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Abstract: Development of bio-based sorbents (i.e., chitosan moieties) at nanoscale size for the removal
of metal contaminants is the main target of this research. Grafting with thiazole heterocyclic derivative
gives fast kinetics sorption, highly metal loading, and good recyclability for mining leaching solution.
Different analyses tools including (thermogravimetric analysis (TGA), scanning electron microscope
and energy dispersive spectroscopy (SEM-EDX), X-ray diffraction (XRD), Fourier transform infrared
(FTIR), BET surface area (nitrogen sorption desorption), titration, and TEM (transmission electron
microscopy)) were used to investigate the chemical and textural properties of the functionalized
sorbent. The sorption was measured in normal visible light and under UV emission. The highest
capacity was measured at pH 5, which reached 0.251 mmol Pb g−1 in visible light compared with
0.346 mmol Pb g−1 under UV for the pristine crosslinked chitosan (MCc). The sorption performances
were improved by functionalization; (0.7814 and 1.014 mmol Pb g−1) for the functionalized sorbent
(MCa-ATA) under visible light and UV, respectively. PFORE (pseudo-first-order rate equation) and
RIDE (resistance to intraparticle diffusion) fit kinetics, the Sips equation is the most fit profile for
the sorption isotherms for the MCc in either light and UV processes, while PFORE and RIDE for
kinetics under light and UV for MCa-ATA and Sips in light and Sips and Langmuir under the UV
emission. Finally, the sorbent was investigated toward a raffinate solution from ore processing and
shows promising extraction tools for the most interesting elements.

Keywords: photocatalysis; bio-based materials; metal-contamination; nanoscale particles

1. Introduction

Water contamination is one of the significant problems facing most developing coun-
tries. The contamination sources are varied; most of them are derived from industrial
activities, agricultural discharges, population growth, and vast urbanizations [1,2]. Accu-
mulation of toxic and hazardous metals in the food chain, as well as their dramatic effects
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on human beings clearly explains the drastic need for controlling the contamination of
water and controlling the industries for limitation of their impacts on the surrounding
environment and water bodies [3,4].

Contaminated effluents contain highly toxic compounds such as residual dyes, chemi-
cals, heavy metals, salts, surfactants, and chlorinated substances that must be refined before
reuse [5] or in-plant irrigation [6]. The chemical treatment, physical methods (i.e., ozona-
tion, oxidations, adsorption, filtration, reverse osmosis, froth flotations, electrocoagulation,
and flocculation), or biological methods are extensively used for treatment processes, but
the main problems that face most of these methods are insufficient removal and the cost-
ineffectiveness [7]. These methods also require more time, non-biodegradable substances,
and the reverse effects of the toxic substances on the microorganisms, where biological
treatment is used [1,8].

Biopolymers and biosorbents have been used as efficient sorbents for heavy and
economically valued metal recovery [9–11]. The presence of polarized groups in the
biopolymers makes a profit for grafting and modification; among these groups are amine
and hydroxyl (in chitosan, [12]) or carboxylic groups (in alginate, [13,14]). These composites
have been used as encapsulating materials (through hydrogel formation [15–17]) and/or
for functionalization [18,19]. The presences of these functional groups (hydroxyl, carboxyl,
and amine groups) support a further reactivity for further chemical grafting.

Nanoparticles have attracted attention due to their fast kinetics and safe, unique
properties [20]. Recently, nanoparticles have been used in various fields such as medicine,
agriculture, the textile industry, pharmaceuticals, cosmetics, photocatalytic, and archeo-
logical manuscript preservation [21–26]. The nanoparticles were synthesized by several
procedures (physical, chemical, and biological methods) [27,28]. The use of the biological
route for NPs synthesis is a preferential method over others [29], due to its environmentally
friendly, easily scale-up, biocompatibility, and inexpensive process. The most familiar
NPs that are generated by this method include ZnO, Ag, Cu, Au, CuO, MgO, Fe2O3,
and Se [30,31].

Several processes can be used for the recovery of heavy metals, such as solvent
extraction [32–34], precipitation [35] (which are usually used for high-grade metal concen-
tration [36]), bioreduction [37], and electrochemical reduction [38]. Iron-core (magnetic
nano- or microparticles) [18,27,39] sorbents facilitate the sorption ability as well as facili-
tate the solid/liquid separation of the composite material. This magnetite core incorpo-
ration into biopolymer [40] and also polymers [41] allows separation of the sorbent at
the end step of sorption, while reducing the particle size, minimizing the mass transfer
properties [42–47], and improving the biological activities (i.e., imidazole and thiazole-
based ligands), as well as improving the selectivity and sorption capacity. Dhivya et al. [48]
investigated the inhibitory effects of the chitosan/magnetite NPs and magnetite NPs
against Escherichia coli KL226. On the other hand, Hamza et al., [49,50] studied the effect
of different doses of functionalized chitosan nano and microparticles on various strains
of Gram-positive, Gram-negative bacteria, and unicellular fungi, and also detect the MIC
(minimum inhibition concentration) values. Moreover, various biosynthesized NPs have
been used as a biocatalyst in the sorption of Cr ions from wastewater (real textile and
tannery effluents), dye removal, and heavy metal extraction [24,51].

The main hypothesis of the current study is the synthesis of functionalized chitosan to
investigate their efficacy in the sorption of Pb and other heavy metals in real contaminated
effluents under visible light and UV-emission. To accomplish this hypothesis, nano mag-
netite chitosan particles were synthesized and functionalized with thiazole carboxylic acid
derivative. Full physical and chemical characterization of synthesized bio-based sorbents
were achieved by FT-IR (Fourier transform infrared) spectroscopy, XRD (X-ray diffraction),
TEM (transmission electron microscopy), SEM-EDX (scanning electron microscope and
energy dispersive spectroscopy), and TGA (thermogravimetric analysis). Moreover, the
synthesized sorbent was used for the sorption of Pb(II) from synthetic solution and other
heavy metals from real contaminated effluents in the mining area through pH, uptake
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kinetics, and sorption isotherms, followed by studying the sorption from synthetic sim-
ulated nature solution under visible lights (L) and under UV emission to investigate the
photocatalytic properties.

2. Results and Discussion
2.1. Sorbent Characterization
2.1.1. Textural Properties—BET, TEM, XRD, and SEM-EDX

The TEM analysis (Figure 1A) of the sorbent was indicated as a thin layer of organic
particles over the magnetite NPs (dark spherical points); this was emphasized by the speed
sorption performances and the limitation of intraparticle diffusion. The average size of
the modified sorbent composite was closed to 10 µm (±2 µm), as shown from the SEM
analysis of the sorbent in Figure 1B. It is characterized by a folded and irregular surface.
From this Figure, it was shown that a randomness distribution of the magnetite throughout
the polymer, also the agglomeration of the magnetite particles (dark black points). The
type of dryness controls the physical properties that air-dry condition contributes to the
shrinking of the hydrogel, while the freeze-drying or the CO2 drying conditions save on
the polymer network [52,53].
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Figure 1. Transmission electron microscopy (TEM) (A), scanning electron microscope (SEM) (B), and
X-ray diffraction (XRD) (C) analysis of the MCa-ATA sorbent.

The N2 sorption/desorption isotherms were investigated by the BET surface area
technique. This analysis confirms a poorly porous surface with a high specific surface area
that ranged to 89.3 m2 g–1 for MCa-ATA. The porous volume was determined using the
BJH method, which ranged about 15.7 cm3 STP g–1 of this sorbent, while MCc sorbent was
recorded as 68.74 m2 g–1 and 13.99 cm3 STP g–1, respectively.
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Figure 1C represents the XRD diffraction pattern analysis of the MCa-ATA sorbent. The
magnetite was characterized by matching of nine peaks reported at 2θ = 18.2700, 30.2500,
35.5474, 37.3469, 43.1967, 57.0873, 62.6265, 81.4031, and 82.2235 degrees. These peak
signals corresponded to the magnetite (JCPDS: 01-077-1545). Table S1 shows the diffraction
patterns positions of the XRD peaks comparing to the reference file data. EDX analysis
emphasized the modification through the different stages of synthesis. The appearance
of the Cl ions (4.92%) in the sorbent surface verified the crosslinking and spacer arm
modification, whereas decreasing this percent to 0.16% verified the replacement reaction
with thiazole moiety. On the other hand, increasing the N percent from 4.17 to 7.89% as
well as the creation of S (with a percent of 4.17%) gives an indication of the successful
grafting of the heterocyclic moiety, as shown in Figure 2.
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2.1.2. TGA Analysis

The thermal degradation of sorbents was performed under a nitrogen atmosphere;
Figure S1 shows the data of TGA and DrTG curves for MCc and MCa-ATA. Three steps
were detected from the degradation profiles; the first stage for water release, which was
assigned at 235.2 ◦C and 233.1 ◦C for MCc and MCa-ATA, respectively, with an average
loss of about 9.89 and 8.848%. The second loss was limited for MCc than for functionalized
sorbent, which performed at 279.2 ◦C for MCc with a loss of 19.1% and to 463.9 ◦C for
MCa-ATA with a loss of 34.508%. This loss is related to the depolymerization of the chitosan
backbone and the crosslinking bonds of amides. The last step in the thermal degradation
was owed to the pyrolysis to char formation [54]. The weight loss of both polymers was
17.877 and 30.21% for MCc and MCa-ATA, respectively. This data was identical to those
obtained by Gad [55], who found that the stability of copolymer is much more than homo
one (pure components). The total loss from the pyrolysis is close to 46.9 and 73.566% for
MCc and MCa-ATA, respectively.
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2.1.3. FTIR Spectroscopy

The FTIR spectra are shown in Figure 3 for the sorbents (MCc and MCa-ATA), after
Pb(II) sorption, and after the five sorption and desorption cycles. The broadness peaks at
3427, 3447, 3425, and 3412 cm−1 for MCc, MCa-ATA, MCa-ATA+Pb, and after five cycles
of sorption desorption, respectively, were related to OH and NH stretching bands, while
those at 3197 cm−1 and 3185 cm−1 for MCa-ATA before and after desorption, respectively,
was related to C-H of polysaccharide stretching bands. The peaks in the range of 2800 to
2900 cm−1 were correlated to C-H vibration stretching. The C=O of the chitosan and the
high intensity of this peak relate to the C=O, and C=C in the heterocyclic grafted moieties
that are overlapped at 1638 and 1620 cm−1, respectively. The intensity of this peak becomes
decreased as Pb(II) sorption is performed, which appeared at 1621 cm–1, then was restored
as the desorption process was performed at 1610 cm−1 with increasing intensity. The
NH bending vibration was confirmed at 1513 cm−1 for MCa-ATA and disappeared for
loaded sorbent, then returned to appear at 1511 cm−1 after desorption; this confirms the
participation of the NH groups in the sorption mechanism. Other peaks are listed in Table 1
for MCc, MCa-ATA, after sorption, and after five cycles, which emphasize the successive
modification and effective sorption as well as stability of the sorbent after desorption cycles
by restoring the peaks.
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2.1.4. Elemental Analysis

Table S2 reports the elemental analysis components of the MCc and MCa-ATA; the
appearance of the sulfur element as grafting occurred of thiazole moieties on chitosan,
confirmed the successive and effective grafting. It is noteworthy that as grafting was per-
formed, the N content was increased from 3.51 mmol N g−1 for MCc to 4.63 mmol N g−1 for
MCa-ATA, while little increase in the O contents was noticed (i.e., from 20.114 mmol O g−1

to 20.65 mmol O g−1, respectively), this is the other evidence for successive grafting of
thiazole moieties. The EDX analysis (see Figure 2) indicates the perfect modifications
through the appearance of Cl and S in the spacer arm and for the heterocyclic moieties
grafting, respectively.
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Table 1. Assignments of FTIR peaks for MCc and MCa-ATA before and after sorption and after five
cycles of sorption desorption for Pb(II).

Assignment MCc MCa-ATA Loaded Elution 5 Cycles Ref.

O-H overlapped with N-H str. 3427 3447, 3197 33,425 3412, 3185 [56–58]
C-H str. 2917, 2850 2921, 2853 2914, 2857 2919, 2849 [59]
C=O str. 1638 1620 1621 1610 [57,60,61]

N-H bend. 1513 1511 [62]
CH3 symm. def., C-N str. 1383 1387, 1301 1385 [57,60,63]

C-O-C asymm. str., C-O str, and C-N str. 1117 1219, 1129 1297 [56,61,64]
CO str. 1000 1027 1014 [56]

Skeletal C-O str. 1019 [56,57]
C-O- epoxy 886 887 [60]
C-O-S str. 720 [64]

-(CH2)n rocking and O-H out of plane bend.,
and/or C-S 572 633 (broad) 587 (broad) 616 [63,65–67]

2.1.5. pHPZC

Figure 4 shows the pHPZC values of the sorbents before and after modifications by
heterocyclic moiety; this was investigated using the pH-drift titration method. It was found
to be close to 6.16 and 5.3, respectively, by using 0.1 M NaCl. On the other hand, the
sorbents remained protonated (completely or partially) at pH less than 6.16 for MCc and
5.3 for MCa-ATA. Above this pH, the sorbents were completely deprotonated, in which
the electron pairs on N, O, or S were completely available, and it was negatively charged.
The pH effects and the other experiments on the sorbents (either MCc or MCa-ATA) were
partially protonated (especially for MCc), and this allowed the tautomerization properties
of the NH, S, and C=O for intra-rearrangements, as shown in Figure S2.
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The pHPZC was influenced by the components that were used in the synthesis, in which
the pKa for the amine groups in chitosan base was around 6.4–6.7. For the modified sorbent,
the thiazole moiety bearing an acidic carboxylic was the main acidic characterization; the
pKa of thiazole was around 2.5, while 2-amino-5-thiazole acetic acid was close to 3.2.
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2.2. Sorption Properties
2.2.1. Effect of pH on the Sorption Properties

pH is the main parameter that had a strong impact on metal sorption in the aquatic
medium associated with the metal speciation (charge of metal ions and the hydrolyzed
species) and to the charge surface of the sorbent functional groups, of the physicochemical
properties (as in protonation/deprotonation). Figure 5 shows the effect of the pH on
the Pb(II) sorption using MCc and MCa-ATA under visible light (L) and UV in studies
of photocatalytic properties. The curves have the same sorption profiles with different
sorption capacities, in which at low pH values (1–3), it shows lower sorption capacities than
the other pH values due to protonation of the functional groups, which make repulsion with
the positively charged metal ion. This is the same with the effect of UV emission but with
higher capacity. The capacity remains low at acidic pH values (i.e., for MCc, the average of
both repeated experiments was around 0.0092, 0.0381, and 0.6992 mmol Pb g−1 for the three
pH values, respectively). On the other hand, the sorption was improved (reaching 0.018,
0.0545, and 0.0995 mmol Pb g−1, respectively) under UV effect. The loading capacity for the
functionalized sorbent is higher by several times, which indicated the effect of new groups
for improving the sorption capacities, that reaching 0.0335, 0.0796, and 0.1454 mmol Pb g−1,
respectively, in the light and improved by using photocatalysis, but not as the same gab
as the MCc sorbent, which reached 0.041, 0.1154, and 0.2087 mmol Pb g−1, respectively,
in the UV. The sorption increased by increasing the pH values until it stabilized at a pH
of around 5 (before Pb(II) precipitation), which around 0.121 and 0.148 mmol Pb g−1 for
MCc in the presence of visible light and UV, respectively. On the other hand, the capacity
of the functionalized sorbent reached 0.3997 and 0.5473 mmol Pb g−1, respectively, with
around four times more than the non-functionalized sorbent and almost twice by using
UV catalysis.
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The effect of temperature was studied either in visible light or under UV, which
showed an improvement in the sorption capacities. This may be due to the effect of the
temperature on the polymer network that facilitates the movement of the metal ions inside
the polymer pores. The average sorption of the MCa-ATA in light and UV was around
0.586 and 0.6935 mmol Pb g−1, respectively.
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Under these experimental conditions, the sorbent was partially deprotonated and
the electron pair on the ligand was available for chelating properties. The pH variations
are shown in Figure S3, were less marked and reached around 0.6 units for MCc and
0.3 for MCa-ATA. It is noteworthy that the metal cation binding with protons of amine
or carboxylic was varied with the pH. Figure S4 shows plotting of the log10D and the
equilibrium pH: the slope of the acidic medium is around +0.42, +0.47, and +0.52 for MCc,
Mca-ATA at 20 ◦C, and MCa-ATA at 50 ◦C, respectively. This data emphasizes that two
protons were used in ion exchange per lead ion

2.2.2. Uptake Kinetics

The uptake kinetics are shown in Figures 6 and S5. The studied conditions were
performed at pH 5. From these Figures, it was shown that steep sorption at the first 10 min
then the curve became a little slower for 20 min for MCc and 5 min for MCa-ATA. These
phases were owing to the sorption on the external reactive sites that were mainly present on
the surface (85% of Pb sorption from MCa-ATA and around 60% of MCc), then the second
phase, which was related to the sorption on the internal reactive groups. The sorption
kinetics for functionalized sorbent was faster than that of the non-modified one. The kinetics
were modeled using PFORE (pseudo-first-order rate equation), PSORE (pseudo-second-
order rate equation), and RID (resistance to intraparticle diffusion) equations. Table 2
reports the parameters for both MCc and MCa-ATA using visible light (L) and UV. Based
on the comparison of experimental and calculated values of equilibrium sorption capacities
as well as the R2 values and estimated variance (EV), the PFORE fits the experimental
profiles for light and UV catalysis, although the RIDE fits for both sorbents with limited
extent, especially for the MCa-ATA in light.
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Table 2. Parameters of the uptake kinetics for MCc and MCa-ATA in visible light (L) and UV effect.

Sorbent MCc L MCc UV MCa-ATA: L MCa-ATA UV

Model Parameter Run No 1 2 1 2 1 2 1 2

Exp. qeq.exp. 0.1269 0.1214 0.361 0.3721 0.3408 0.3398 0.5291 0.5311

PFORE

qeq.1 0.1302 0.129 0.367 0.381 0.3129 0.4897 0.4809 0.3375
k1 × 102 2.219 2.302 4.097 3.797 2.779 1.205 1.702 2.026

R2 0.9574 0.9968 0.9564 0.9947 0.9564 0.9574 0.8968 0.99475
AIC −83.652 −80.405 −64.784 −62.387 −30.950 −37.349 −48.693 −28.257

PSORE

qeq.2 0.1546 0.178 0.399 0.399 0.447 0.407 0.4832 0.4928
k2 × 103 6.443 7.629 7.945 8.079 5.887 5.443 5.485 5.494

R2 0.5023 0.9182 0.2209 0.1924 0. 7795 0.6964 0.6971 0.6173
AIC −39.448 −24.3602 −45.2836 −42.4199 −29.365 −31.938 −27.783 −30.678

RIDE
De × 1013 1.3175 1.857 2.491 4.464 3.2285 3.2948 4.6449 5.1606

R2 0.94642 0.93974 0.73732 0.7598 0.9785 0.9194 0.91527 0.9281
AIC −79.673 −72.689 −50.259 −55.569 −44.959 −40.8023 −50.545 −51.195

Simonin [68] studied the statistical effects of the experimental point distributions of
the accuracy of the kinetic model and the model selection for the fitting of the experimental
data. He found that points that are closed to the equilibrium orient the modeling to the
PSORE against PFORE. The ionic radii of Pb(II) were around 1.19–1.2 Ǻ [69], which is
consistent with the fast kinetics, especially when most sorption is performed on the surface
of the sorbent. In our case, the initial fast sorption of Pb(II) was noticed for the first
5 min for the MCa-ATA and after 10 min for MCc. In the second sorption step, it seems
with a slower slope around 10 and 20 min, respectively. This is probably associated with
resistance to intraparticle diffusion on the thin layer of either modified chitosan or pristine
chitosan nanoparticles.

2.2.3. Sorption Isotherms

Sorption isotherms were investigated at pH 5, as shown in Figures 7, 8, S6 and S7 for
MCc and MCa-ATA, respectively, while Table 3 reports the parameters of the used models. It
shows a steep initial slope before the equilibrium plateau. It depends on the condition used,
in which the MCc in visible light and UV conditions fit the Sips equation (Figure 7), while
MCa-ATA fits Langmuir and Sips but the Sips is more fitted of the experimental condition
(Figure 8). The average sorption capacity of MCc was around 0.2513 mmol Pb g−1, while
for the UV condition was around 0.3466 mmol Pb g−1 increasing by 1.25%. The MCa-ATA
had an average capacity of 0.7814 mmol Pb g−1 under visible light conditions and increased
to 1.014 mmol Pb g−1 under UV conditions.

Yang and Alexandratos [70] studied the affinity behavior of a series of sorbents bearing
different chelating atoms. They concluded that the difference in sorption may be related to
the Hard and Soft Acid and Base theory (so-called Pearson’s rules, [71]). However, other
parameters may also influence the interaction of ligands and metals as the effects of the
counter-anion coordination. The complexation of the ions competes with the hydration:
water coordinates of ions in the solution, which affects interaction with chelating atoms
on the sorbents [70]. Marcus [72] reported that the values of hydration strengthened
by −2119 kJ mol−1 for hydration enthalpies of Pb(II) ion; this means strong hydration
coordination with Pb(II). The high polarizability of the Pb(II) makes these ions preferentially
bind with ligands containing N donor atoms. Giraldo et al. [73] explained the high sorption
of Pb than Cu, Cd, and Zn metal ions on gelatin-activated carbon sorbent through its
high ionic radius, while Yang et al. explained the better capacity of thiourea-crosslinked
polystyrene toward Pb over Cd and Cu as due to the small hydrated radius [74].

Figures 7 and 8 show the most fitting model for the sorption isotherms (Sips for MCc
and Langmuir and Sips for MCa-ATA sorbents). Table 3 summarizes the used parameters
of the models (with the EV (estimated variances) and determination coefficients, R2).
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Table 3. Parameters of the sorption isotherms for MCc and MCa-ATA under visible light (L) and
UV effects.

Model
Sorbent MCc L MCc UV MCa-ATA L MCa-ATA UV

Parameter

qm,exp. 0.2401 0.2625 0.3378 0.3554 0.771 0.7919 0.9754 0.9864

Langmuir qm,L 0.319 0.2986 0.3649 0.3758 0.7513 0.8069 1.009 1.019
bL 0.9942 0.9264 0.8629 0.9095 2.705 2.764 3.219 3.302
R2 0.7665 0.8015 0.7947 0.8057 0.9732 0.9182 0.9263 0.9901

AIC −35.706 −32.232 −30.166 −29.037 −47.537 −49.302 −53.389 −53.776

Freundlich kF 0.1634 0.1664 0.2456 0.2534 0.66854 0.5532 0.7743 0.8463
nF 2.567 2.157 2.0397 2.1046 2.82796 2.767 3.68857 3.5486
R2 0.7930 0.7300 0.73624 0.7785 0.86862 0.87226 0.79592 0.78675

AIC −19.216 −20.447 −17.019 −16.639 −28.480 −30.686 −34.405 −33.826

Sips qm,S 0.2466 0.2857 0.3462 0.3753 0.7565 0.7994 1.0083 1.0143
bS 0.43275 0.45867 0.68472 0.66221 0.98672 0.95732 1.8958 1.8674
nS 1.2543 1.367 1.28732 1.2275 1.6549 1.6372 1.8675 1.9785
R2 0.95746 0.92613 0.94752 0.95038 0.99854 0.99832 0.99898 0.99783

AIC −61.282 −60.998 −56.495 −55.978 −68.969 −70.056 −58.948 −56.406
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Table 4 reports the sorption behavior of sorbents for Pb(II) and compare the capacity
with the synthesized composites. However, this comparison is difficult due to the unsys-
tematic approach of the experiments that were not carried out under similar conditions.
Some synthetic sorbents showed a higher sorption affinity, e.g., the thiourea-modified
with polystyrene resin [74] or HA-MG-CH, but the most advantage and promising of this
sorbent was the fast kinetics, where around 15 min was sufficient for complete sorption.

Table 4. Comparison of sorption properties for sorbents (conventional) and bio-sorbents.

Sorbent pH teq
(min)

qm
(mmol g−1) Reference

Sulphurized carbon activated 5.4 - ≈0.3 [75]
Chlamydomonas-reinhardtii/alginate 6.0 90 1.84 [76]

Magnetic biochar (oak bark) 5.0 60 0.146 [77]
Sugarcane-bagasse 5.0 60 0.0054 [78]

Beet-pulp 5.0 60 00090 [78]
Silica coated magnetic-nanosorbent functionalized with mercaptoamine 6–7 120 1.41 [79]

Thiamine/silica 5.0 120 0.19 [80]
Hydroxamic-acid/amidoxime bi-functional acrylic acid sorbent - - 0.94 [81]

Schiff-base sorbent 10 120 0.50 [82]
Purolite-C100 sorbent 5-6 1440 0.046 [83]

Modified Amberlite/XAD-16 sorbent - 60 0.519 [84]
Di (2-ethylhexyl) phosphate sorbent 4 80 0.172 [85]

Gelatin activated carbon 5 60 1.79 [86]
Thiourea hyper-crosslinked with polystyrene resin 6.0 3.33 [74]

Salicylic acid-formaldehyde-catechol sorbent 6.0 240 0.931 [87]
Tripolyphosphate-chitosan 5.0 1080 1.21 [73]

Azido-fiber 6.0 1440 1.50 [88]
HA-MG-CH 5.0 60 2.51 [39]

CHI-L 5.0 35 0.2513 This work
CHI-UV 5.0 30 0.3466 This work

CHI-ATA-L 5.0 20 0.7814 This work
CHI-ATA-UV 5.0 15 1.014 This work

2.2.4. Metal Desorption and Sorbent Recycling

Not only the sorption properties are taken into account for the evaluation of the
competitiveness of sorption processes, but also the efficiency of the metal recoveries and
the recycling effectiveness of the sorbent. Logically, weakly acid solutions have been
investigated for these parameters. To avoid sorbent degradation, a diluted HCl (0.2 M)
solution is used for metal desorption investigation.

To evaluate desorption kinetics and the required time for full desorption, preliminary
studies were performed (Figure 9). A few minutes of contact with 0.2 M HCl were sufficient
for more than 98% desorption, while full desorption was achieved after a longer contact
time (around 10–15 min for MCa-ATA and around 30 min for MCc). These experiments
were also performed in the presence and absence of UV. Figure 9 shows the effect of UV on
the desorption as was happened for improving sorption behaviors; this experiment was
performed through the sorbents from the kinetic experiments.

Table 5 compares the average of sorption/desorption values efficiencies and the Pb(II)
sorption capacities using both of sorbents in the presence and absence of UV for five cycles.
A small (limited) loss was shown in the sorption capacities during the five cycles, and the
loss in the case of MCc was more than that of the modified sorbent, while the average in
the presence of visible light was much higher than in UV. However, the decreases (totally)
reached up to 10% for Pb(II) in MCc and around 3% for MCa-ATA, while the average
of desorption during the five cycles was around 99.5% (±0.3%). This means that both
sorption/desorption performances for a minimum of five cycles were remarkably stable
and the Pb(II) metal ions were desorbed effectively by 0.2 M HCl solution with a loss in the
desorption efficiency for long cycle terms.
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Table 5. Sorption desorption cycles of MCc and MCa-ATA for five cycles using 0.2 M HCl solution.

MCc MCa-ATA

SORPTION DESORPTION SORPTION DESORPTION

Cycles q mg g−1 Des % q mg g−1 Des %
1 35.0260 100.00 110.646 100.00
2 34.156 99.99 109.589 100.00
3 33.125 99.98 109.391 99.98
4 32.099 99.961 108.383 99.94
5 31.466 99.82 107.089 99.89

Loss% 10.164% 0.18% 3.215 0.11%

2.2.5. Tests on a Complex Multi-Metal Sample

For the evaluation performance of the sorption system, it is necessary to investi-
gate the sorption from a complex solution (i.e., multi-metallic simulated to the real efflu-
ents). The sorption capacities and performances, as well as the distribution coefficients
(Kd, L g−1) of MCa-ATA, is investigated at different pH 2–5 for 5 h. It was shown that
the sorption performance is improved with the pH, the capacity increased by increas-
ing pH values. The complexity of the solution (multi-metal concentration) explains the
marked effect of the sorption performance toward metal ions, which is the interest. It was
shown that the high removal efficiency was in the order of Pb(II), Fe(III), Nd(III), Zn(II),
Al(III), Mg(II), and Ca(II). The comparison of the distribution coefficients was in terms of
Pb(II) > Fe(III) ≈ Zn(II) > Nd(III) > Al(III) > Mg(II) > Ca(II). The Pb(II), Fe(III), and Zn(II)
ions are considered as borderline acids, while Al(III), Nd(III), Ca(II), and Mg(II) are consid-
ered as hard acids. These two classification groups have a high affinity for the N containing
functional groups. A selectivity coefficient SCPb/metal was shown in Figure 10. It is defined
by the mass balance equation as follows Kd(Pb)/Kd(metal). The preference of the MCa-ATA
for Pb(II) over other metals is relatively high, especially at the alkaline pH values.
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2.3. Treatment of Nature Effluent

The natural effluent was obtained from the Ramlet Hemeyir, which lies in the south-
western Sinai-Egypt, (i.e., 72 km to the southeast of the city of Abu Zenima), between
latitudes 29◦ 0/–29◦ 2/N and longitudes 33◦ 30/–33◦ 33/E (Figure S8). Due to the highly
ferruginous properties of this area, especially in the Adedia Formation (with a thickness of
72 m), it is stained by iron oxyhydroxides and manganese. The top part of this Formation
consists of ferruginous siltstone, ferruginous sandstone, and lateritization mainly of iron
with less alumina, which makes this section of red ferruginous clay. Several overlapping for-
mations were noticed in this area of the Adedia Formation and Um Bogma Formation. This
locality is characterized by phosphate minerals such as wavellite Al3(PO4)2(OH)2.5H2O,
xenotime (YPO4), vivianite Fe3(PO4)2.8H2O, and saleeite Mg(UO2)2(PO4)2.H2O, also others
were identified, i.e., euxenite (Y,Ca,Ce,U,Th) (Nb,Ta,Ti)2O6, becqurelite (CaU6O19.11H2O),
rutile (TiO2), hematite (Fe2O3), goethite (αFeO)(OH) ilmenite (FeTiO3), and quartz (SiO2).
Table S3 shows the chemical composition of the pristine ore materials before chemical treatment.

One Kg of ground ore material (around 1 cm) was agitated in 3 L of 200 g L−1 sulfuric
acid solution for 3 h at 150 (±10) ◦C. The produced liquor (around 2300 mL) was applied for
the extraction process. Table S4 shows the contents of the leaching liquor and the effluent
after treatment.

Series of extraction processes were applied for the recovery of uranium (using the
Amberlite IRA-400 at pH of around 2), REE (by using (DOWEX 50 resin at pH of around 4)
after Fe(III) precipitation. The produced effluent was still contaminated by Pb(II) and a
small ratio of U and REE. Table S4 shows the effluent contents of the most important metal
ions. The sorption was achieved with the batch method at pH 5 under visible light and
UV effect.

Figure S9 shows the removal efficiency percent of metal ions in the treated effluents; it
has the order of Pb, U, Al, Fe, Ni, REE, Si, Ca, Mn with removal percentages of 50.36, 38.67,
29.38, 24.08, 11.99, 5.31, 4.65, 4.11, and 3.03%, respectively, in light condition, while in the
UV condition, it was noticed that; (a) the same order of visible light but with increasing the
ratios and (b) the affinity for Ca was much more than Si (61.45, 50.49, 43.77, 28.34, 21.02,
9.16, 7.09, 7.33, and 5.74%, respectively). Figure 11 shows the selectivity coefficient of the
sorbent toward metal ions at pH 5 in light and under UV emission. The order of selectivity
set as the following order Ca > REE > Si > Mn > Ni > Fe > Al > U in light condition, while
in the SC under the effect of UV is as follow Ca ≈ Si > REE > Mn > Ni > Fe > Al > U.
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3. Materials and Methods
3.1. Materials

Sodium bisulfite, ~40%, formaldehyde 36.5–38% in H2O, 2-Amino-4-thiazoleacetic
acid, chitosan (25% degree of acetylation, DA), epichlorohydrin (EPI) 98%, urea > 99%,
NaOH anhydrous ≥ 98%, calcium chloride anhydrous > 97%, glutaraldehyde solution
(25% w/w), and sodium nitrite ≥ 99.0% were supplied from Sigma Aldrich (Merck KGa,
Darmstadt, Germany). Neodymium sulfate was provided by the National Engineering
Research Centre of Rare Earth Metallurgy and Functional Materials Co., Ltd. (Baotou,
China). MgCl2·6H2O, AlCl3·6H2O, CuSO4, and ZnCl2 were obtained from Guangdong
Guanghua, Sci-Tech Co., Ltd. (Guangdong, China).

3.2. Preparation Sorbents
3.2.1. Preparation of Magnetite Nanoparticles

Thermal co-precipitation, which is known as the Massart [89] method, was used
for preparing the nanoparticles. This was performed by the dissolution of a mixture of
hydrated ferrous sulfate (FeSO4.7H2O; 5.0 g, 18.18 mmol) and ammonium ferric sulfate
((NH4)Fe(SO4)2.12H2O; 17.35 g, 35.98 mmol) in the water medium. The reaction was
maintained at 40–50 ◦C for 60 min (under vigorous stirring); the magnetite (precipitation)
was performed by adjusting pH to 10–12 value using 5 M NaOH, while continued stirring
for 5 h at 45 ◦C. The magnetite nanoparticles were magnetically separated, washed by
distilled water/acetone, and dried at 50 ◦C for 20 h.

3.2.2. Preparation of Magnetite Chitosan Nanoparticles

Chitosan particles (4 g) were dissolved in a solution of 150 mL 7% acetic acid (AA)
solution, 2 g of dried magnetite nanoparticles was added to the solution. The pH was
adjusted to 10 by 5 M NaOH solution, while the temperature was maintained as fixed to
45 ◦C for the precipitation of chitosan nanoparticles. The temperature was raised to 90 ◦C
with stirring for 3 h. The produced precipitated particles (MC, 5.8 g) were separated using
magnetic control then washed with distilled water and acetone for the next step. This
step was used for enhancing the stability of the composites by crosslinking procedure, the
alkaline solution of 0.01 M epichlorohydrin (EPI), mixed with 0.067 M NaOH solution; the
pH of the solution is set to 10. The temperature of the reaction was adjusted to 60 ± 3 ◦C
for 3 h. The product was magnetically separated (MCc, 5.83 g) followed by rinsing with
acetone and water before being dried at 50 ◦C for 20 h (Scheme 1).
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3.2.3. Synthesis of the Activated Spacer Arm

The produced crosslinked magnetite chitosan particles were applied for further reac-
tion to produce an activated side using EPI in ethanol medium. The reaction was performed
by mixing the crosslinked chitosan particles with 18 mL (164.8 mmol) EPI in a 150 mL
ethanolic solution (ethanol/water (1:1/v:v)). The reaction was refluxed at 70 ◦C for 3 h. The
produced chlorinated materials (activated chitosan (MCa, 8.8 g)) were separated from the
solution using the magnetic control, washed with ethanol and water, then dried for 20 h at
50 ◦C (Scheme 2).
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3.2.4. Grafting of Amine Thiol Derivative

Five grams of amine thiazole derivative (31.6 mmol) were dissolved in 150 mL DMF.
The pH of this solution was adjusted to 10 by NaOH solution (5 M). The temperature was
elevated to 85 ◦C after the addition of 6 g activated chitosan with continuous stirring for
10 h. The produced precipitate (functionalized chitosan nanoparticles) was magnetically
separated and rinsed several times with ethanol and water before being dried at 50 ◦C for
24 h (Scheme 3).
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3.3. Sorbent Characterization

FT-IR spectroscopy was used for functional groups’ identification and elucidating
of the sorbent structure; the dried samples were designed as KBr disc then analyzed
using IRTracer-100-FT-IR (Shimadzu, Tokyo, Japan) after grinding and mixing well. The
particle size with the morphology structure of the prepared sorbent was analyzed by TEM
analysis (transmission electron microscopy) JEOL-1010 (JEOL, Ltd., Tokyo, Japan). The SEM
morphologies were obtained by Phenom-ProX-SEM (Thermo Fisher Scientific, Eindhoven,
The Netherlands). Element contents of the sorbent composition (before and after loading
with metal ions) were performed by semi-quantitative EDX analysis. The drift method [90]
was used for the determination of the pH zero charge (pHpzc). Thermally decomposition of
the sorbent was performed by TGA analysis by Netzsch-STA, 449-F3 Jupiter (NETZSCH,
Gerätebau, HGmbh, Selb, Germany), the sample weight is around ~1.978 and 2.64 mg for
MCc and MCa-ATA respectively, it is occurred in aluminum crucibles at a temperature
of around 30 to 800 ◦C, under nitrogen atmosphere for temp. ramp 10 ◦C min−1, it was
performed under nitrogen atmosphere for temp. ramp 10 ◦C min−1. Adjusting the pH
of the solution in the experiments by compact pH ionometer S220-Seven, Mettler, Toledo,
(Shanghai, China), the samples were collected from solutions before and after loading for
determination using ICP-AES (inductively coupled plasma atomic emission spectrometer)
with model ICPS 7510 (Shimadzu, Tokyo, Japan) after filtration using a membrane. Porosity
and surface area were measured through nitrogen adsorption/desorption isotherms by
Micromeritics-TriStar II, Norcross-GA system 77 K (USA). The samples were swept firstly
under nitrogen for 5 h at 110 ◦C.

3.4. Sorption Tests

The batch system was used for describing the sorption tests. A volume of solution (V,
L) with fixed initial metal concentration (C0, mmol L−1) at initial pH (pH0) was agitated
(210 rpm), with a fixed amount of sorbent (m, g) at 20 ± 1 ◦C temperature (T) for 24 h under
visible light (L) and UV emission. After sorption, the samples were filtered and the residual
metal concentration (Ceq; mmol L−1) was analyzed using the ICP tools. Uptake kinetics
were homogeneously agitated at a given time, analyzed after filtration. The loading capacity
(qeq, mmol g−1) was determined using the mass balance equation: qeq = (C0 − Ceq) × V/m.
The PFORE (pseudo-first-order rate equation), PSORE (pseudo-second-order rate equation),
and RIDE (resistance to intraparticle diffusion; so-called Crank equation) were used for
fitting the models as represented in Table S5a, (see Supplementary Information). The
isotherm models (Langmuir, Sips, and Freundlich equations) are represented as the mod-
eling of isotherms, which are reported in Table S5b. The effect of associated metal ions
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was discussed as a function of selectivity, the choice of these elements depending upon
that familiar presence in the solution (nature solution and leachate liquor); this experiment
was discussed with equimolar amounts of metal ions at different pH values for study the
selectivity ratio at differing conditions.

Desorption experiments were discussed depending on kinetics, the sorption desorp-
tion recycling steps (rinsing with water after each cycle), and the desorption process was
calculated using the mass balance equation. Each experiment was repeated twice for
reproducibility under both visible light and UV effects.

3.5. Recovery of Pb from Raffinate Solution

The metal ions concentration in the ore material was analyzed after dissolution using
different acid types (HF, HNO3, and HCl). A fixed amount (0.5 g) was digested with HF in
a Teflon beaker at 150 ◦C for silica digestion. After evaporating and dryness, another round
began with HNO3 and HCl for dissolving of the minerals, with a few drops of peroxide for
organic digestion. The final amount was diluted to 100 mL for measuring the major and
trace elements [91–93]. The metal content is reported in Table 1.

The ore material undergoes mild leaching using 200 g L−1 at 150 ◦C for 3 h with S/L
ratio of 1/3. The produced leaching solution was investigated and reported in Table 2. The
yield solution was applied for recovering U and REE using anionic exchange resin amberlite
IRA400 and cationic exchange resin DOWEX 50X8, respectively. The yield solution was
applied on this sorbent for metal recovery.

4. Conclusions

Successive grafting of the heterocyclic base of thiazol moiety on chitosan nanoparti-
cles enhanced sorption efficiency toward Pb(II). The sorbent was characterized by FTIR,
EA, SEM and SEM-EDX, XRD, TEM, and BET surface area through the nitrogen sorption
desorption effect. The sorbent shows a particle size of around 10 nm, which limits the
intraparticle diffusion properties. The sorption capacities were performed under visible
light and UV emission for the pristine chitosan magnetite nanoparticles (MCc) and func-
tionalized sorbent (MCa-ATA). The UV improves the sorption performances (capacity
and kinetics) of both sorbents. Fast kinetics of the modified sorbent around 15 min for
full saturation compared to 30 min for the MCc sorbent. From the sorption profiles of
both MCa-ATA and MCc, it was shown that the higher performance of MCa-ATA over
MCc (0.251 and 0.346 mmol Pb g−1 in visible light and under UV, respectively, for MCc
compared to 0.7814 and 1.014 mmol Pb g−1, respectively, for the MCa-ATA in the same
conditions. The sorption profiles of both sorbents show the high kinetics of MCa-ATA
(15 min) over MCc (20 min sufficient for complete sorption). The 85% of Pb(II) sorption was
achieved in the first 10 min for MCa-ATA compared to 60% for the MCc. The MCa-ATA
is highly efficient for the treatment of contaminated solutions (including water). From
the sorption/desorption experiments, it was shown that the sorbent is chemically stable
with fast desorption profile. The sorbent shows a preference for Pb over representative
elements, while less selectivity is obtained compared to Fe and U. It is a promising sorbent
for recovering of heavy metal ions as well as the removal of contaminants in polymetallic
solution at high pH values under UV emission and used in a wide range of pH.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal12030330/s1, Figure S1: TGA and Dr-TGA of MCc (a) and MCa-
ATA (b); Figure S2. Tautomerization of the functionalized sorbent in a mild pH condition; Figure S3:
pH variation of MCc and MCa-ATA at 20 and 50 ◦C under light and UV effect; Figure S4: The data
collected from plotting of the log10D and the equilibrium pH; Figure S5: Sorption kinetics of MCc
and MCa-ATA for the PSORE at light and UV effect; Figure S6: Sorption Isotherms (Langmuir and
Freundlich) models of the MCc sorbent at light and UV; Figure S7: Sorption Isotherms (Freundlich)
model of the MCa-ATA sorbent at light and UV; Figure S8: Geological map of the studied area;
Figure S9: Removal efficiency precent of metal ions in the ore effluent after treatment with MCa-ATA
under light and UV conditions. Table S1: Diffraction patterns of the XRD peaks and the matched
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reference file. Table S2: Elemental analysis of MCc and MCa-ATA sorbents; Table S3: Chemical
composition of the ferruginous sandstone ore material; Table S4: Chemical composition of the ore
leachates and the produced effluents after extraction treatments; Table S5a: Reminder on equations
used for modeling uptake kinetics [94–96]; Table S5b: Reminder on equations used for modeling
sorption isotherms [95,97,98]. References [94–99] are cited in the supplementary materials.
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