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Abstract: The complete conversion of NOx to harmless N2 without N2O formation is crucial for the
control of air pollution, especially at low temperatures. Cu-based catalysts are promising materials
due to their low cost and high activity in NO dissociation, even comparable to noble metals; however,
they suffer from low stability. Here, we established a Cu-Ce catalyst in one step with strong metal–
support interaction by the flame spray pyrolysis (FSP) method. Almost 100% NO conversion was
achieved at 100 ◦C, and they completely transferred into N2 at a low temperature (200 ◦C) for the
FSP-CuCe catalyst, exhibiting excellent performance in NO reduction by CO reaction. Moreover, the
catalytic performance can stay stable, while 23% NO conversion was lost in the same condition for
the one made by the co-precipitation (CP) method. This can be attributed to the synergistic effect of
abundant active interfacial sites and more flexible surface oxygen created during the FSP process.
The flame technology developed here provides an efficient way to fabricate strong metal–support
interactions, exhibiting notable potential in the design of stable Cu-based catalysts.

Keywords: Cu-based catalysts; flame spray pyrolysis; NOx elimination; active interfacial sites;
high stability

1. Introduction

In recent years, air pollution has become serious and triggered a battle of survival for
the ecosystem [1]. Nitrogen oxide (NOx) is not only the source of nitric acid rain but is also
one of the main substances forming chemical smog, becoming one of the most important
air pollutants affecting human health [2]. With the large-scale extraction and consumption
of fossil sources, nitrogen oxides emitted by combustion, industrial production processes
and motor vehicles are inevitable [3]. NOx is usually reduced by ammonia via the selective
catalytic reduction (NH3-SCR) process. However, its shortcomings such as the secondary
pollution derived from NH3 leakage and the destruction of air preheaters cannot be ig-
nored [4]. In comparison, the catalytic reduction by CO molecules is supposed to be the
ideal strategy given the present eco-friendly standards of the deNOx process, considering
that the combustion of fossil energy often creates NO and CO molecules simultaneously.
However, in this process, N2 selectivity is hard to reach 100% due to the production of a
large amount of by-product N2O, especially at low temperatures [5,6]. Nowadays, N2O
is the third most important long-lived greenhouse gas after carbon dioxide and methane,
as well as the most important agent in the depletion of the ozone layer [7]. Thus, the
development of a highly efficient catalyst to reduce toxic NO into harmless N2 without
emission of N2O is promising in the modern post-industrial society [8].

NO molecules must undergo dissociative chemisorption for their conversion to N2,
while CO should be molecularly adsorbed. Otherwise, molecularly adsorbed NO favors the
formation of N2O. Therefore, NO reduction by CO is a site-specific reaction with active sites
for both CO adsorption and NO dissociation. Based on this, noble metals or Cu-supported
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catalysts [9–11], Ce-based solid solution [12,13] and perovskites [14,15] have been rationally
designed and systematically investigated. Noble metals have high catalytic activity for
the complete reduction of NO into N2, even at temperatures as low as 200–250 ◦C [10,16].
However, their scarcity, high price, and easy toxicity have greatly limited their applications.
Given this, Cu-based catalysts represent a promising alternative from the viewpoint of low
cost and similar efficiency. The NO conversion rate would reach 100% at around 230 ◦C on
Mn-modified CuFe2O4 catalysts [17], and 90% of N2 selectivity can be obtained at 200 ◦C
on Cu/CeO2-Fe2O3 catalysts [11]. Moreover, oxygen vacancies of oxide support exhibit a
positive effect on the elimination of NOx by prompt transfer of the active O derived from
the dissociation of the N–O bond to avoid the formation of N2O [18–20]. CeO2 is widely
used in NOx emissions due to its high capability of oxygen storage and release through
redox processes via Ce4+/Ce3+ coupling [21–25], especially in improving low-temperature
N2 selectivity [26].

Based on the above analysis, the high activity of the CuO-CeO2 catalyst is correlated
with the synergism of copper–ceria interactions, with both components being significantly
more readily reduced or oxidized than the corresponding independent ones. The interfacial
sites between the CuO clusters and the CeO2 support were more active relative to the indi-
vidual phases due to their greater reducibility [27,28]. Synergetic effects in the CuO–CeO2
catalysts have been generally recognized; however, the identification of different Cu species
is difficult due to the existence of a variety of Cu species, such as finely dispersed CuO
particles, Cu2+ with strong interaction with Ce or Cu2+ in the CeO2 lattice, let alone the
variations during the reaction. It has been reported that the efficiency of NO conversion
is greatly affected by the Cu preparation method. For example, the deposition of CuO
on perovskites by the precipitation or wet impregnation methods showed poor activity,
allowing almost complete NO conversion only above 400 ◦C [29,30]. The co-precipitation
method facilitated the formation of the incorporation of metals into CeO2 for enhancing the
movable oxygen, owing to the more sufficient contact among each component compared
with the impregnation method. However, active metal species on the surface may also
disappear. A more facile method that could create both surface-active sites and strong
interactions is desirable. It has been demonstrated that flame spray pyrolysis (FSP) is a
well-established single-step method to provide nano-sized supported catalysts [31,32]. It
will not only efficiently disperse the active metals on the supports but also enhance the
oxygen vacancies in Ce oxides lattice [33,34] and the metal–support interaction [35,36]. FSP
can create lattice oxygen distortion and provide about 19 times more oxygen vacancies
than traditional ones by quenching from an extremely high temperature [37], exhibiting
great potential in accelerating NOx reduction.

In this study, we systematically investigated the function of Cu-based catalysts in
accelerating NOx reduction without the help of any noble metals. With this work, we aim
to design a new Cu-Ce composite oxide catalyst via the quenching process of FSP, creating
both active Cu sites with strong metal–support interaction and Cu dopants in CeO2 lattice
in one-step synthesis. The Cu species are active in NO dissociation and CO adsorption,
while the distortion structure in CeO2 will create abundant oxygen vacancies, facilitating O
removal and N2 production at low temperatures. Moreover, the strong Cu-Ce interaction
formed at high temperatures during the preparation process will inhibit metal sintering and
enhance the stability of catalysts. NO reduction by CO was chosen as a probe reaction to
evaluate their catalytic performance, focusing on the reaction rate of NO and the selectivity
of N2 at low temperatures. The structures of the synthesized catalysts and the reaction
mechanism are discussed following the characterizations. The results will pave the way for
the rational design of Cu-based catalysts with extremely high activity at low temperatures
and anti-sintering properties for applications.
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2. Results and Discussion
2.1. Catalytic Performances

NO, as one of the main pollutants in the emission, is expected to be selectively reduced
to N2 instead of the by-product N2O. The catalytic property of Cu-Ce oxide catalysts with
different Cu contents (1 wt % and 10 wt %) synthesized by FSP and CP for NO reduction
was explored at 100–400 ◦C, as observed in Figure 1a–c. NO conversion, CO conversion
and N2 selectivity increased with reaction temperature for all of the tested catalysts, but
they exhibited distinguished activity at low temperatures. For the CeO2 sample, the NO
cannot be completely activated and reduced until 450 ◦C due to the absence of active
metals, although the consumed NO can be converted into N2 at 350 ◦C with the assistance
of oxygen vacancies in CeO2 lattice. When adding a small amount of Cu (1 wt %), the NO
reduction activity was improved, and the 100% conversion temperature was decreased to
220 ◦C. It further decreased to a temperature as low as 175 ◦C with increasing Cu content
to 10 wt %. The light-off temperature (T50) dropped down to almost 160 ◦C and 180 ◦C
after adding 1 wt % and 10 wt % Cu in CeO2 via the FSP method, respectively. The FSP-
CuCe with high Cu content (10%) exhibited the best activity, especially for N2 selectivity,
while those synthesized by the CP method were completely different. The performance of
CP-CuCe with low Cu content was more active than the one with high Cu content at low
temperature, but the order was reversed above 200 ◦C, because the complete conversion
of NO and CO cannot be obtained until 400 ◦C for the former. Although the NO was
fully eliminated at about 200 ◦C over the CP-CuCe(10) sample, it can only be partially
reduced into N2O, resulting in the N2 selectivity being below 5% at the same temperature.
As shown in Figure 1d, the activity of FSP-CeCu(10) can be further improved in the
mixture of 2% CO and 1% NO atmosphere, where NO conversion can reach 100% at 100 ◦C.
Afterward, N2 selectivity gradually increased until 200 ◦C, indicating that N2O can be
completely suppressed at such a low temperature. The catalytic performance of FSP-
CuCe(10) has advantages in the reported Cu-based catalysts for the NO + CO reaction.
For example, a Cu-Ni catalyst completely converted NO to N2 at above 350 ◦C [38]. The
temperature was decreased to 275 ◦C over Cu-Mn [39] and 250 ◦C over Cu-Ce [40] catalysts.
The catalyst was further optimized by using CeO2-Fe2O3 as the support, and 90% NO
conversion was achieved at 200 ◦C [11]. The activity of FSP-CuCe(10) was comparable
to the 1%Pd/Fe-CeO2 catalyst recently reported [26], indicating that the FSP-made CuCe
catalyst in this work exhibits potential in the substitution of noble metal utilization in the
elimination of NOx (NO and N2O) pollutants in an extremely low temperature range.

Generally, Cu-based catalyst was famous for its high activity but suffered from poor
stability. During the stability test at different conditions in Figure 2a, the CP-CuCe(10)
catalyst was severely deactivated, with the NO conversion decreased from 100% to 77% in
40 h, while the catalytic performance of FSP-CuCe(10) kept constant even in the condition
of high GHSV. Meanwhile, the N2 selectivity slightly increased from 85% to 92%, which was
much higher than that of the CP-CuCe(10) catalyst. This indicated that the amount of Cu
active sites for NO dissociation decreased probably due to the aggregation of Cu particles.
Usually, the CuCe catalysts were active without reduction before NO + CO reaction. For
fresh FSP-CuCe(10), the activity was high without any pretreatment in the first-round test.
Interestingly, NO conversion in the second-round test was enhanced compared to the first
one, as shown in Figure 2b, indicating that special Cu species were formed and can be
activated in the reaction conditions. On the contrary, slight deactivation was observed over
the CP-CuCe catalyst.
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Figure 1. Comparison of catalytic performance of CuCe catalysts synthesized by FSP and CP methods
with Cu weight percentage of 1% and 10% over NO + CO reaction (5%NO + 5%CO + 90%He): (a) NO
conversion, (b) CO conversion and (c) N2 selectivity. (d) The performance of FSP-CuCe(10) sample in
1%NO + 2%CO + 97%He reaction atmosphere.
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Figure 2. Stability test of typical catalysts: (a) The stability of FSP-CuCe and CP-CuCe cat-
alysts at different conditions (I: 200 ◦C with GHSV = 15,000 mL/(g·h) and II: 250 ◦C with
GHSV = 60,000 mL/(g·h); (b) NO reduction performance of FSP-CuCe and CP-CuCe catalysts in
two test cycles (first is solid and second is hollow) in NO + CO reaction.

2.2. Crystal Structure and Morphology Analysis

The X-ray diffraction patterns of fresh and used samples are shown in Figure 3, where
six peaks were observed in all the patterns for 2θ varying from 20◦ to 80◦. These peaks can
be assigned to (111), (200), (220), (311), (222) and (400) planes of the typical face-centered
cubic fluorite structure of CeO2. The peak width at half height of FSP-made samples was
narrower than that of CP-made ones, which implies that the particle size increased when
they were produced from high-temperature flames in the FSP process according to the
Scherrer equation. The growth of FSP-CeO2 particles during the reaction was also observed,
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while the one with Cu was stable. Two peaks related to the CuO phase (PDF: 01-080-1917)
were found on the fresh FSP-CuCe sample, while no extra peaks assigned to the Cu or Cu2O
phase were observed in the patterns of the used FSP-CuCe sample, which may be explained
by the fact that the Cu nanoparticles were re-dispersed during the reaction and too small to
be detected by XRD. Moreover, from the magnification of the (111) plane, the peak position
was the same with standard CeO2 for FSP-CuCe and CP-CuCe samples; however, the shift
to a high degree during the reaction can only be detected for the FSP-made sample. Thus, it
could be deduced that copper cations were embedded into CeO2 lattice due to the intimate
contact of Cu and Ce ions in the solution and the high temperature of the flame in the
process of FSP preparation, which has been reported before [41–43]. The incorporation was
further enhanced in the reduced atmosphere during the reaction accompanied by lattice
shrink, since the radius of Cu2+ ions (0.072 nm) is smaller than that of Ce4+ (0.097 nm) [44].
The morphology of the samples was revealed by scanning electron microscopy (SEM) and
transmission electron microscopy (TEM), as shown in Figure 4. From SEM images, the FSP-
CuCe catalyst was small and had uniform nanosized particles, while there were various
sizes of particles in the CP-CuCe sample, composed of small crystallites with irregular
shapes and large particles with sizes of a few micrometers. From TEM images, the shape
of the FSP-CuCe nanoparticles was cubic with distinct lattice fringes, while those in the
CP-CuCe sample were sphere-like nanostructures.
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2.3. Oxygen Species Analysis
2.3.1. Raman

Further insight into the incorporation of Cu ions into the CeO2 lattice can be achieved
by Raman spectroscopy. In Figure 5, the strong peak that appeared at around 463 cm−1 for
all tested catalysts can be assigned to the F2g mode of the cubic fluorite CeO2 structure. The
downshift of the F2g Raman peak is known to be related to the concentration of oxygen
vacancy. The redshift of the F2g mode band for the CP-CuCe sample from 463 to 451 cm−1

was larger than that of FSP-CuCe from 463 to 458 cm−1, indicating that the amount of
Cu incorporation in the CeO2 lattice, accompanied by the generation of oxygen vacancies
for charge balance [45], was greater for the former than the latter. Moreover, the bands at
223 and 570 cm−1, which are also ascribed to the evolution of oxygen vacancies, showed
the same trend. After reduction at 200 ◦C by CO, the F2g mode band of FSP-CuCe further
shifted to 453 cm−1 and then turned back to 458 cm−1 after reaction, while changes were
observed in the same process for CP-CuCe. This demonstrated that the surface oxygen was
easier reduced and oxidized in the different atmospheres for FSP-CuCe, exhibiting higher
redox capability in the aspect of mobile oxygen. It appears that the CP-CuCe catalyst could
create more surface oxygen vacancies than FSP-CuCe in the fresh sample state; however,
more oxygen vacancies will be formed in the reduction or reaction atmosphere for the latter,
as discovered in the following sections.
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2.3.2. CO-TPR

The reduction behavior of the catalysts was studied by CO-TPR technique since CO
was the only reductant in the reaction. From Figure 6a, the reduction of bulk CeO2 does not
occur until 800 ◦C, while the mixture of CuO and CeO2 powders exhibits two reduction
peaks at low temperatures. The peak at 142 ◦C can be assigned to the reduction of small
clusters on the surface CuO particles, and the one at 167 ◦C was derived from the bulk CuO
phase. In comparison, only one symmetrical peak can be observed for the FSP-CuCe catalyst
at 190 ◦C, which was much higher than that for CuO, implying that a strong interaction was
formed between highly dispersed copper oxide and ceria. Moreover, this interaction can
be further enhanced during the reaction, given that the reduction temperature of the used
FSP-CuCe sample was increased to 230 ◦C. On the contrary, for CP-CuCe, the reduction
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process occurred at about 300 ◦C and lasted to 800 ◦C without any observation of Cu species
at low temperatures. The enhanced reducibility of lattice oxygen in CeO2 was probably
attributed to the incorporation of Cu and the generation of lattice distortion.
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2.3.3. Oxygen Storage Capacity

The oxygen storage capacity (OSC) of samples is regarded as one of the most im-
portant parameters to evaluate mobile oxygen [46,47]. After oxidation pretreatment by
5%O2/He, a CO pulse was conducted and the CO2 generation signal was monitored by
mass spectroscopy at three different temperatures, as illustrated in Figure 6b. The OSC
was enhanced by increasing the operating temperature from 483 to 824 µmol/g for the
FSP-CuCe catalyst, which was higher than that of CP-CuCe, especially at low temperatures.
The mobile oxygen played an important role in NO reduction activity, which might be the
reason that FSP-CuCe could reach 90% N2 selectivity, while it was only 5% for CP-CuCe
sample in the same conditions. Much higher OSC at low temperatures was attributed to
the strong interaction between highly dispersed copper oxide and ceria, which could play
a significant role in catalytic activity [48].

2.3.4. NO Pulse

Generally, NO reduction by CO is a two-step reaction: CO + 2NO → N2O + CO2
and CO + N2O→ N2 + CO2 [49], where N2O is the main by-product of incomplete NO
reduction, especially at low temperatures (below 300 ◦C) [50]. Therefore, it is essential to
control the generation of active O from NO dissociation and the reduction of lattice oxygen
by CO, requiring a high regeneration rate of oxygen vacancies to promptly remove active
O. NO pulse chemisorption was conducted to evaluate the rate of NO dissociation and
oxygen transfer by monitoring the products, as shown in Figure 7a,b. N2 and N2O were
the main products when introducing NO for all tested samples. Total consumption of
NO for FSP-CuCe and CP-CuCe were 320 and 259 µmol[NO]/g, respectively. From the
residue NO signal, it can be found that the FSP-CuCe sample could convert more NO in one
pulse at the beginning with N2 as the main product due to the abundant oxygen vacancies.
Then, the rate of NO consumption decreased to a low level and kept constant according
to the observation of products in the last pulse. It is worth noting that the generation of
by-product N2O was low in all pulses, revealing that the rate of NO dissociation decreased
with the decrement in oxygen vacancies. On the contrary, the signal of N2 decreased
and N2O became the main product with oxygen vacancies consumption in the CP-CuCe
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sample. The NO dissociation rate was still high with the lack of oxygen vacancies, leading
to a large amount of N2O emission instead of N2. This implied that the appropriate NO
dissociation and quick oxygen vacancies generation were essential for the redox cycle,
preventing the recombination of redundant active O and N into N2O. To further investigate
the reduction behavior of N2O, N2O pulse chemisorption was also conducted at 200 ◦C, as
shown in Figure 7c,d. The rate of N2O reduction into N2 was quicker on FSP-CuCe than on
CP-CuCe. The total consumption of N2O was 160 and 95 µmol[N2O]/g for FSP and CP
catalysts, respectively, demonstrating that the former was more active in both NO and N2O
conversion than the latter.
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Figure 7. Monitoring of NO consumption and product formation during NO pulses by the mass
spectrometer at 200 ◦C over (a) FSP-CuCe and (b) CP-CuCe catalysts. Monitoring of N2O consump-
tion and N2 formation during N2O pulses by the mass spectrometer at 200 ◦C over (c) FSP-CuCe
and (d) CP-CuCe catalysts. The samples were firstly reduced by CO at 200 ◦C, then 5%NO/He or
5%N2O/He was pulsed into the reactor.
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2.4. Surface Species Identification
2.4.1. N2O Pulse Chemisorption

N2O is usually used for the measurement of exposed metallic Cu active sites on the
surface of catalysts due to the partial oxidation of Cu0 to Cu+ species by the reaction of
Cu + N2O → Cu2O + N2 at low temperature. Therefore, the N2O pulse chemisorption
was also conducted at 50 ◦C to evaluate the active Cu sites on the surface. As shown in
Figure 8, N2O was obviously converted into N2 for FSP-CuCe, while no clear reduction of
the N2O signal can be detected for the CP-CuCe sample even in the first pulse. The total
N2O consumption for them was 109 and 2µmol[N2O]/g, respectively. This revealed that
there were no metallic Cu species on the surface of CP-CuCe after CO reduction at 200 ◦C,
leading to the lack of active sites for NO and CO activation. This result was consistent with
CO-TPR, where the reduction of Cu species was undetectable.
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Figure 8. Monitoring of N2O consumption and N2 formation during N2O pulses by mass spectrome-
ter at 50 ◦C over (a) FSP-CuCe and (b) CP-CuCe catalysts. The samples were firstly reduced by CO at
200 ◦C, then 5%N2O/He was pulsed into the reactor 12 times.

2.4.2. XPS

XPS was conducted to study the chemical state of the elements and oxygen species via
Ce 3d and O 1s spectra. As shown from Ce 3d spectra in Figure 9a, six peaks (v, v” and v′ ′ ′

of Ce 3d5/2 as well as u, u” and u′ ′ ′ of Ce 3d3/2) can be assigned to Ce4+ species, while v′

and u′ features (marked with orange) belonged to Ce3+ species [51]. The reduction degree
of ceria can be estimated by the Ce3+ content in total Ce [52]. The XPS spectra in the O 1s
region can be deconvoluted into two peaks, as shown in Figure 9b. The main peak Oα at
529.1–529.4 eV is assigned to the characteristic lattice oxygen bonding to the metal cations
(dyed in green), while Oβ with higher binding energy at 531.1–531.4 eV represented the
surface chemisorbed oxygen such as O2−, O− or adsorbed oxygen species from hydroxyl
or water species on the surface (dyed in orange) [53,54]. From the summary of the fitting
results in Figure 9c, the percentages of reduced cerium ions (Ce3+) for the studied samples
were more or less the same for both FSP- and CP-made CuCe samples, and they can remain
stable during redox cycles in reaction. Although the Cu species were different produced by
FSP and CP methods, the enhancement of surface Ce3+ species was similar, indicating that
the Cu particles on the surface could also create Ce3+ species through the metal–support
interface. It has been reported that the formation of surface chemisorbed oxygen Oβ

was essential for redox reactions by enhancing oxygen mobility of the catalysts [55]. The
active Oβ species can remain stable during reaction in the CP-CuCe catalyst, while they
were greatly enhanced from 18.5% to 39.3% during reaction for FSP-CuCe. Therefore, it
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is expected that the enhanced oxygen mobility of the FSP-CuCe catalyst results in high
activity for NO + CO reaction, especially in the second-round test.
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The XPS spectra of Cu 2p are presented in Figure 10a for the fresh and used FSP-CuCe
samples, as well as the used one with Ar+ ion etching treatment to eliminate the effect of
oxidation in the air on the valence state of Cu species. Usually, Cu2+ has an observable
collection of satellite features between 939.0 and 945.8 eV. The presence of reduced Cu
species can be estimated by the ratio between the intensity of the shake-up satellite peak
and the main Cu 2p3/2 peak (0.55) [56]. For all measured samples, the peaks for Cu 2p3/2
(933.7 eV) were much larger than the satellite peaks, indicating that they contained both
Cu2+ and reduced Cu species (Cu0 and Cu+). The fitting for Cu 2p was performed following
the split spin–orbit rules with a distance of 19.75 eV and an intensity ratio of 0.508. The
one that belonged to Cu2+ was marked as orange with a center at about 933.5 eV, while the
reduced Cu species were in blue at about 932.5 eV. The distinction of Cu0 and Cu+ species
was further performed by Cu LMM Auger peaks at 918.6 and 916.8 eV (Figure 10b). The
content of different Cu species is summarized in Figure 10c. Almost half of Cu species
were in a +2 oxidation state accompanied by 30% Cu+ in the fresh FSP-CuCe sample.
Moreover, a significant reduction of Cu2+ to Cu+ was observed during the reaction since
the Cu+ was increased to 43.1% after the reaction. From the comparison to the etched
sample, Cu+ species were stable even when exposed to the air, while Cu0 was more readily
oxidized to CuO. It was reported that the existence of Cu+ can be attributed to its bigger
electronegativity due to the shift of electron conversion redox equilibrium from Ce3+ to
Cu+ [57]. Then, the formation of low-valent state Cu species can effectively promote the
reduction of Ce4+ species to Ce3+ species. This redox process of Ce4+/Ce3+ at the interfacial
position could also be connected with the formation of the defect structure with oxygen
vacancies, resulting in the enhancement of oxygen mobility.
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Figure 10. (a) XPS spectra of Cu 2p and (b) Auger electron spectroscopy (AES) of Cu LMM over
fresh and used FSP-CuCe, as well as the used one with etching treatment. (c) Summary of surface
compositions of different Cu species derived from XPS spectra.

Based on the above analysis, the reaction mechanism was proposed for NO reduction
by CO over the FSP-CuCe catalyst. On one hand, the mobility of oxygen was enhanced due
to the active interfacial created by the strong interaction between Cu particles and the CeO2
support by the redox equilibrium between Ce3+ and Cu+, resulting in the promotion of
active O removal and the suppression of by-product N2O formation. This strong interaction
was attributed to the FSP method, where small liquid droplets were firstly produced by a
high-speed gas flow and then decomposed into nanoparticles via combustion at extremely
high temperatures (about 2000 ◦C) [58]. The following rapid quenching with the help of
high-speed flowing air and cooling water [59] was used to inhibit particle growth due to
sintering. The direct production of catalyst powder in one step without further calcination
would benefit the distortion structure. On the other hand, the metallic Cu formed during
the FSP method was an active site of NO dissociation and CO activation, which also
facilitated the conversion of NO at low temperatures. It has been reported that the finely
dispersed species possessed the highest activity, better than the bulk CuO, while the Cu2+

in the CeO2 lattice was the lowest [60]. Therefore, although the doping of Cu in the CeO2
lattice facilitated the oxygen storage capacity, the synergistic effect of Cu active sites and
the mobile oxygen on the surface was essential for the excellent catalytic performance of
the FSP-CuCe catalyst.

3. Materials and Methods
3.1. Materials Preparation

Flame spray pyrolysis (FSP) method. The FSP samples were prepared by using the
homemade set-up reported in our previous work [38]. Appropriate amounts of cerium
(III) 2-ethylhexanoate (49% in 2-ethylhexanoic acid, 12% Ce) and copper (II) acetate were
dissolved in a mixture of xylene and 2-ethylhexanoic acid (volume ratio = 1:1). The total
concentration of Ce + Cu in the liquid precursor was set at 0.5 M. The precursor was fed
to the flame using a syringe pump (TYD02, LEAD FLUID) with a rate of 5 mL/min and



Catalysts 2022, 12, 432 12 of 15

dispersed by oxygen (feed rate 3.5 L/min and pressure 1.5 bar). The flame was ignited
by premixed methane (0.6 L/min) and oxygen (1.9 L/min) issued from an annular gap.
The product particles were blown up with the assistance of a vacuum pump and collected
by a water-cooled glass fiber filter (Whatman GF 6, 240 mm in diameter) on the top. The
catalysts with different Cu contents (1 wt % and 10 wt %) are denoted as FSP-CuCe(1) and
FSP-CuCe(10). The FSP-CuCe(10) sample is simplified as FSP-CuCe in the characterizations.

Co-precipitation (CP) method. Adequate amounts of cerium (III) nitrate and copper
(II) nitrate were dissolved in deionized water to a total cation concentration of 0.3 mol/L.
Then, the (NH4)2CO3 solution (1 mol/L) was slowly added to the above solution at 50 ◦C
with continuous stirring until the pH value reached 10. The suspensions were aged for
another 2 h at 50 ◦C. Then, the solution was centrifuged at room temperature and washed
until pH = 7.0. The obtained precipitate was dried at 110 ◦C for 12 h and calcined in air at
500 ◦C for 4 h. The catalysts with different Cu contents (1 wt % and 10 wt %) are denoted
as CP-CuCe(1) and CP-CuCe(10). The CP-CuCe(10) sample is simplified as CP-CuCe in the
characterizations.

3.2. Catalytic Performance

Catalytic activity test. Catalytic tests were carried out with a fixed-bed quartz reactor,
where 100 mg catalyst was held in the middle. Mixtures of NO, CO and He with different
concentrations (5 vol % NO, 5 vol % CO and 90 vol % He, as well as 1 vol % NO, 2 vol % CO
and 97 vol % He) were fed to the reactor at a flow rate of 25 mL/min. The outlet gas was
separated by a Porapak Q packed column with a heating program and analyzed by an
online GC with a TCD detector.

3.3. Characterizations

Powder X-ray diffraction (XRD) patterns were recorded on an X’Pert Pro (PANalytical
XRD, X’Pert Pro MPD, Almelo, the Netherlands) diffractometer with Cu Kα radiation at
40 kV and 40 mA over a 2θ range from 5◦ to 80◦. The surface morphology of catalysts
was characterized by scanning electron microscopy (SEM, JSM-7800F, JEOL, Tokyo, Japan).
Transmission electron microscopy (TEM) was carried out with a JEM 2100 microscope
with an accelerating voltage of 200 kV. Raman spectra were collected on a Renishaw
inVia Laser Raman spectrometer using an Ar+ laser beam. The Raman spectra were
recorded using a Bruker Optics Raman spectrometer with a laser excitation energy of
532 nm and a laser power of 2 mW. The oxygen storage capacity (OSC) was measured
by the BELCAT II Chemisorption analyzer. Then, 10 mg catalysts were pretreated in
5%O2/He for 30 min and 996 µL 5%CO/He was pulsed into the reactor 12 times at different
temperatures (200, 300 and 350 ◦C) via monitoring the CO and produced a CO2 signal
(m/z = 28 and 44, respectively) from a Pfeiffer OmniStar mass spectrum. The amount
of CO consumed during all the pulse experiments is referred to as the total OSC. X-ray
photoelectron spectroscopy (XPS) was tested on a Thermo ESCALAB 250XI equipment
with Al Kα X-ray source (hv = 1486.6 eV and passing energy of 30 eV). Adventitious C
1s (284.8 eV) was used to compensate for the surface charge effects. NO pulse and N2O
pulse experiments were performed on the same chemisorption analyzer. Firstly, 20 mg
of the sample was pretreated in CO at 200 ◦C for 30 min. Then, 5%NO/He was pulsed
into the reactor 12 times (996 µL per pulse) at the same temperature. For the N2O pulse
experiment, 5%N2O/He was pulsed into the reactor 12 times (996 µL per pulse) at both
50 ◦C and 200 ◦C. The N2, N2O and NO signals (m/z = 28, 44 and 30, respectively) were
recorded by a mass spectrometer.

4. Conclusions

We established a Cu-Ce catalyst with strong metal–support interaction between highly
dispersed copper oxide and ceria in one step by the FSP method. NO conversion reached
100% at as low as 100 ◦C; then, the formation of by-product N2O was effectively suppressed
with increasing temperature and undetectable at 200 ◦C. Moreover, high stability of the
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FSP-Cu-Ce catalyst without any detection of deactivation was achieved, while NO conver-
sion decreased from 100% to 77% in the same condition for the catalyst made by the CP
method. Characterizations revealed that surface Cu oxides could be partially reduced and
incorporated into CeO2 lattice at the interface of FSP-CuCe during the reaction, strengthen-
ing the synergistic effect of N−O bond activation and oxygen transfer. NO dissociation and
the subsequent oxygen transfer through oxygen vacancies were remarkably accelerated at
low temperatures due to the formation of active interfacial sites. The flame technology is
thus demonstrated to be an efficient way to fabricate active and stable Cu-based catalysts,
which is promising in the reduction or substitution of noble metals in NOx elimination.
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