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Abstract: La3+ and Ni2+-doped BiOCl were prepared by sol–gel method and characterized by
physicochemical and spectroscopic techniques. Their photocatalytic performances were investigated
by the degradation of gentian violet under visible light. The results indicated that the co-doping of
Ni and La significantly enhanced the photocatalytic performance of BiOCl. The photodegradation
efficiency of LaNiBiOCl reached 95.5% in 105 min, which was 1.5 times that of BiOCl. This significant
enhancement in photocatalytic activity was mainly attributed to the effective capture and transfer
of photogenerated electrons between heterobinuclear La and Ni redox cycle, which benefited the
photodegradation of active h+ and the formation of active •O−

2 . Furthermore, the photodegradation
activity did not show an obvious drop after five recycles, indicating that LaNiBiOCl was a promising
semiconductor photocatalyst for the degradation of gentian violet.

Keywords: BiOCl; doping; gentian violet; photodegradation

1. Introduction

Photocatalysis, which can deeply and non-selectively oxidize all kinds of organic
molecules, has become a promising technique for wastewater treatment due to its energy
savings and environmental friendliness [1,2]. At the same time, photocatalysts are crucial
to achieving an excellent photocatalytic degradation effect. In recent years, Bismuth
oxychlorides [3–7] have been extensively studied as photocatalysts. Especially, BiOCl [8–11]
has shown remarkable photodegradation activity and practical application potential due
to its layered structure, suitable bandgap, low cost, non-toxicity, and high chemical and
optical stability [12–14]. However, the relatively wide bandgap and high recombination
rate of photogenerated carriers of BiOCl hinder its practical application.

Many methods have been used to solve these shortcomings, such as heterojunc-
tions [15–18], element doping [19–22], and surface functionalization [23,24]. The doping
method includes non-metal ion doping, metal ion doping, and co-doping. In metal ion
doping, transition metal ions [25–31] and rare earth ions [32,33] are intensively researched
due to their variable valence. It is reported that the replacement of Bi3+ by Ni2+ will cause
structure distortion due to the smaller radius of Ni2+ (69 pm) compared to that of Bi3+

(103 pm) and result in the formation of oxygen vacancies, which facilitate the capture of
e− by adsorbed O2 to form highly active •O−

2 [34]. The band gap of BiOCl is adjusted by
the impurity energy level formed by doping ions and thus broadens its photoresponse
range [28]. On the other hand, rare earth metal ions are usually introduced to serve as
electron or hole traps and thus inhibit photogenerated electron–hole pair recombination. It
is reported that when Bi3+ is replaced by La3+, abundant surface hydroxyls are generated,
and thus the adsorption of dye is improved [35]; La3+ sites also serve as photogenerated
electron traps [35,36]. As for co-doping, different rare earth metal ions co-doping are mainly
involved [37,38]. In this case, the co-doping of transition metal ions and rare earth metal
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ions only involves Fe and Nd co-doping [39], in which the Fe lowers the band gap energy
and Nb acts as an electron trap. The cooperative effects of Fe and Nb lead to improved
visible-light photocatalytic activity.

Thus, in this work, a La and Ni co-doped BiOCl photocatalyst is prepared. The co-
doping of Ni2+ and La3+ makes the introduced impurity level closer to the valence band of
BiOCl, improving the utilization of visible light. At the same time, La3+ acts as a scavenger
of photogenerated electrons to improve the photocatalytic efficiency of active h+, while
Ni2+ promotes the adsorption of substrates and the formation of active species •O−

2 ; the
synergy effects of La3+ and Ni2+ will greatly improve the visible-light-driven photocatalytic
degradation efficiency of BiOCl.

2. Results and Discussion
2.1. Structure and Composition

The XRD patterns of as-prepared BiOCl, NiBiOCl, LaBiOCl, and LaNiBiOCl were
shown in Figure 1. The diffraction peaks of BiOCl (at 2θ = 24.16◦, 25.88◦, 32.56◦, 33.52◦,
36.72◦, 40.9◦, 46.76◦, 49.84◦, 55.16◦, 58.68◦) could be ascribed to (002), (101), (110), (102),
(003), (112), (200), (113), (104), and (212) crystal planes, which were in good accordance
with standard card (JCPDS No. 06-0249), indicating its tetragonal crystal structure [40].
NiBiOCl, LaBiOCl, and LaNiBiOCl gave similar diffraction peaks to those of pure BiOCl,
but the peak intensities increased after doping Ni and/or La, indicating that Ni and La had
a positive effect on the crystallization of BiOCl [28]. Especially, the diffraction intensities
of the (101) crystal plane in LaBiOCl and LaNiBiOCl increased significantly, suggesting
that BiOCl might grow preferentially toward this plane after La doping. Moreover, the
peak center shifted to a higher 2θ (∆θ = 0.08 for (101) crystal plane) after Ni doping due
to the smaller radius of Ni2+ (69 pm) compared to that of Bi3+(103 pm), which caused the
lattice shrinkage [41]. The shift also confirmed the successful substitution of Ni2+ for Bi3+.
Meanwhile, no obvious peak center shift was observed after doping of La because of their
equivalent radius of Bi3+ and La3+(101 pm). The diffraction peaks of Ni, La, and other
elements were not observed, indicating the higher purity of the as-prepared photocatalysts.
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Figure 1. XRD patterns of as-prepared samples.

The surface functional groups of prepared samples were analyzed by the FT-IR method
(Figure 2). The bands centered at 3420 cm−1 and 1640 cm−1 could be assigned to the O-H
stretching vibration of surface hydroxyl and H-O-H bending vibration of water adsorbed
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on the surface, respectively, which could generate hydroxyl radicals under irradiation [42].
The bands at 2800–2930 cm−1 were ascribed to the symmetric and antisymmetric stretching
vibration of -CH2- since ethanol was used as a solvent in the preparation process [43]. The
characteristic Bi-O vibration shifted from 528 cm−1 in BiOCl to 526 cm−1 after Ni and/or
La doping, indicating the component change of the photocatalysts [44].
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Figure 2. FT–IR spectra of as-prepared samples.

The chemical state of surface elements and the effect of doping on the coordination
environment were further analyzed by the XPS method (Figure 3). Bi, Cl, and O were
observed in all samples (Figure 3a). However, Ni and La were not observed in a survey
and high-resolution scan of NiBiOCl, LaBiOCl, and LaNiBiOCl, which might be due to
the low doping amount of Ni (2‰) and La (2‰). The high-resolution Bi 4f spectra are
shown in Figure 3b. For BiOCl, two characteristic peaks at 159.55 eV and 164.85 eV could
be ascribed to Bi 4f7/2 and Bi 4f5/2, indicating the existence of Bi3+ [45,46]. The spacing of
the two peaks was 5.3 eV, indicating the normal state of Bi in BiOCl [47]. After doping of
Ni and/or La, these two peaks shifted to a lower position because of the increase in the
electron density of Bi, which was the result of an increase in oxygen defects formed from
the substitution of Bi by Ni or/and La. The high-resolution Cl 2p (Figure 3c) of BiOCl
showed two peaks at 199.85 eV and 198.2 eV, which were ascribed to Cl 2p1/2 and Cl 2p3/2,
respectively. For high-resolution O 1s spectra (Figure 3d), multiple chemical states were
observed in NiBiOCl, LaBiOCl, and LaNiBiOCl. The peaks at about 530 and 532 eV were
ascribed to lattice oxygen and oxygen defects [48]. The binding energy of the oxygen defect
of LaNiBiOCl shifted 0.38 eV to the lower direction, while the corresponding shifts for
NiBiOCl and LaBiOCl were 0.2 and 0.1 eV, respectively. This result suggested that there
were more defects or water adsorbed on the surface of LaNiBiOCl, which was beneficial to
improving its photodegradability.
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2.2. Morphology and Microstructure

The morphology and microstructure of as-prepared photocatalysts were characterized
by SEM and TEM. It can be seen in Figure 4a–d that all samples consisted of numerous
nanoflakes [49] 0.1–1 um in diameter and 20 nm in thickness. There was no apparent
change in morphology after Ni and/or La doping. These ultra-thin nanoflakes had a huge
surface area and higher surface energy, so they easily aggregated together. Additionally,
mesopores or macropores could be formed during the aggregating process, so the diffusion
resistance of the gentian violet molecules in these pores was very small, and it was easier
for gentian violet to contact and react with the active sites on the surface of the prepared
photocatalysts. These meso–macro pores and square nanoflake structures of LaNiBiOCl
were more obvious in TEM (Figure 4e–f). The element mapping of LaNiBiOCl (Figure 4g–h)
confirmed the uniform distribution of La and Ni in the photocatalyst, indicating that the
doping of Ni and La was successful.
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LaNiBiOCl (d); TEM of LaNiBiOCl (e,f); and EDS of La and Ni in LaNiBiOCl (g,h).

2.3. Optical and Electrical Properties

UV-Vis spectroscopy was used to evaluate the light utilization of the photocatalyst. It
can be seen in Figure 5 that the absorption edge shifted slightly to red after doping, and the
absorption in the visible region was greatly improved for LaBiOCl and LaNiBiOCl. The
band gap values estimated from the diffuse reflectance spectra were 3.38, 3.31, 3.24, and
3.22 eV for BiOCl, NiBiOCl, LaBiOCl, and LaNiBiOCl, respectively. The conduction band
(CB) minimum of BiOCl was occupied by Bi 6p, while the valence band (VB) maximum
was composed of O 2p and Cl 3p. When Bi3+ was replaced by Ni2+ and/or La3+, the CB
decreased; when the surface oxygen vacancies increased the VB width, these two aspects
led to a decrease in the band gap of BiOCl [32].
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Figure 5. UV-Vis absorption spectra of as-prepared samples.

PL was used to investigate the recombination efficiency of photogenerated electrons
and holes [50,51]. The PL (Figure 6a) intensities at 470 nm were in the following order:
BiOCl > NiBiOCl > LaBiOCl > LaNiBiOCl. A weaker PL intensity suggested a higher effi-
ciency of photogenerated electron–hole separation. Thus, LaNiBiOCl was better than the
others in terms of photogenerated carrier separation, resulting in higher photocatalytic ac-
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tivity. The oxygen vacancies formed by Ni and/or La doping could capture photoelectrons
and thus promote the separation of photogenerated electrons and holes.

EIS was another valid strategy to measure the separation and transfer efficiency
of photogenerated electrons and holes. Generally, the smaller the EIS arc radius, the
higher the separation efficiency of photogenerated carriers and the faster the interfacial
charge transfer. It could be seen from Figure 6b that the semicircle arcs were in the order
BiOCl > NiBiOCl > LaBiOCl > LaNiBiOCl, indicating the highest separation efficiency and
fastest interfacial charge transfer in LaNiBiOCl.
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2.4. Photocatalytic Activity

The photocatalytic activities of as-prepared samples were evaluated by the degradation
of gentian violet under simulated visible light (Figure 7). It is well known that photocatalytic
reactions occur at the surface of photocatalysts [52,53], so it was very important for the
substrate to be adsorbed to the surface of photocatalysts. The adsorption behaviors of
as-prepared samples were investigated by dark adsorption experiments (Figure 7a). It
was obvious that the initial adsorption of gentian violet was very rapid in NiBiOCl and
LaNiBiOCl. After about 40 minitues, adsorption–desorption equilibriums were almost
achieved for all the as-prepared samples. Figure 7b shows the visible-light activities of
the as-prepared samples in the degradation of gentian violet. It was obvious that doped
photocatalysts showed better catalytic activities than that of BiOCl. The photodegradation
percentages of gentian violet after 105 min irradiation were 63.2%, 76.1%, 89.6%, and 95.5%
for BiOCl, NiBiOCl, LaBiOCl, and LaNiBiOCl, respectively. The degradation efficiency of
LaNiBiOCl was 1.5 times higher than that of BiOCl. The linear kinetics modeling results of
as-prepared samples (Figure 7c) indicated that the degradation of gentian violet on these
photocatalysts followed a first-order kinetic [54]. The kinetic constants for BiOCl, NiBiOCl,
LaBiOCl, and LaNiBiOCl were 0.01042, 0.01561, 0.02235, and 0.03056 min−1, respectively,
indicating that LaNiBiOCl displayed the highest conversion rate.

There were various photoinduced active species, such as holes (h+), hydroxyl radical
(•OH), and superoxide radical (•O−

2 ), which were directly involved in the photocatalytic
degradation process [55]. To detect the active species, ammonium oxalate (AO), isopropyl
alcohol (IPA), and 1,4-benzoquinone (BQ) were used, respectively, as scavengers of h+,
•OH, and •O−

2 [56,57]. Figure 7d demonstrates that the highly active h+ (the oxidation
potential of h+ is 3.0 V) played a dominant role and •O−

2 exerted a secondary role in
the photocatalytic degradation process of gentian violet in all as-prepared catalysts [58],
while the impact of •O−

2 in NiBiOCl was larger than that in LaBiOCl. According to this, a
degradation mechanism (Figure 7e) of gentian violet on LaNiBiOCl was proposed. The
amine nitrogen in the gentian violet structure could form an O-M-O bond with Ni or La in
the LaNiBiOCl catalyst and thus adsorb onto its surface. The dark adsorption experiment in
Figure 7a displayed that LaNiBiOCl had the highest adsorption capacity for gentian violet,
so these adsorbed gentian violets would act as a photosensitizer for LaNiBiOCl. When
gentian violet absorbed 450–600 nm light and formed an excited state, the photogenerated
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electrons transferred from the LUMO energy level of gentian violets to the conduction
band of LaNiBiOCl, and then the oxygen molecules adsorbed on the surface of LaNiBiOCl
trapped these electrons to generate •O−

2 . On the other hand, the photosensitization of
gentian violet could rapidly accelerate the Ni3+/Ni2+-La3+/La2+ cycling process [59]. At
the same time, the photogenerated h+ could also directly oxidize gentian violet.
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Stability was another important factor in evaluating the application of the photocata-
lyst. Figure 7f shows the stability of LaNiBiOCl after five recycles of photodegradation. The
degradation percentage of the fifth cycle was 85.9%, which was a 10% decrease compared
with the initial one (95,5%); this decrease was partially related to the loss of LaNiBiOCl
during the recycling experiment. Thus, LaNiBiOCl exhibited very good stability.

3. Materials and Methods
3.1. Preparation of Photocatalysts

Firstly, Bi2O3 and La2O3 were dissolved, respectively, in 30 mL of concentrated hy-
drochloric acid and then heated to remove the residual concentrated hydrochloric acid.
Secondly, 15 mL of deionized water and 10 mL of ethanol were added to the as-prepared
BiCl3 solution under magnetic stirring. Then, as-prepared LaCl3 and/or NiCl2 was added
with the ratio n(La):n(Ni):n(Bi) = 1:1:500. The pH of the solution was adjusted to 2~3 with
ammonia, and white flocculent precipitate appeared. Then, the mixture was placed in an
oil bath at 80 ◦C for 20 h. Afterward, the suspension was centrifuged and washed three
times with deionized water. The obtained solid was dried at 120 ◦C to obtain LaNiBiOCl,
NiBiOC, or LaBiOCl. For comparison, the pure BiOCl was also prepared by the same
method without adding La and Ni.

3.2. Characterization

The phase and crystal structure of obtained samples were characterized using a D8
advanced X-ray diffractor (Bruker AXS Company, Fitchburg, WI, USA) with Cu Ka ra-
diation. The Fourier transform infrared (FT−IR) spectra were conducted on a BRUKER
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VERTEX70 spectrometer (Bruker Company, Madison, WI, USA). X-ray photoelectron spec-
troscopy (XPS) data were collected on an ESCALAB 250 XL device (Thermo Fisher Scientific,
Waltham, MA, USA). The morphologies and compositions of as-prepared samples were
obtained by scanning electron microscopy (SEM, S-2500, Oxford Instruments, Oxford, UK)
and transmission electron microscopy (TEM, JEOL-1400, JEOL, Tokyo, Japan). UV-Vis
diffuse reflectance spectra were recorded using a UV-2550 spectrophotometer (Shimadzu,
Kyushu, Japan). Photoluminescence (PL) spectra were obtained on an Edinburgh Instru-
ments FLS920 fluorescence spectrometer (Edinburgh Instruments Ltd., Livingston, UK).
Electrochemical impedance spectroscopy (EIS) was measured on an electrochemical work-
station (CHI 760E, CH Instrument Co. Ltd., Shanghai, China). Platinum and saturated
Ag/AgCl were used as the counter electrode and reference electrode, respectively.

3.3. Photocatalytic Activity Experiment and Stability Test

Gentian violet was applied to investigate the photocatalytic activity of the obtained
photocatalysts. In these experiments, a 400 W Xenon lamp equipped with a 420 nm cut-off
filter was engaged as visible light source. Typically, 0.5 g of as-prepared photocatalyst was
dispersed in 50 mL of gentian violet aqueous solution (20 mg/L). Before light irradiation,
the suspension was maintained in the dark for 45 min under continuous magnetic stirring.
Afterward, the suspension was exposed to visible light under magnetic stirring. At 30 min
intervals, 3 mL of suspension was taken out and filtered by a 0.45 µm membrane filter,
and the concentration of gentian violet in the supernatant was measured by a UV-Vis
spectrophotometer.

Additionally, recycling tests were conducted to investigate the reusability and stability
of LaNiBiOCl. After each photocatalytic reaction, LaNiBiOCl was collected by centrifuga-
tion, washed thoroughly with deionized water and anhydrous alcohol, and then dried in
vacuum at 60 ◦C. Subsequently, the reclaimed LaNiBiOCl was put into the fresh gentian
violet solution for the next photocatalytic experiment. This test was repeated five times.

4. Conclusions

In summary, La and/or Ni-doped BiOCl were successfully prepared by the sol–gel
method. XRD analysis disclosed their tetragonal phase. The bandgap of BiOCl declined
after doping; the results of PL and EIS demonstrated that the La and Ni co-doped BiOCl
effectively enhanced the transfer and separation of photogenerated electrons and holes.
The mechanism might be a photosensitization process, and the injected electrons were
captured by La3+ and then transferred in the heterobinuclear redox cycle of La and Ni,
which prolonged the recombination time of photogenerated carriers and thus improved
the photodegradation efficiency of the main active species, h+. Moreover, the captured
electrons could be faster and easily transferred to adsorbed oxygen molecules to form
the secondary intermediate active species •O−

2 . Therefore, the Ni and La co-doped BiOCl
exhibited the best catalytic performance with a catalytic degradation efficiency of 95.5% in
105 min.
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