance of TM active sites. Therefore, the evolution mechanism from the M-ZIF-8
precursors with ligands and additives to the MSAC-N-C catalysts is worthy of fundamental
investigation. More relative information such as molecular structure decomposition and
chemical bonding formation should be made available in future studies. (ii) By optimizing
the coordination environments and synergistic effect of TMs loading, newer MSAC-N-C
catalysts with good activity are expected to develop. (iii) We note that some MSAC-N-C
catalysts with similar catalysis performance in RDE measurement system may be greatly
different in full cell systems. In fact, the performance of devices is not only related to the
MSAC-N-C catalytic performance, but also concerns the device structure and both electrode
systems. Therefore, it is key to reasonably optimize the device structure and electrode
system to ensure the full use of advanced MSAC-N-C catalysts in full cell devices. In the
future, the MSAC-N-C catalysts with high ORR performance are expected to be achieved by
lower cost precursors and high efficiency routes.
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