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Abstract: A Brönsted acidic ionic solid pyridinium-functionalized organosilica network (PMO-Py-IL)
was demonstrated to efficiently catalyse one-pot Biginelli condensation reaction. The green synthesis
of 3,4-dihydro-2(H)-pyrimidinones (DHPMs) with high yield was carried out via one-pot three
component condensation of β- dicarbonyls, aldehydes, and urea in the presence of a catalytic amount
of PMO-Py-IL nanomaterial as an efficient nanocatalyst under solvent free conditions. Furthermore,
the catalyst showed outstanding stability and could be easily separated and reused for at least ten
reaction runs without significant loss of activity and product selectivity. The green protocol features
simple set-up, cost-effectiveness, easy work-up, eco-friendly and mild reaction conditions.

Keywords: biginelli reaction; dihydropyrimidines; pyridinium-functionalized organosilica;
reusable nanocatalyst

1. Introduction

3,4-Dihydro-2(H)-pyrimidinones (DHPMs) are one of the most biologically important
families of nitrogen-containing heterocycles in natural and synthetic chemistry [1]. The
pyrimidine ring system could be naturally found in vitamins such as thiamin, folic acid and
riboflavin; nucleic acids such as uracil, thymine, and cytosine, and alkaloids such as het-
eromine and manzacidin [2]. DHPMs have been found to exhibit distinct pharmacological
and biological activities such as being anti-tumor [3], anti-cancer [4,5], anti-inflammatory [6],
anti-viral [7], anti-fungal [8], and as calcium channel blockers [9,10]. Furthermore, the
industrial applications include their use as additive to agrochemicals, dyes, and organic
compounds [11]. Some examples of biologically and pharmacologically active dihydropy-
rimidine derivatives such as [bis(2-chloroethyl)amino] pyrimidine-2,4(1H,3H)-dione (Ura-
mustine), 5-fluoro-1-(tetrahydro-2-furyl)pyrimidine-2,4(1H,3H)-dione (Tegafur), 4-amino-1-
β-darabinofuranosyl pyrimidine-2(1H)-one (Cytarabine), 5-Fluoropyrimidine-2,4(1H,3H)-
dione (Fluorouracil), 1,2,3,6-Tetrahydro-2,6-dioxo pyrimidine-4-carboxylic acid (Orotic
Acid), and 5-Bromo-2′-deoxyuridine-5-bromo-1-(2-deoxy-β-D-ribofuranosyl) pyrimidine-
2,4-(1H,3H)-dione (Broxuridine) are shown in Figure 1.

One-pot Biginelli condensation reaction is the original procedure for the synthesis of
DHPMs reported by Biginelli in 1891. This procedure involved reaction of β-dicarbonyl
compounds, aromatic aldehydes, and urea under strongly acidic conditions [12–15]. Big-
inelli reaction was carried out by refluxing a mixture of the three components such as
ethyl acetoacetate, benzaldehyde, and urea in the presence of ethanol catalyzed by hy-
drochloric acid which often resulted in poor to moderate yields of desired products. Due
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to remarkable biological and pharmacological activities and versatile use of DHPMs, the
synthesis of DHPMs has been revalued. Several improved synthetic methodologies for
the Biginelli condensation have recently been developed by employing various catalysts
such as p-toluenesulfonic acid [16], Ni(II) coordination complex [17], chloroacetic acid [18],
TiCl4 [19], RuCl3 [20], Sc(OTf)3 [21], Co(OAc)2 [22], sulfated zirconia [23], FeCl3.6H2O [24],
MgBr2 [25], NbCl5 [26], Yb(OTf)3 [27], InCl3 [28], CuCl2 [29], SnCl2 [30], BF3.OEt2 [31],
ZrCl4 [32], ZnCl2 [33], TMSOTf [34], CdCl2 [35], CH3SO3H [36], Iron(III) [37], SmI2 [38],
Pb(NO3)3 [39], Ba(OH)3 [40], solvent-free synthesis [41], microwave irradiation [42], ultra-
sound radiation [43], visible light irradiation [44], Brønsted acidic ionic liquid [45], solid
supported reagent [46–50], and enzymatic catalysts [51]. In spite of progress in the synthesis
of these compounds, however, some of the previously reported procedures have significant
drawbacks such as harsh reaction conditions, low product yield, use of expensive or toxic
reagents, laborious workup, and large amount of toxic wastes generation. Therefore, the
development of green, efficient, simple, clean, high yielding, mild, environmentally benign
and cost-effective approaches using reusable catalysts is highly desirable and is of utmost
importance for the synthesis of DHPMs.

Catalysts 2022, 12, x FOR PEER REVIEW 2 of 10 
 

 

 
Figure 1. Chemical structures of some biologically and pharmacologically active DHPMs. 

One-pot Biginelli condensation reaction is the original procedure for the synthesis of 
DHPMs reported by Biginelli in 1891. This procedure involved reaction of β-dicarbonyl 
compounds, aromatic aldehydes, and urea under strongly acidic conditions [12–15]. 
Biginelli reaction was carried out by refluxing a mixture of the three components such as 
ethyl acetoacetate, benzaldehyde, and urea in the presence of ethanol catalyzed by hy-
drochloric acid which often resulted in poor to moderate yields of desired products. Due 
to remarkable biological and pharmacological activities and versatile use of DHPMs, the 
synthesis of DHPMs has been revalued. Several improved synthetic methodologies for 
the Biginelli condensation have recently been developed by employing various catalysts 
such as p-toluenesulfonic acid [16], Ni(II) coordination complex [17], chloroacetic acid 
[18], TiCl4 [19], RuCl3 [20], Sc(OTf)3 [21], Co(OAc)2 [22], sulfated zirconia [23], FeCl3.6H2O 
[24], MgBr2 [25] , NbCl5 [26], Yb(OTf)3 [27], InCl3 [28], CuCl2 [29], SnCl2 [30], BF3.OEt2 [31], 
ZrCl4 [32], ZnCl2 [33], TMSOTf [34], CdCl2 [35], CH3SO3H [36], Iron(III) [37], SmI2 [38], 
Pb(NO3)3 [39], Ba(OH)3 [40], solvent-free synthesis [41], microwave irradiation [42], ul-
trasound radiation [43], visible light irradiation [44], Brønsted acidic ionic liquid [45], 
solid supported reagent [46–50], and enzymatic catalysts [51]. In spite of progress in the 
synthesis of these compounds, however, some of the previously reported procedures 
have significant drawbacks such as harsh reaction conditions, low product yield, use of 
expensive or toxic reagents, laborious workup, and large amount of toxic wastes genera-
tion. Therefore, the development of green, efficient, simple, clean, high yielding, mild, 
environmentally benign and cost-effective approaches using reusable catalysts is highly 
desirable and is of utmost importance for the synthesis of DHPMs. 

The activity of the heterogeneous catalysts with various supports is dependent on 
the size, morphology, surface area, and nature of the support. Among them, periodic 
mesoporous organosilicas (PMOs) with high loading of organic functional groups, high 
surface area, periodically ordered and tunable pores is most favorable and have various 
applications such as in adsorption, catalysis, separation, medicine, and advanced mate-
rials [52–57]. –Numerous organosilane precursors can be used to successfully form PMOs 
via surfactant-based sol-gel technique allowing a better control of the size, structure, and 
composition of the PMO materials for the specific application requirements. 

In continuation of our efforts towards sustainable development of highly efficient 
and recyclable catalysts for green chemicals synthesis [58–60] we have very recently de-
veloped a highly ordered porous PMO nanomaterial based on pyridinium ionic liquid as 
ionic solid catalyst (PMO-Py-IL), which showed excellent activity towards biodiesel 

Figure 1. Chemical structures of some biologically and pharmacologically active DHPMs.

The activity of the heterogeneous catalysts with various supports is dependent on
the size, morphology, surface area, and nature of the support. Among them, periodic
mesoporous organosilicas (PMOs) with high loading of organic functional groups, high
surface area, periodically ordered and tunable pores is most favorable and have various
applications such as in adsorption, catalysis, separation, medicine, and advanced materi-
als [52–57]. –Numerous organosilane precursors can be used to successfully form PMOs
via surfactant-based sol-gel technique allowing a better control of the size, structure, and
composition of the PMO materials for the specific application requirements.

In continuation of our efforts towards sustainable development of highly efficient and
recyclable catalysts for green chemicals synthesis [58–60] we have very recently developed
a highly ordered porous PMO nanomaterial based on pyridinium ionic liquid as ionic solid
catalyst (PMO-Py-IL), which showed excellent activity towards biodiesel production via
Fischer esterification [60]. Herein, we demonstrate the application of this efficient and
reusable nanocatalyst for one-pot three component Biginelli condensation reaction under
mild and eco-friendly conditions.
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2. Results and Discussion

The synthesis and characterization of ionic solid-acid hybrid nanomaterial with pyri-
dinium ionic liquid framework (PMO-Py-IL) was reported according to our recently pub-
lished work [60]. The growing interest towards the development of green reaction condi-
tions has motivated us to develop 3,4-dihydro-2(H)-pyrimidinones (DHPMs) via one-pot
three component condensation of β-dicarbonyls, aldehydes, and urea for further applica-
tion of PMO-Py-IL nanomaterials.

The catalytic activity of PMO-Py-IL nanocatalyst has been investigated in the reaction
of three-component condensation of ethyl acetoacetate, benzaldehyde and urea as a model
reaction. In order to optimize the reaction conditions, the effect of different reaction
parameters such as reaction time, reaction temperature, catalyst amount, and solvent were
evaluated, and results are summarized in Table 1. According to the results, blank runs (in
the absence of catalyst or solvent) provide a low yield of the product even after 2 h at 100
◦C (Table 1, Entries 1,2). We screened the effect of solvents such as acetonitrile (CH3CN),
ethanol (C2H5OH), dichloromethane (CH2Cl2), tetrahydrofuran (THF), and water (H2O)
using 10 mg of the PMO-Py-IL nanocatalyst in the model reaction under reflux conditions.
The excellent yield of the product was observed with C2H5OH (Entry 3), and the lowest
yield was observed in CH2Cl2 (Entry 4). It was found that the reaction was carried out in
excellent yield under solvent-free condition (Entry 9). Next, the effect of catalyst loading
on the reaction efficacy was studied. The reaction yield was found to be significantly
decreased at lower loading (Entry 10). In order to study the influence of the reaction
temperature, the model reaction was carried out at different reaction temperatures (Entries
11–14). Interestingly, excellent yield of product was obtained at 50 ◦C. Further studies
were done to optimize the reaction time. As displayed in Table 1 (Entries 15–18), it was
observed that the PMO-Py-IL nanocatalyst showed the highest product yield within the
short time span (of 15 min), utilizing 10 mg of the PMO-Py-IL nanocatalyst under solvent
free conditions.

Table 1. Effect of different parameters on the Biginelli reaction of ethyl acetoacetate (10 mmol),
benzaldehyde (10 mmol), and urea (12 mmol).

Entry PMO-Py-IL
(mg) Solvent Temp.

(◦C)
Time
(min)

Yield
(%) a

1 - - 100 120 20
2 - C2H5OH Reflux 120 28
3 10 C2H5OH Reflux 120 95
4 10 CH2Cl2 Reflux 120 42
5 10 THF Reflux 120 54
6 10 H2O Reflux 120 82
8 10 CH3CN Reflux 120 58
9 10 - 80 120 99

10 8 - 80 120 88
11 10 - 70 120 84
12 10 - 60 120 87
13 10 - 50 120 99
14 10 - 40 120 70
15 10 - 50 60 98
16 10 - 50 30 98
17 10 - 50 15 98
18 10 - 50 10 91

a Isolated yields.

To evaluate the scope and limitation of the process, a series of DHPMs were synthe-
sized via one-pot Biginelli condensation reaction under optimized conditions (Scheme 1).
As shown in Table 2, various aromatic aldehydes were reacted with -dicarbonyls and urea
to give desired DHPM products in high yields under optimal reaction conditions.
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Scheme 1. PMO-Py-IL catalyzed the one-pot Biginelli condensation reaction.

Table 2. Synthesis of dihydropyrimidones catalyzed by PMO-Py-IL nanocatalyst under solvent
free conditions.

Entry R1 R2 Product Yield (%) a M.P(◦C)
[Ref.]

1 C6H5 OEt 4a 98 201–203 [16]

2 4-NO2-C6H4 OEt 4b 94 211–213 [16]

3 4-Cl-C6H4 OEt 4c 92 210–212 [16]

4 2-OH-C6H4 OEt 4d 80 217–219 [16]

5 2-Cl-C6H4 OEt 4e 82 220–223 [16]

6 4-OCH3-
C6H4

OEt 4f 84 201–203 [16]

7 C6H5 OMe 4g 96 221–223 [16]

8 4-NO2-C6H4 OMe 4h 92 233–235 [16]

9 4-Cl-C6H4 OMe 4i 85 154–156 [16]

10 2-OH-C6H4 OMe 4j 78 243–244 [45]

11 2-Cl-C6H4 OMe 4k 82 249–252 [16]

12 4-OCH3-
C6H4

OMe 4l 80 232–233 [16]

13 C6H5 Me 4m 98 231–233 [45]

14 4-NO2-C6H4 Me 4n 93 229–230 [45]

15 4-Cl-C6H4 Me 4o 90 204–206 [45]

16 2-OH-C6H4 Me 4p 82 215–217 [45]

17 2-Cl-C6H4 Me 4q 85 201–203 [45]

18 4-OCH3-
C6H4

Me 4r 84 172–174 [45]

a Isolated yield.

From the data presented in Table 2, it is clearly observed that the method was effective
for both electron-withdrawing groups and electron-donating in the aromatic ring of the
aldehydes. When reaction was carried out using aliphatic aldehydes such as acetaldehyde
and propanal, a trace of corresponding dihydropyrimidone product was obtained even
after 3 h.

To evaluate the heterogeneity of PMO-Py-IL and leaching of active species from the
support, a hot filtration test was performed during the Biginelli reaction of three-component
ethyl acetoacetate, benzaldehyde, and urea under optimized conditions. PMO-Py-IL
nanocatalyst was removed by hot filtration after 6 min, and the filtrate solution was further
left to react after catalyst filtration for 30 min. No Biginelli condensation reaction progress
was observed (monitored by GC) after catalyst filtration. The results confirmed that no
catalytically active species remained in the reaction solution and strong incorporation of
the active sites in the organosilica framework suppressed leaching of the active phase.
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In order to check the reusability and robustness of the PMO-Py-IL nanocatalyst, some
studies were performed to find the lifetime and recovery factors of the nanocatalyst in the
Biginelli reaction of three-component ethyl acetoacetate, benzaldehyde, and urea under
optimized conditions. After ten consecutive cycles, illustrated in Scheme 1, it was found
that reusable PMO-Py-IL nanocatalyst can be fully recyclable and showed outstanding
structural stability maintaining the catalytic activity to around 90% of its initial activity
under studied conditions. The SEM image presented in Figure 2 confirmed that the uniform
cylindrical/spheroidal shape structure of porous pyridinium trifluoroacetate organosilica
(PMO-Py-IL) after ten runs was similar to reported pristine PMO-Py-IL materials. Moreover,
XRD analyses of PMO-Py-IL nanocatalyst before and after recycling were shown in Figure 3.
The patterns are identical, and no obvious change was observed, which could be further
evidence of the strong stability of the PMO-Py-IL nanocatalyst.
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We further compared the catalytic performance of PMO-Py-IL nanocatalyst with
reported catalysts for the synthesis of DHPMs. As can be seen in Table 3, our recoverable
catalytic system possesses good activity, as compared to those of previously reported
heterogeneous catalytic systems; the results obtained using the method described herein
provides a more environmentally benign and economically attractive system.
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Table 3. Comparison of catalytic activities in the Biginelli condensation reaction of benzaldehyde,
ethyl acetoacetate, and urea using heterogeneous catalysts under solvent-free conditions.

Entry Catalyst T (◦C) Time Conversion
(%) Ref.

1 PMO-Py-IL (0.002 g) 50 15 min 98 This work
2 Cu@SBA-15 (0.01 g) 100 5 min 94 [50]
3 TSA/bent (0.09 g) 80 5 h 86 [61]
4 TSILS (ionic liquids) 90 10 min 94 [62]
5 PTA@MIL-101 (0.6 mol%) 100 60 min 90 [63]
6 PMo7W5/kaolin (20%) 100 8 min 95 [64]
7 β-Cyclodexterin (0.5 mol%) 100 180 min 85 [65]
8 NH4H2PO4/MCM-41 (0.04 g) 100 6 h 72 [66]
9 40% w/w WSi/A-15 (0.05 g) 92 4.5 88 [67]
10 Nano-γ-Al2O3/BF3/Fe3O4 (0.008 g) 80 30 min 95 [68]

3. Experimental Section
3.1. General Remarks

All solvents and chemicals were used as received without further purification. The
melting points were measured with an Electrothermal model 9100 apparatus. FTIR spectra
were obtained using a Shimadzu 4300 spectrophotometer. The 1H NMR and 13C NMR
spectra were recorded in DMSO-d6 on Bruker DRX-300 Avance spectrometers. Proton
chemical shifts (δ) were reported in ppm and were referenced to the NMR solvent (a septet
centered at 39.52 ppm in 13CNMR related to DMSO-d6). The scanning electron microscope
(SEM) images were produced utilizing a Jeol JSM 6490 LA field emission device with an
acceleration voltage of 15 kV.

3.2. Synthesis of PMO Materials Bearing Protic Pyridinium Ionic Liquid (PMO-Py-IL)

PMO-Py-IL was synthesized following our previously reported work [60].

3.3. General Procedure for the Preparation of 3,4-dihydropyrimidin-2(1H)-Ones Using
PMO-Py-IL Nanocatalyst

In a typical experiment, a mixture of aldehyde (10 mmol), 1,3-dicarbonyl compound
(10 mmol), urea (12 mmol), and PMO-Py-IL nanocatalyst (10 mg) were heated at 50 ◦C
for 15 min under stirring and solvent-free conditions. Upon reaction completion, and
monitored by thin-layer chromatography (TLC), the resulting mixture was cooled to room
temperature and then hot ethanol (50 ◦C) was added to the mixture, and the heterogeneous
PMO-Py-IL nanocatalyst was separated by filtration. In order to study the reusability
of the PMO-Py-IL nanocatalyst, after the first reaction run, the PMO-Py-IL nanocatalyst
was separated from the reaction mixture by simple filtration. Then, the heterogeneous
PMO-Py-IL nanocatalyst was washed with water and ethanol, dried in vacuum, and reused
for the subsequent run. The final products were recrystallized from ethanol. All products
were analyzed by 1H NMR, 13C NMR, FTIR, and melting points. The melting points of the
product were matched well with literature reported data for the corresponding compounds.
The spectral data of some products (4a-r) are presented below:

5-(Ethoxycarbonyl)-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (4a): White crystal;
Mp 201–203 ◦C; FT-IR (KBr, cm−1) ν max 3244, 3115, 2977, 1724, 1647, 1464, 1290, 1220, 1090,
781, 698. 1H NMR (DMSO-d6) δ: 1.2 (3H, t, J = 7.2 Hz, OCH2CH3), 2.24 (3H, s, CH3), 3.967
(2H, q, J = 7.2 Hz, OCH2CH3), 5.136 (d,1H, J = 3 Hz, -CH), 7.314 (m, 5H, Ar-H), 7.68 (1H, s,
NH), 9.136 (1H, s, NH).13C NMR (DMSO-d6) δ: 14.5, 18.3, 54.4, 59.7, 99.7, 118.5, 126.7, 127.7,
128.9, 144.3, 149.2, 152.6, 165.8.

5-(Ethoxycarbonyl)-6-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one (4b): Col-
orless solid; Mp 210–212 ◦C; FT-IR (KBr, cm−1) ν max: 3235, 3118, 2976, 1727, 1648, 1610,
1462, 1391, 1214, 1091, 783, 697. 1H NMR (DMSO-d6) δ: 2.06 (3H, t, J = 7.2 Hz, OCH2CH3),
2.18 (3H, s, CH3), 2.41 (2H, q, J = 7.2 Hz, OCH2CH3), 5.23 (d,1H, J = 3.3 Hz, -CH), 7.49 (2H,
d, J = 8.4 Hz, Ar-H), 7.94 (1H, s, NH), 8.08 (2H, d, J = 8.4 Hz, Ar-H), 9.29 (1H, s, NH).13C
NMR (DMSO-d6) δ: 19.6, 31.1, 53.6, 109.9, 124.3, 128.1, 147.1, 149.6, 152.1, 152.5, 194.46.

5-(Ethoxycarbonyl)-4-(4-Chlorophenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (4c): Yel-
low powder; Mp 213–215 ◦C; FT-IR (KBr, cm−1) ν max: 3242, 3116, 2979, 1723, 1647, 1489,
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1291, 1220, 1088, 781, 492. 1H NMR (DMSO-d6) δ:1.08 (3H, t, J = 7.0 Hz, OCH2CH3),
2.46 (3H, s, CH3), 3.96 (2H, q, J = 7.0 Hz, OCH2CH3), 5.12 (1H, d, J = 2.7 Hz, -CH), 7.12–7.39
(4H, m, Ar-H), 7.72 (1H, s, NH), 9.19 (1H, s, NH). 13C NMR (DMSO-d6) δ: 14.5, 18.3, 53.9,
59.7, 99.3, 128.7, 128.9, 132.3, 144.3, 149.2, 152.4, 165.7.

5-(Ethoxycarbonyl)-6-methyl-4-(2-Chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (4e): Pale yel-
low powder; Mp 214–215 ◦C; FT-IR (KBr, cm−1) ν max: 3342, 3241, 2986, 1667, 1460, 1233,
1091,757. 1H NMR (DMSO-d6) δ:1.03 (3H, t, J = 7.0 Hz, OCH2CH3), 2.31 (3H, s, CH3), 3.91 (2H,
q, J = 7.0 Hz, OCH2CH3), 5.60 (1H, s, -CH), 7.25–7.28 (1H, m, Ar-H), 7.28–7.30 (2H, m, Ar-H),
7.39–7.70 (1H, m, Ar-H), 7.71 (1H, s, NH), 9.28 (1H, s, NH).

5-(Ethoxycarbonyl)-4-(4-methoxyphenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (4f): Pale
yellow powder; Mp 201–203 ◦C; FT-IR (KBr, cm−1) ν max: 3322, 3126, 2937, 1720, 1670, 1434,
1276, 1215, 1075, 801, 503. 1H NMR (DMSO-d6) δ: 1.07 (3H, t, J = 7.1 Hz, OCH2CH3), 2.20 (3H,
s, CH3), 3.72 (3H, s, OCH3), 3.95 (2H, q, J = 7.1 Hz, OCH2CH3), 5.23 (s, 1H, CH), 7.10 (2H, d, J
= 8.1 Hz, Ar-H), 7.36 (2H, d, J = 8.1 Hz, Ar-H), 7.88 (1H, s, NH), 9.07 (1H, s, NH). 13C NMR
(DMSO-d6) δ: 14.1, 18.0, 54.2, 60.4, 99.7, 121.8, 126.4, 130.3, 143.4, 146.0, 155.7, 166.3.

5-Acetyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (4m): White powder; Mp
221–223 ◦C; FT-IR (KBr, cm−1) ν max: 3332, 3223, 1697, 1667, 1414, 1340, 1239, 1094, 698. 1H
NMR (DMSO-d6) δ: 2.062 (3H, s, CH3), 3.322 (3H, s, OCH3), 5.242 (1H, s, -CH), 7.12–7.34
(m, 5H, Ar-H), 7.771 (1H, s, NH), 9.127 (1H, s, NH). 13CNMR (DMSO-d6) δ: 19.412, 30.801,
30.837, 54.312, 110.096, 126.919, 127.842, 129.011, 144.732, 152.749, 194.774.

5-Methoxycarbonyl-6-methyl-4-(4-Nitrophenyl)-3,4-dihydropyrimidin-2(1H)one (4h): White
powder; Mp 233–235 ◦C; FT-IR (KBr, cm−1) ν max: 3368, 3235, 3109, 2946, 1689, 1617, 1348,
1228, 1095, 855, 700. 1H NMR (DMSO-d6) δ: 2.31 (3H, s, CH3), 3.55 (3H, s, OCH3), 5.26 (1H,
s, CH), 7.46 (2H, d, J = 8.6 Hz, Ar-H), 7.89(1H, s, NH), 8.19 (2H, d, J = 8.6 Hz, Ar-H), 9.36
(1H, s, NH).

5-Methoxycarbonyl-6-methyl-4-(4-Chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (4i): Yel-
low powder; Mp 154–156 ◦C; FT-IR (KBr, cm−1) ν max: 3324, 3219, 3105, 1698, 1675, 1491,
1420, 1342, 1295, 1239, 1093, 938, 700. 1H NMR (DMSO-d6) δ: 2.13 (3H, s, CH3), 3.66 (3H,
s, OCH3), 5.24 (1H, s, CH), 7.03 (2H, d, J = 7.9 Hz, Ar-H), 7.35 (2H, d, J = 7.9 Hz, Ar-H),
7.88 (1H, s, NH), 9.23 (1H, s, NH). 13CNMR(DMSO-d6) δ: 14.1, 17.8, 54.9, 100.6, 122.5, 126.5,
130.3, 142.9, 146.0, 155.5, 166.7.

5-Methoxycarbonyl-6-methyl-4-(2-Chlorophenyl)-3,4-dihydropyrimidin-2(1H)one (4k): Pale
yellow powder; Mp 265–268 ◦C; FT-IR (KBr, cm−1) ν max: 3441, 3351, 3250, 1690, 1660,
1458, 1086, 960, 800, 462. 1H NMR (DMSO-d6) δ: 2.32 (3H, s, CH3), 3.51 (3H, s, OCH3), 5.57
(1H, d, J = 3.4 Hz, CH), 7.30–7.44 (4H, m, Ar-H), 7.53 (1H, s, NH), 9.32 (1H, s, NH).

5-Acetyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (4m): White powder; Mp 231–
233 ◦C; FT-IR (KBr, cm−1) ν max: 3268, 1702, 1675, 1599, 1493, 1236, 1106, 767, 704, 571.
1H NMR (DMSO-d6) δ: 2.09 (3H, s, CH3), 2.24 (3H, s, CH3), 5.22 (1H, d, J = 3.5 Hz, 1H),
7.17 (3H, d, J = 6.5 Hz, Ar-H), 7.22–7.34 (2H, m, Ar-H), 7.81 (1H, s, NH), 9.16 (1H, s,
NH).13CNMR(DMSO-d6) δ: 18.4, 30.2, 39.6, 54.0, 109.6, 126.5, 127.4, 128.6, 144.265, 148.1,
152.2, 194.3.

5-Acetyl-6-methyl-4-(4-Nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one (4n): White powder;
Mp 229–230 ◦C; FT-IR (KBr, cm−1) ν max: 3342, 3252, 3143, 1709, 1674, 1608, 1515, 1446,
1384, 1239, 1279, 1237, 1187, 1102, 862, 763, 698. 1H NMR (DMSO-d6) δ: 2.10 (3H, s, CH3),
2.25 (3H, s, CH3), 5.24 (1H, d, J = 3.4 Hz, 1H), 7.24 (2H, d, J = 8.4 Hz, Ar-H), 7.40 (2H, d,
J = 8.4 Hz, Ar-H), 7.84 (1H, s, NH), 9.21 (1H, s, NH).13CNMR(DMSO-d6) δ: 18.9, 30.5, 53.17,
109.6, 128.4, 128.6, 131.9, 143.3, 148.5, 152.1, 193.9.

5-Acetyl-6-methyl-4-(4-Chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (4o): Yellow pow-
der; Mp 204–206 ◦C; FT-IR (KBr, cm −1) ν max: 3288, 3121, 2915, 1699, 1618, 1424, 1322,
1262, 1236, 1091, 837, 789, 581. 1H NMR (DMSO-d6) δ: 2.13 (s, 3H), 2.29 (s, 3H), 5.257
(d, J = 3.2 Hz, 1H), 7.26 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.88 (s, 1H), 9.25 (s, 1H).

5-Acetyl-6-methyl-4-(2-Hydroxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (4p): Pale yellow
powder; Mp 204–208 ◦C; FT-IR (KBr, cm−1) ν max: 3240, 3096, 2982, 1682, 1603, 1584, 1503,
1173, 1113, 925, 867, 762.
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5-Acetyl-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (4r): Yellow pow-
der; Mp 172–174 ◦C. 1HNMR (DMSO-d6) δ: 2.073 (s, 3H), 2.275 (s, 3H), 3.72 (s, 3H), 5.19 (d,
J = 3.2 Hz, 1H), 6.87 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 7.71 (s 1H), 9.13 (s, 1H).

4. Conclusions

In summary, one-pot Biginelli condensation reaction for a series of aryl aldehydes,
β-dicarbonyls and urea using protic pyridinium functionalized hybrid mesoporous materi-
als (PMO-Py-IL) as catalyst in high yield and under solvent-free conditions was described.
Moreover, the catalyst showed superior stability and could be easily separated and reused
at least for ten Biginelli reaction cycles. The uniform cylindrical/spheroidal structure of
porous PMO-Py-IL nanomaterial was confirmed by the SEM image of the PMO-Py-IL nano-
material after ten reaction runs. The ultimate goal of present work was the development of
a cost-effective, green, sustainable, reusable, and simple and mild process for synthesis of
3,4-dihydro-2(H)-pyrimidinones (DHPMs).
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