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Abstract: Much effort has been made for MoS2/CDs heterostructure application in the field of photo-
catalysts. However, the impacts of functional groups of CDs on the properties of the heterostructure
are ambiguous. Here, the impacts of hydroxyl, carbonyl, and carboxyl groups of CDs on the structural,
electronic, and optical properties of MoS2/CDs’ heterostructure were investigated by conducting a
first-principles study. The calculated energy band structure and band gap of monolayer MoS2 were
consistent with the experimental values. The band gap of MoS2 was obviously decreased after the
construction of MoS2/CDs and MoS2/CDs–hydroxyl/carboxyl, thus helping to improve the light
adsorption range. However, the band gap of MoS2/CDs–carbonyl was slightly increased compared
with that of monolayer MoS2. The CDs with functional groups can spontaneously bind on 2D-MoS2

and form a stable MoS2/CDs heterostructure. It was confirmed that the MoS2/CDs’ heterostructure
belongs to the typical type-II band alignment, which contributes to the separation of photogenerated
charge and hole. Notably, the carbonyl and carboxyl groups on the CDs obviously reduced the optical
absorption intensity of the MoS2/CDs in the ultraviolet region. The hydroxyl groups have little effect
on optical absorption intensity. Thus, the CDs with more hydroxyl groups are beneficial to produce
a higher photocatalytic performance. This paper reveals the impacts of surface functional groups
and provides a promising approach for designing the MoS2/CDs’ heterostructure to enhance the
photocatalytic properties.

Keywords: MoS2/CDs heterostructure; first-principles study; type-II band alignment; photocatalytic

1. Introduction

Molybdenum disulfide (MoS2) is one of the most studied novel material among
transition metal sulfides, due to its potential applications in electronic and optoelectronic
devices [1–3], hydrogen evolution reaction [4–6], and energy storage [7–9]. However,
MoS2 also has some disadvantages in practical applications, including the inert basal
plane, untunable band gap, and low conductivity [10,11]. Therefore, in order to activate
the basal plane, enhance conductivity, and tune band-gap, MoS2-based heterostructures
and hybrid systems have been built. The MoS2-based heterostructures include carbon
materials (graphene, graphene oxide, graphene quantum dot, carbon dot, and carbon
nanotube), noble metals (Ag, Au, and Pt), TiO2, Cu2O, MoO3, and other two-dimensional
materials (WS2, WSe, BN, and Mxenes) [12–21], exhibiting the better performance in terms
of electronics, optoelectronics, catalytics, and energy storage.

Carbon materials play a key role in these MoS2-based heterostructures, due to their
unique electronic properties. However, some unexpected functional groups always are
produced from the preparation of carbon materials such as graphene, graphene oxide,
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and carbon dot. The impacts of functional groups on MoS2-based heterostructures are
vague. In this paper, we chose carbon dots (CDs) as a representative carbon material for
researching the impacts of functional groups on the electronic properties. Carbon dots are
a common carbon material, because they have extensive applications in photocatalysis [22],
bio-imaging [23], sensor [24], and light-emitting diodes [25], due to high quantum yields
and tunable light-emission bands. Chen et al. [26] prepared 1L-MoS2/CDs ultra-thin light
emission films with full-color tunable photoluminescence, which greatly extended the
light emission bands of MoS2. Badhulika et al. [16] first fabricated a 2D-MoS2-CDs-based
flexible broadband photodetector covering the entire range of the electromagnetic spectrum,
due to the combination of UV illumination of CDs and visible and NIR illumination of
MoS2. To date, the facile and green preparation of CDs is the carbonization of carbon
sources, including glucose [27], citric acid [26], sugar [28], and chia seed [16]. Many
experiments have demonstrated that the hydroxyl, carbonyl, and carboxyl groups exist
in the edge of CDs due to the incomplete carbonization [27,29]. It is well-known that
the surface functional groups have a strong influence on electronic structures, optical
characteristics, and conductivity [26,30–33]. However, due to the difficulty of synthesizing
CDs with a specific functional group, the influence of a specific functional group is hard to
study through experimentation. Therefore, it is of great significance to study it through
simulation calculations.

Density functional theory (DFT) calculation is a powerful and scientific technology that
is used to research the intrinsic properties of nanomaterials and provide theoretical guid-
ance for experiments and applications. Some papers have reported the effects of vacancies
or heterostructure on the structural, electronic, and optical properties of monolayer MoS2 by
DFT [30,31]. However, the influences of the surface properties of CDs on the properties of
MoS2/CDs were less investigated through simulation. In this study, the effects of hydroxyl,
carbonyl, and carboxyl groups of CDs on the structural, electronic, and optical properties
of MoS2/CDs’ heterostructure were revealed by applying density functional theory. This
study contributes to improving the optical property of MoS2/CDs’ heterostructure.

2. Computational Details

All the first-principles calculations were performed within the framework of the
plane-wave pseudopotential density functional theory (DFT) implemented in CASTEP
code with ultrasoft pseudopotential method on the basis of DFT [34–36]. The generalized
gradient approximation (GGA) with Perdew–Bruke–Ernzerhof (PBE) functional and van
der Waals correction proposed by the Grimme potential were employed [34,37]. This
method has widely been employed to study the structural, electronic, and photoelectronic
properties of MoS2-based heterostructure [34,38–40]. All structures were relaxed until
the force on each atom was less than 0.01 eV Å−1. The energy cutoff was 400 eV. The
two-dimensional (2D) periodic boundary conditions were considered along the growth
directions of the MoS2/CDs layer. The Monkhorst–Pack k-point mesh was sampled with a
separation of 0.05 and 0.015 Å−1 in the Brillouin zone during the relaxation and calculation
periods, respectively.

3. Results and Discussions

First, a 4 × 4 supercell of MoS2 monolayer composed of 16 molybdenum atoms and
32 sulfur atoms was constructed as a substrate (Figure 1a). A zigzag-edged C24H12 structure
was used, and all edge carbon atoms of CDs were assumed to be fully passivated by H
atoms to eliminate the dangling bonds (Figure 1b) [34,41]. It has been widely accepted
that the carboxyl, hydroxyl, and carbonyl are three dominant functional groups on the
CDs. Therefore, the CDs-T (T is carboxyl, hydroxyl, and carbonyl, respectively; CDs-T
represents that only one functional group T is on the CDs) were constructed for studying
the impacts of functional groups on the structure, electronic, and optical absorption of
MoS2/CDs. In order to match the experimental data, the functional groups were place on
the edge of CDs. After geometry optimization, the lattice constants of the MoS2 monolayer
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were a = b = 3.191 Å and α = β = 90◦, γ = 120◦, which is comparable to the experimentally
measure for the bulk MoS2 [42]. To evaluate the structural stability of MoS2/CDs-T, the
binding energies were calculated by using the Equation (1) [39].

Eb = E(MoS2/CDs-T) − E(MoS2) − E(CDs-T) (1)

where E(MoS2/CDs-T), E(MoS2), and E(CDs-T) are the total energies of MoS2/CDs-T, MoS2, and
CDs-T, respectively.
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Figure 2a shows the Eb and h (the distance between MoS2 and CDs and CDs-T) in
the heterostructures. The optimized h value ranges from 3.267 to 3.358 Å, and the closest
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distance is 3.267 Å of MoS2/CDs-OH. The bigger carboxyl groups on the CDs increase
the distance due to the steric effect. The negative binding energy suggests that CDs
spontaneously form the MoS2/CDs’ heterostructure and keep it in a stable state. A negative
binding energy indicates that the two substances can spontaneously bind and form a stable
heterojunction. Conversely, a positive binding energy indicates that the two substances
cannot bind spontaneously. Therefore, the carboxyl, hydroxyl, and carbonyl groups on the
CDs can still form the stability of the MoS2/CDs-T heterostructures. Figure 2b,c shows the
band structure and partial density of the MoS2 states. The direct band gap (the conduction
band minimum and the valence band maximum are located at the K symmetry point
indicating) of 1.75 eV (Figure 2b) for monolayer MoS2 is in good agreement with other
theoretical values (1.78 eV [43], 1.74 eV [34], and 1.70 eV [43]) and experimental results
(1.75 eV [44] and 1.80 eV [45]). As shown in Figure 2c, the valence bands and the conduction
bands are essentially hybridized from the Mo 4d and S 3p orbitals, and this is in accordance
with the previous calculation results [34,46].
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Figure 2. The binding energy (Eb) and distance (h) of MoS2/CDs-T (a), band structure of MoS2

monolayer (b), and partial density of states (PDOS) of MoS2 monolayer (c).

Figure 3 displays the PDOS of CDs and CDs-T; the insets in these figures are the
corresponding band structures. Electron transfer and sharing between functional groups
and carbon atoms lead to changes in the electronic structure. The valence bands of CDs
from −5 to −2 eV are mainly hybridized from C 2p and H 1s orbitals, while the valence
bands from −2 to 0 eV and the conduction bands from 0 to 4 eV are composed only of
C 2p orbital (Figure 3a). Moreover, the energy levels of CDs are discrete, owing to the
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quantum confinement [34]. The energy gap of CDs between the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is 2.859 eV, which
is really agreement with previously reported results (2.890 eV [34] and 2.90 eV [41]). It
is worth noting that the energy gaps calculated by DFT are lower than the experimental
result (5.56 eV [47] and 6.82 eV [48]), which results from the most used local and semi-local
approximations for exchange–correlation functional in standard DFT calculation liable to
underestimate energy gaps [46]. After hydroxyl, carbonyl, and carboxyl were added to
CDs, the energy gaps of CDs-T between LUMO and HOMO were 2.637, 2.236, and 2.110 eV,
respectively. As seen in Figure 3b–d, the valence bands of CDs-T from −5 to −2 eV and
the conduction bands from 3.5 to 5 eV are hybridized from C 2p, O 2p, and H 1s orbitals,
while the valence bands from −2 to 0 eV and the conduction bands from 0 to 3.5 eV are
hybridized from major C 2p and a small part portion of O 2p orbitals. The bottom of the
conduction bands and top of the valence bands of MoS2/CDs-T consist of the hybridization
from the C 2p and O 2p orbitals.
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The PDOS and band structure of MoS2/CDs and MoS2/CDs-T heterostructures are
shown in Figure 4. In the LUMO, the conduction bands of these heterostructures are mainly
hybridized from Mo 4d and S 3p orbitals. There are energy levels under the Femi level. For
MoS2/CDs, MoS2/CDs-OH, and COOH, these energy levels are mainly composed of the C
2p orbital. However, the energy level at the Femi level of MoS2/CDs-O is hybridized from
the C 2p and O 2p orbitals. The electronic structure indicates that the Mo 4d, S 3p, C 2p,
and O 2p orbitals are the main way of photo-induced electron. Under the illumination, the
electrons are transferred from CDs to MoS2 and leave holes on the CDs, which contribute to
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the separation of electron and hole. The energy bands of MoS2/CDs, MoS2/CDs–hydroxyl,
and carboxyl are reduced to 1.496, 1.320, and 1.248 eV, respectively, while the energy band
in MoS2/CDs–carbonyl is 1.772 eV.
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The optical absorption of the catalyst plays a key role in the photocatalytic process.
Figure 5a shows the optical absorption spectra of these samples, namely CDs-T, MoS2,
and MoS2/CDs-T. The frequency-dependent dielectric matrix, ε (ω) = ε1 (ω) + iε2 (ω),
is calculated, where ε1 (ω) and ε2 (ω) are the real and imaginary parts of the dielectric
function, respectively. The ε1 (ω) is determined by summation over electronic states, using
the Equation (2). [49]:

ε1 (ω) = 1 +
2
π

P
∫ ∞

0

ε2(ω
′)ω′

ω′2 −ω2 + iη
dω′ (2)
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(g) MoS2/CDs-COOH. Imaginary parts, ε2 (ω) of (b) MoS2/CDs, (d) MoS2/CDs-OH, (f) MoS2/CDs-
OH, and (h) MoS2/CDs-COOH. Imaginary parts.
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The ε2 (ω) is obtained by using the Kramers–Kronig relationship [45]:

ε2 (ω) =
4π2e2

Ω
lim
q→0

1
q2 ∑c,v, k 2ωkδ(εck − εvk −ω) × 〈µck + e∝q|µvk〉 〈µvk + eβq|µvk〉 (3)

The light adsorption intensity is evaluated according to the Equation (4). [45]:

α (E) =
4πe
hc

{[
ε2

1 + ε2
2
]1/2 − ε1

2

}1/2

(4)

The calculated ε1 (ω) and ε2 (ω) of dielectric function versus energy of MoS2, CDs-T,
and MoS2/CDs-T are shown in Figure 5. The peak A (3.01 eV), B(4.96 eV), and C(10.94 eV)
can be observed in the imaginary part of MoS2. These peaks are located from 0 to 30 eV, due
to the absorptive transition from the valence bands to the conduction bands. According
to the structure analysis, the peaks of A, B, and C result from the transition of S 3p into
Mo 4d conduction bands [50], the hybridization orbitals between S 3p and Mo 4d into Mo
4d conduction bands [51], and σ bonding between S 3p and Mo 5s into Mo 4d conduction
bands [52], respectively. For MoS2/CDs-T, they have similar profiles with that of MoS2.
Notably, the imaginary parts of MoS2/CDs-T move slightly toward lower energies because
of the effects of heterostructure [53]. The calculated static constants of MoS2 is about 5.0 eV,
which is consistent with other reported values of 5.3 eV calculated by the generalized
gradient approximation (GGA) with Perdew–Bruke–Ernzerhof functional [54]. It is obvi-
ous that the static dielectric constants of MoS2/CDs-T are bigger than those of of MoS2.
Figure 6a shows the optical absorption spectra of all samples. There is strong absorption
in the range of 200 to 700 nm for the MoS2 monolayer, which is potential for applications
in sunlight-driven photocatalysis. The main peak at about 450 nm is attributed to the
transition from the occupied Mo-4d orbital to the unoccupied S-3p orbital [55]. However,
the MoS2 monolayer has a low adsorption capacity at the long wavelength end, and this
results from the electronic structure of the monolayer. The absorption peaks of CDs are
mainly located at the ultraviolet region from 200 to 400 nm, and the absorption intensity
is relatively low. The obvious red shifts of the absorption peaks and the reduction of the
absorption intensities can be observed after the MoS2/CDs’ heterostructures were con-
structed. Compared to the MoS2 monolayer, the absorption intensities ranging from 200 nm
to the long wavelength were obviously increased by CDs. However, the carbonyl and
carboxyl groups of CDs decrease the absorption intensities of MoS2/CDs in the ultraviolet
region. In contrast, the hydroxyl groups have a slight impact on the absorption. It can
be concluded that CDs are suitable for promoting the photocatalysis of MoS2 due to the
enhanced adsorption intensity. However, the carbonyl and carboxyl groups have a negative
effect on the photocatalysis of MoS2/CDs, causing a decrease in adsorption intensity.

To investigate the redox ability of MoS2/CDs-T, the valence band maximum (VBM)
and conduction band minimum (CBM) relative to the vacuum energy level were calculated
according to the Equations (5) and (6). [55]:

EVB = ϕ = V (∞) − EF (5)

ECB = EVB − Eg (6)

where V (∞), EF, and Eg are the electrostatic potential in a vacuum region, the Fermi level
of the neutral surface system, and the band gap, respectively. As shown in Figure 6b, the
LUMO and HOMO of CDs-T are placed at higher energy states than the CBM and VBM of
MoS2 monolayer, respectively. It indicated that MoS2/CDs heterostructures can construct
the typical type-II band alignments [34], which promote photo-induced charge separation
and transfer. Combining with the results from PDOS and band structures (Figure 4), the
photo-generated electron of C 2p orbitals of CDs and CDs-T will transfer to the S 3p and
Mo 4d hybrid orbitals (Figure 6c).
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4. Conclusions

In summary, the impacts of hydroxyl, carbonyl, and carboxyl of the CDs on the struc-
tural, electronic, and optical properties of MoS2/CDs were studied by employing density
function theory. The more negative binding energies (−0.36 eV to −1.17 eV) between
MoS2 and CDs-T suggest that the hydroxyl, carbonyl, and carboxyl groups contribute
to spontaneous combination and the stability structure. The three groups show opposite
effects on the band gap of MoS2/CDs-T. The hydroxyl and carboxyl greatly reduce the band
gap (1.32 and 1.25 eV, respectively) compared with the band gap of MoS2 and MoS2/CDs.
However, the carbonyl group slightly increases the band gap (1.77 eV). The heterostruc-
ture of MoS2/CDs-T belongs to typical type-II band alignment, which is beneficial to the
separation of photo-induced charge and hole. Notably, the carbonyl and carboxyl groups
of CDs reduce the absorption intensity of MoS2/CDs. In the preparation of MoS2/CDs,
the generation of carbonyl and carboxyl groups should be avoided as much as possible.
Increasing the content of hydroxyl groups in carbon quantum dots is more conducive to
improving the photocatalytic performance.
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