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Abstract: In this work, the synchronous removal of Cr(VI) and bisphenol A (BPA) in a heterogeneous
Fenton process with sulfidated nanoscale zero-valent iron (S-nZVI) as the reductant and catalyst
was systematically evaluated. Compared to other systems including S-nZVI or H2O2 alone, a
simultaneous BPA degradation and Cr(VI) removal could be achieved in the S-nZVI/H2O2 system
at an optimum pH of 3. It was, interestingly, found that 7.8% of BPA and 98.2% of Cr(VI) were
removed within 60 min in presence of S-nZVI alone, whereas, correspondingly, 98.2% of BPA and
96.9% of Cr(VI) were eliminated in the S-nZVI/H2O2 system. Specifically, humic acid (HA) and
H2PO4

− inhibited the deterioration of BPA but posed no significant effect on Cr(VI) removal. NO3
−

had a slight lifting effect on the removal of BPA and Cr(VI), while HCO3
− showed a relatively

weak prohibition. Experiments with EPR and radical probe tests also provide direct evidence that
hydroxyl radicals was monitored in the S-nZVI/H2O2 system, which not only degraded BPA but
also inhibited the reduction of Cr(VI). It could not be ignored that FeS accelerated Fe0 corrosion to
release Fe2+. In, addition, Fe0, Fe2+ and S2+ could react with Cr(VI) while the most of produced Cr(III)
was co-precipitated in the form of CrxFe1−xOOH film. The study confirmed that it was feasible for
S-nZVI/H2O2 system to remove synchronously organic pollutants and heavy metal.

Keywords: sulfur-modified zero-valent iron; hexavalent chromium; bisphenol A; synchronous
removal; Fenton reaction

1. Introduction

The co-contamination of heavy metals and refractory organic compounds in wastewa-
ter have become an urgent environmental problem nowadays. One typical example is that
chromate (Cr(VI)) is commonly present together with organic pollutants in industrial waste
of metal finishing, wood preserving, petroleum refining, and even in contaminated fields. It
is well known that Cr(VI) is acutely toxic, carcinogenic and mutagenic to living organisms.
In contrast, Cr(III) is less toxic and can be easily removed through precipitation [1]. The
effective transformation of Cr(VI) into Cr(III) is a preferred method for reducing contami-
nation. However, the reduction of Cr(VI) and the oxidation of organic pollutants seems
theoretically contradictory, making this kind of wastewater difficult to treat [2,3]. Thus,
efficient and simultaneous removal of Cr(VI) and organic pollutants is of great significance
for water remediation.

Nanoscale zero-valent iron (nZVI) is a versatile material with high reductive capacity
(E0 = −0.44 V). Due to this strong reductivity, nZVI has shown attractive potential in the
ex/in situ transformation of Cr(VI) to the less toxic Cr(III) [4]. Ferrous and ferric ions,
as corrosion products of nZVI, would be sacrificed to precipitate with Cr(III) to form
insoluble minerals, making nZVI a promising material for Cr(VI)-bearing wastewater
treatment. In addition, the Fenton or Fenton-like reactions are attractive for the removal of
recalcitrant contaminants from aqueous solutions via the generation of powerful radicals
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(such as ·OH and SO4·−) from the disintegration of oxidants (such as H2O2 and persulfate)
with Fe2+ oxidized to Fe3+, as per Equations (1) and (2) [5]. Typically, iron acts as the
catalyst to activate H2O2 or persulfate (PS, S2O8

2−) to generate into radicals, which exhibit
strong oxidizing capability and are capable of degrading most of the organic pollutants
to CO2, H2O, or intermediate products such as organic acids with a series of rapid chain
reactions [6]. In particular, the dissolved Fe2+ is essential for radical production, and nZVI is
widely used as a source of in situ Fe2+ precursor in heterogeneous Fenton-like systems [7,8].
Compared to the homogeneous Fenton reaction, the nZVI-Fenton reaction can run in a
wider pH range because of the fast circulation of Fe2+/Fe3+ on the Fe0 surface [9,10]. With
these advantages, the nZVI-based Fenton-like reaction is expected to be an efficient means
of wastewater purification.

Fe2+ + H2O2 → Fe3+ + OH− + ·OH (1)

Fe2+ + S2O8
2− → Fe3+ + SO4

2− + SO4·− (2)

In a typical Fenton-like process with nZVI, the reducing capacity of Fe0 was used
to activate H2O2 or persulfate with the formation of ·OH or SO4·− for the oxidation of
organic pollutants. In this sense, most studies have only focused on the oxidation of
organic pollutants, ignoring cases of co-contamination. In fact, nZVI-based Fenton-like
systems have the potential to remove both heavy metals and organic pollutants in a single
system [11,12]. Yin et al. studied the removal of coexisting Cr(VI) and 4-chlorophenol
by reducing Cr(VI) in a first step with subsequent H2O2 oxidation. They found that
100% of Cr(VI) could be reduced by nZVI within 20 min, and the subsequent addition
of H2O2 initiated a Fenton reaction for 4-CP degradation [13]. Yang et al. found that the
total dissolved copper (TCu) and methylene blue (MB) could be removed together in the
ZVI/H2O2 system [14]. In addition to the nZVI/H2O2 system, the simultaneous removal of
phenol and Cr(VI) could be achieved using a system containing bentonite-supported nZVI
(B-nZVI) and persulfate, as reported by Diao et al. [15]. A positive increase in dissolved
Fe2+ was found throughout persulfate decomposition, and SO4·− was identified as acting
toward phenol degradation, while B-nZVI was responsible for Cr(VI) [16]. However, the
previous studies ignored the interaction effect between Cr(VI) and organic pollutants, and
the efficiency and mechanism of their simultaneous removal in the nZVI/H2O2 Fenton-like
system are still unclear.

In this study, the synchronous removal of Cr(VI) and bisphenol A (BPA) was evaluated
in both H2O2 and persulfate oxidation systems. A sulfidated nanoscale zero-valent iron
(S-nZVI) was chosen as the activator of the reaction system, because it has been reported to
show significantly better efficiency with respect to Cr(VI) removal [17]. To elucidate the
interaction effects between Cr(VI) and BPA, the effect of pH, H2O2 and catalyst dosage were
investigated. The possible mechanism of pollutant elimination was further investigated by
radical analysis and material characterization.

2. Materials and Methods

All chemicals, including ferrous sulfate (FeSO4·7H2O), sodium sulfide (Na2S·9H2O),
sodium borohydride (NaBH4), absolute ethyl alcohol, sodium sulfate hydrate (Na2SO4·10H2O)
potassium dichromate (K2Cr2O7), bisphenol A (BPA), hydrogen peroxide (H2O2), and 1,10-
phenanthroline, were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). Deionized water (≥18.0 MΩ cm−1) was deoxygenated by high-purity nitrogen
purging for 1 h before use.

2.1. Preparation nZVI and S-nZVI

nZVI and S-nZVI nanoparticles were prepared according to our previous research [17].
Firstly, 50 mL of NaBH4 (0.036 mol/L) and 100 mL of FeSO4·7H2O (0.018 mol/L) was
added dropwise into a three-neck flask under N2 protection. Then, the resulting nZVI



Catalysts 2022, 12, 252 3 of 14

suspensions in the three-neck flask were magnetically separated and rinsed with anaerobic
water and ethanol three times.

To obtain S-nZVI, prepared FeSO4·7H2O solution was mixed with nZVI to obtain
uniform dispersion, and then Na2S solution was added dropwise into the flask and the
mixture was stirred continuously for 20 min. Finally, the zero-valent iron was magnetically
separated and rinsed as described above, and vacuum-dried at 50 ◦C overnight. The whole
preparation process was performed under a N2 atmosphere.

2.2. Experimental Procedures

The synchronous Cr(VI) sequestration and BPA degradation were conducted in a
250 mL beaker with 100 mL solution open to the atmosphere. The initial concentration
of Cr(VI) and BPA was the same: 5 mg/L. Unless otherwise specified, an aliquot of stock
solution of H2O2 (0.2 mmol/L) and S-nZVI (50 mg/L) was sequentially injected as a trigger
for the reaction. At specific time intervals, 2 mL of samples were periodically collected
and immediately mixed with 2 mL of ethanol to terminate the reaction, then filtered with
0.22 µm PTFE membrane filters for further analysis. The effects of initial pH, oxidant
dosage, and catalyst dosage on synchronous removal of BPA and Cr(VI) by S-nZVI/H2O2
system were investigated. Specifically, latent co-existing water anions (HCO3

−, H2PO4
−,

NO3
−) and humic acid (HA) were also examined to obtain a better understanding of their

adaptability in an aquatic environment. All experiments were conducted in duplicate.
To investigate the free radical species, ethanol (2 mmol/L) was added as a radical

scavenger and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was used as a spin trap agent for
electron paramagnetic resonance (EPR) analysis (EMX-8/2.7C, Bruker, Germany) [18]. Syn-
chronous removal of BPA and Cr(VI) with or without o-phenanthroline (o-phenanthroline:
S-nZVI = 10:1) was performed to investigate the effect of Fe(II).

2.3. Analysis

The surface morphologies and element mappings of the S-nZVI were observed by
scanning electron microscopy (SEM) (ZEISS Ultra 55., Germany) combined with energy
dispersive X-ray spectroscopy (EDX). The mineralogical identity and structures were
determined by a D/Max-IIIA Powder X-ray Diffractometer (XRD) (Rigaku Corp., Tokyo,
Japan) equipped with Cu–Kα radiation. The surface compositions of the S-nZVI were
determined by X-ray photoelectron spectroscopy (XPS) (Thermo-VG Scientific ESCALB-
250 with Al–Kα radiation).

The concentration of BPA was measured by high-performance liquid chromatography
(HPLC, LBP, 3000, RIGOL, Beijing, China). Cr(VI) was measured using a UV-vis spectrome-
ter for the 1,5-diphenylcarbazide colorimetric method at a wavelength of 544 nm, and the
concentration of total chromium was determined by flame atomic adsorption spectrometry
(Flame-AAS, 240, Agilent, Santa Clara, CA, USA). Cr(III) was identified by calculating the
difference between the total chromium concentration and Cr(VI). Hydrogen peroxide was
examined by a UV-vis spectrophotometer at 400 nm after coloration with Ti(SO4)2. The
concentration of ferrous ions was measured by the o-phenanthroline method at wavelength
of 510 nm. The concentration of total iron ions was measured by adding hydroxylamine
hydrochloride to reduce ferric ions into ferrous ions. Total organic carbon (TOC) was
determined by TOC analyzer (Liqui TOC II).

3. Results and Discussion
3.1. Characterization of S-nZVI

The surface morphology and element distribution of pristine S-nZVI was characterized
by SEM-EDX as well as TEM. As shown in Figures S1 and S2, the spherical particles of Fe0

are covered with a thin layer of micrometer-sized material, which can be attributed to FeS.
In addition, peaks of Fe and S elements were observed in the EDS mapping (Figure S1c).
As shown in Figure S3, both S-nZVI and nZVI shows shrill 2θ peaks at 44.79◦, which
correspond to the [110] directions of α-Fe, indicating the high purity and crystallinity of
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Fe0. Moreover, the diffraction peak of S-nZVI was much lower than that of nZVI, because
the Fe0 core was encapsulated by a coverage of amorphous FeS. The above characterization
indicates that S-nZVI is a core–shell structure with a coverage of FeS.

3.2. Cr(VI) and BPA Removal in Different Systems

The different systems on synchronous removal of BPA and Cr(VI) were investigated.
As shown in Figure 1a, only 8.6–11.3% of BPA was removed when H2O2 or nZVI or S-
nZVI were used individually during the reaction. However, the removal rates of BPA by
nZVI/H2O2 and S-nZVI/H2O2 systems were 97.7% and 98.5% after 20 min, respectively,
indicating that the oxidative role of H2O2 should be activated to produce reactive species
responsible for the degradation of BPA (Equations (3) and (4)) [19]. Noteworthily, the
coupling of S-nZVI with H2O2 presented the highest efficiency for the degradation of BPA,
and sulfur promotes the nZVI corrosion with generation of more hydroxyl radicals for
BPA degradation [20]. Upon the detection of TOC variation (Figure S4), it was found that
rapid TOC removal was achieved during the initial stage of the reaction. Then, after 10 min
reaction, more TOC was gradually removed, and finally, 67.7% of TOC was eliminated
in the S-nZVI/H2O2/Cr/BPA system. This result suggests that a considerable amount of
BPA can be mineralized to carbon dioxide and water in the reaction. Interestingly, it was
observed that 34.9% of Cr(VI) was removed by H2O2 alone within 60 min (Figure 1b). As a
strong oxidant, K2Cr2O7 (E0 = 1.33 V) can be reduced by H2O2 (E0 = 0.678 V) according to
Equation (5) [21]. Furthermore, 22.8% and 28.8% of Cr(VI) were removed by nZVI/H2O2
and S-nZVI/H2O2 systems after 5 min, respectively, values which were lower than those
obtained for nZVI (70.9%) and S-nZVI (76.3%) systems. The reaction rate of Fe2+/H2O2
(2.58~3.14 min−1) is much higher than that of Cr(VI) with Fe2+ (0.0763~0.1078 min−1), and
the produced ·OH could oxidize Cr(III) back to Cr(VI) [22]. Noteworthily, the removal
efficiency of Cr(VI) in H2O2/S-nZVI system (79.4%) was much higher than that of the
H2O2/nZVI system (37.5%) after 10 min, indicating the better performance of S-nZVI
compared to nZVI (Equations (6)–(8)). After 20–30 min, both H2O2/nZVI and H2O2/S-
nZVI systems achieved over 95% of Cr(VI) removal, close to that obtained by nZVI (97.8%)
and S-nZVI (98.2%). The above results clearly suggest that the synchronous removal of BPA
and Cr(VI) can be successfully achieved in nZVI-based Fenton-like systems, and S-nZVI
performed better than bare nZVI.

Fe2+ + H2O2 → Fe3+ + ·OH + OH− (3)

Cr(n) +H2O2 → Cr(n + 1) + ·OH + OH− (n = IV or V) (4)

2HCrO4
− + 8H+ + 3H2O2 
 2Cr3

+ + 3O2 + 8H2O (5)

S2− + Cr2O7
2− + 2H+ → SO3

2− + Cr(OH)3↓ +H2O (6)

Cr2O7
2− + 6Fe2+ + 14H+ → 6Fe3+ + 2Cr3+ + 7H2O (7)

Cr2O7
2− + 3Fe0 + 14H+ → 3Fe3+ + 2Cr3+ + 7H2O (8)

To further detect the interaction of BPA and Cr(VI) in a S-nZVI/H2O2 system, the
effect of one contaminant on the other contaminant was investigated via batch experiments.
For example, the effects of BPA on Cr(VI) removal were studied with different initial
concentrations. Figure 1c shows that the degradation efficiency of BPA decreased when
Cr(VI) was added into the S-nZVI/H2O2 system, because Cr(VI) consumed the reductive
Fe species and also reacted with H2O2. Therefore, the degradation of BPA was eventually
inhibited with increasing dosage of Cr(VI), inactivating more H2O2 and decreasing the
yield of hydroxyl radicals (Figure 1e). Conversely, the presence of BPA showed no sig-
nificant inhibitory effect, but rather a positive promotion of Cr(VI) removal (Figure 1d).
However, it was noticed that this promotion was not further enhanced with increasing
BPA concentration (Figure 1f). The competitive reaction between BPA and H2O2 seemed to
protect Cr(VI) from oxidation and facilitate its reduction on the S-nZVI surface.
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Figure 1. Synchronous removal of (a) BPA and (b) Cr(VI) in different reaction systems; removal
of BPA (c) or Cr(VI) (d) alone by S-nZVI/H2O2; the degradation of BPA under different Cr(VI)
concentrations (e) and the reduction of Cr(VI) at different BPA concentrations (f).

In the past decade, SO4·−-based advanced oxidation processes using PS as the oxidant
have been studied intensively for wastewater treatment. In comparison with the S-nZVI/PS
Fenton-like system, as shown in Figure S5, S-nZVI/H2O2 exhibited a significantly higher
efficiency in BPA oxidation, indicating a higher oxidation capacity of S-nZVI/H2O2 than
S-nZVI/PS. Conversely, Cr(VI) seemed to be removed more quickly in the S-nZVI/PS
system than in the S-nZVI/H2O2 system, implying a lower interference of PS activation
on Cr(VI). This result is consistent with that reported by Diao et al., where Cr(VI) removal
was negligibly influenced by PS in the nZVI/PS system. However, after 20 min reaction,
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the difference between the two reaction schemes was really minor, and was surprisingly
uniform after 30 min. The reduction of Cr(VI) after 30 min was over 95%, and achieved
equilibrium in the remaining reaction time. Considering the joint removal performance
of BPA and Cr(VI), the S-nZVI/H2O2 system seemingly showed a more comprehensive
potential than S-nZVI/PDS with respect to the treatment of co-contamination of BPA
and Cr(VI).

3.3. Effect of pH, Oxidant Dosage, Catalyst Dosage

It was observed that Cr(VI) reduction and BPA oxidation were dependent on varying
pH conditions (Figure S6a). Approximately 90% of BPA was removed after 20 min at pH = 3,
whereas there was almost no obvious BPA degradation at pH 7.0 and 9.0, indicating that
BPA removal increased with decreasing initial pH value, which might be attributed to the
generation of more hydroxyl radicals by S-nZVI/H2O2 in acidic conditions [23]. It was
observed that 97.8%, 54.6%, 57.6%, 53.1% and 45.5% of Cr(VI) removal were obtained at pH
values of 3, 4, 5, 7 and 9, respectively (Figure S6b). This suggests that acidic conditions favor
Cr(VI) removal. More indissoluble Fe3+ hydroxide was precipitated with Cr(III) to form
a Fe-Cr hydroxide layer under neutral or alkaline conditions [17]. These precipitates on
nZVI surface occupy active sites, limiting Fe2+ release, and retarding electron transfer from
S-nZVI to Cr(VI) [24]. In addition, the oxidation potential of ·OH decreased along with
the increase in solution pH, from 2.65–2.80 V at pH 3.0 to 1.90 V at pH 7.0, as previously
reported [19]. Nevertheless, some researchers have reported that Cr(VI) sequestration by
nano-FeS2 increases notably with an increase in suspension pH from 5.0 to 9.0 [25]. This
is because S2− plays a primary role in the reactive surface of nano-FeS2, having higher
nucleophilicity in an alkaline solution, and may enhance the reduction of Cr(VI). In this
work, Cr(VI) was completely removed at pH 3, while approximately 50% Cr(VI) removal
was obtained under other pH conditions, indicating that acidic conditions (pH = 3) were
conducive to Cr(VI) removal.

The influence of oxidant dosage on the synchronous removal of Cr(VI) and BPA in the
S-nZVI/H2O2 system is depicted in Figure S6c,d. The BPA removal rate increased from
88.5% to 98.0% after 20 min when the amount of oxidant added to the system was increased
from 0.2 mmol/L to 0.4 mmol/L (Figure S6c). These results conclusively demonstrate the
key role played by H2O2 in the generation of ·OH for BPA degradation in this system.
Interestingly, despite there being no obvious difference observed in BPA removal when the
H2O2 dosages were in the range of 0.4 to 0.8mmol/L, the reaction constant decreased from
0.298 min−1 to 0.209 min−1. In fact, excessive H2O2 could cause the release of a mass of ·OH,
resulting in the self-quenching of hydroxyl radicals, as shown in Equations (9) and (10) [25].

H2O2 + OH· → H2O + ·O2H (9)

·O2H + OH· → H2O + O2 (10)

As shown in Figure S6d, when the H2O2 dosages exceeded 0.4 mmol/L, Cr(VI) re-
moval rapidly increased during the first 2 min, then the amount of Cr(VI) gradually
decreased, but an increase in Cr(VI) removal was observed after 30 min, meaning that
Cr(VI) removal decreased with increasing H2O2 dosage. This may be due to the generation
of hydroxyl radicals with increasing H2O2 dosage, causing Cr(III) to be reconverted into
Cr(VI) and the competition between excess H2O2 and Fe2+, which could quickly remove
Cr(VI). Therefore, the larger the oxidant dosage, the slower the removal rate of Cr(VI) at
H2O2 concentrations higher than 0.4 mmol/L. In addition, the dosage of S-nZVI is also a
vital control variable for BPA and Cr(VI) removal. As shown in Figure S6e,f, the increment
of S-nZVI significantly accelerated the synchronous removal of BPA and Cr(VI) when in-
creasing the S-nZVI dosage from 0.02 to 0.15 g/L. Specifically, the reaction kinetics constant
of BPA degradation increased from 0.088 min−1 to 0.276 min−1. Increasing the dosage
of S-nZVI provided more active sites for not only Fenton-like catalysis, but also Cr(VI)
sequestration. In addition, the ultimate removal rates of BPA and Cr(VI) were similar when
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the S-nZVI dosage was increased from 0.05 to 0.15 g/L. Hence, considering the cost and
practical application of S-nZVI, 0.05 g/L of it was chosen for the subsequent experiments.

3.4. Effect of Water Matrices

Humic acid (HA) and coexisting water anions (including HCO3
−, NO3

−, H2PO4
−)

are widely present in the environment and interfere with the process of environmental
restoration. As shown in Figure 2a, the removal of BPA decreased from 97.7% to 63.7%
when HA concentration was increased from 0 to 50 mg/L. Since humic acid is a kind
of organic substance, it competes with BPA to quench ·OH, resulting in a decrease in
BPA degradation rate [26]. Additionally, humic acid might integrate with surface iron
(such as Fe2+, Fe3+ and Fe(0)) to form dissolved Fe–humate complexes, causing a loss of
reducing substances as well as decreasing the removal efficiency of BPA [27]. However,
when a small amount of HA (5 mg/L) was spiked into the reaction solution, almost no
influence on Cr(VI) removal was observed (Figure 2b). In particular, humic acid also acts
as an additional adsorbent and electron transfer mediator at tiny concentrations due to
its multiple functional groups [28], which ultimately offset the negative impact of highly
concentrated HA for Cr(VI) removal.
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Figure 2. Effect of (a,b) humic acid and (c,d) inorganic anions on synchronous removal of BPA and
Cr(VI) by S-nZVI.

As presented in Figure 2c,d, the removal rate of both BPA and Cr(VI) by S-nZVI/H2O2
was significantly influenced in the presence of NO3

− and H2PO4
−, but slightly suppressed

by HCO3
−. The slight inhibition of HCO3

− here could be because of its reaction with Fe2+

to form FeCO3 or hydroxyl carbonate, which attached to the surface of S-nZVI, resulting
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in a decrease in iron ions and reactive sites [28]. However, in the presences of NO3
−,

the removal efficiency of BPA increased from 98.9% to 99.7%, while the initial removal
efficiency of Cr(VI) increased from 95.7% to 98.7% in 30 min. This is probably because
NO3

− competes with Cr(VI) for reactive sites in S-nZVI and produces more Fe(II) at the
solid–liquid interface (as per Equations (11) and (12)) [20]. Moreover, H2PO4

− showed a
different effect, wherein the rate of BPA removal decreased from 98.2% to 75.9% while the
Cr(VI) removal increased from 96.9% to 99.1%. Firstly, this could be because H2PO4

− can
complex with Cr(VI) to form a water-soluble complex [29], preventing the formation of a
zero-valent iron surface passivation layer and improving the removal of Cr(VI). Secondly,
H2PO4

− is a typical radical scavenger, thus inhibiting the degradation of BPA [30].

Fe0 + NO3
− + 2H+ → Fe2+ + H2O + NO2

− (11)

4Fe0 + NO3
− + 10H+ → 4Fe2+ + 3H2O + NH4

+ (12)

3.5. Proposed Reaction Mechanism

Accordingly, it can be deduced that BPA was degraded by activating H2O2 with S-
nZVI, but the removal of Cr(VI) was achieved by ferrous on S-nZVI surface. To clarify the
role of Fe(II) on BPA and Cr(VI) elimination, o-phenanthroline was added into the reaction
system as a Fe(II) shielding agent. As shown in Figure 3a,b, the removal of Cr(VI) and BPA
was significantly inhibited after adding o-phenanthroline. The BPA removal rate decreased
from 97.7% to 29.1%, and the Cr(VI) removal rate decreased from 97.8% to 17.6%, implying
that Fe(II) not only participated in the Fenton reaction as an activator of H2O2, but also
reduced Cr(VI) into Cr(III) as an electron donor [31]. In addition, the H2O2 use rates were
determined for different systems as shown in Figure 3c. It can be observed that H2O2 was
completely used in 60 min for the H2O2/S-nZVI/BPA/Cr system, while 82.4% and 68.8%
were achieved for the H2O2/S-nZVI/BPA and H2O2/S-nZVI/Cr(VI) systems, respectively.
Moreover, the use of H2O2 also reached 64.7% when S-nZVI was not added, due to the
catalysis of chromium, which is consistent with the results in Figure 1, suggesting that H2O2
could be decomposed in presence of Cr(VI) via a redox process (Equations (14) and (15)).
Both Fe and Cr species are able to react with H2O2, thus consuming more H2O2 than
systems with a single contaminant [32].

HCrO4
− + 2H2O2 + H+ 
 CrO(O2)2 + 3H2O (13)

2CrO(O2)2 + 6H+ 
 2Cr3+ + 3O2 + H2O2 + 2H2O (14)

The catalytic activation of H2O2 is most likely to produce ·OH via a Haber-Weiss-type
reaction [33]. As a typical ·OH quencher, ethanol was used to identify the presence of ·OH
in the present reaction system, and the removal efficiencies of BPA with or without ethanol
were evaluated. As observed in Figure 3d, 14.22% of BPA was removed after 20 min in
the presence of ethanol, whereas the removal rate of BPA was 89.92% without ethanol,
suggesting an obvious inhibitory effect of ethanol on BPA degradation. In contrast, no
significant difference was observed in Cr(VI) removal with scavenger (Figure 3e). The EPR
technique with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) as a spin-trapping agent was
used to further identify the production of ·OH in the S-nZVI/H2O2 system. As shown in
Figure S7, there exists a characteristic peak with a peak height ratio of 1:2:2:1, and the signal
intensity of DMPO-OH increased in first 2 min but then gradually decreased due to the
consumption of H2O2. These results suggest that ·OH was the principal species responsible
for BPA degradation in the S-nZVI/H2O2/Cr(VI)/BPA reaction system.
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The transformation of Cr(VI) is important for detoxification, and the species of aqueous
Cr varies with S-nZVI reduction and ·OH oxidation. As presented in Figure 3f, the con-
centration of total Cr in solution decreased along with the elimination of Cr(VI). Aqueous
chromium was continuously reduced and immobilized by S-nZVI, which is consistent with
previous studies reporting that Fe0 corrodes and yields the iron (hydro)oxides to remove
heavy metals throguh adsorption and co-precipitation [2]. However, it is worth noting
that the concentration of total Cr at every time point is higher than that of Cr(VI). This
result is different from that reported in our previous study, which indicated that the total
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Cr and Cr(VI) displayed almost same removal tendency [17]. This is because a significant
portion of Cr(VI) was transformed to Cr(III) through the reaction with H2O2, and therefore
was not captured by S-nZVI [34]. This phenomenon is evidenced by the variation of Cr
species. For example, the concentration of Cr(III) decreased from 0.84 mg/L to 0.66 mg/L
in 5 min, which could be due to the reversible conversion of Cr species by ·OH. In addition,
Cr(VI) can be reduced by surface Fe2+ and S2− from the corrosion of S-nZVI during the
reaction process [4]. The newly formed Cr(III) and Fe(III) co-precipitate simultaneously
on the S-nZVI to form Cr/Fe (oxy)-hydroxide, as per Equations (15) and (16) [35]. The
reusability of S-nZVI was further investigated by separating S-nZVI with a magnet after the
reaction, followed by washing in deionized water and subsequent reuse for synchronous
removal of Cr(VI) and BPA. As presented in Figure S8, BPA can be fully degraded even
when S-nZVI was reused three times, but the removal efficiency of Cr(VI) decreased along
the number of times that S-nZVI was reused. In the third run, 69.2% of Cr(VI) was removed
in the S-nZVI/H2O2/Cr/BPA reaction system. The deposition of Fe-Cr oxides impeded
the smooth generation of ferrous species from S-nZVI corrosion, leading to a decline in
performance for Cr(VI) sequestration.

xCr3+ + (1 − x)Fe3+ + 2H2O→ CrxFe1−xOOH↓ + 3H+ (15)

xCr3+ + (1 − x)Fe3+ + 3H2O→ (CrxFe1−x)(OH)3↓ + 3H+ (16)

After the reaction, a thick iron oxide was formed on the S-nZVI surface, as indicated
by the XRD spectrum (Figure S9). Compared to fresh S-nZVI, a new peak appeared at a 2θ
angle of 35.6◦, which attributed to the facet of hematite (110), implying the formation of iron
oxides during the reaction. To better understand the mechanism of BPA elimination and
Cr(VI) sequestration, the XPS spectra of S-nZVI were detected before and after the reaction.
As shown in Figure 4a, the XPS spectra of Fe 2p on the surface of the pristine S-nZVI at
706.96 eV corresponded to Fe 2p3/2 of Fe0 with low content of 2.55% [36]. The binding
energies at 712.05 eV and 726.11 eV, coupled with a satellite peak obtained at 719.07 eV and
732.35 eV, respectively, were assigned to Fe 2p3/2 and Fe 2p1/2 of Fe (III) in terms of iron
(oxy) hydroxide [37]. In addition, the peaks at 710.40 eV and 724.01 eV were attributed
to Fe 2p3/2 and Fe 2p1/2 of Fe(II), respectively. These results demonstrate that the surface
of S-nZVI was slightly oxidized and wrapped by a mixture of Fe(II) and Fe(III), which is
consistent with the results of EDX analysis. After the reaction, it can be observed that the
peak of Fe0 disappeared, and the molar ratio of Fe(II) remained nearly unchanged, while
the Fe(III) fraction increased from 23.74% to 27.32%, as depicted in Figure 4a and Table
S1. Thus, it can be deduced that Fe0 was sacrificed as the electron donor and converted
to Fe(II), which then reacted with Cr(VI) and H2O2, resulting in a redox transformation
from Fe(II) to Fe(III) [35]. Moreover, four distinguishing peaks can be found in the S2p
spectrum (Figure 4b). The binding energies at 161.37 eV and 163.07 eV were attributed to
iron monosulfide (FeS) and iron disulfide (FeS2) [38], and the peaks with binding energy of
166.49 eV and 168.42 eV were attributed to SO3

2− and SO4
2−, respectively [39]. After the

reaction, the peak intensity of S2− decreased from 56.45% to 14.65% (Table S1), but the peak
intensities for SO3

2− and SO4
2− increased remarkably to 6.38% and 78.97%, respectively,

demonstrating the involvement of S2− during the reductive adsorption of Cr(VI) and the
catalytic activation of H2O2 for BPA degradation (Figure 4b). It has been verified that
iron sulfides are able to act as good semiconductors or metallic conductors for S-nZVI,
thus facilitating the electron transfer from the iron core to the adsorbed contaminants
and facilitating the cycle of Fe(II)/Fe(III) [40]. The XPS spectrum of Cr was further tested
to confirm the conversion of Cr(VI) to low-toxic Cr(III). After the reaction, as shown in
Figure 4c, the deconvolution peaks of Cr 2p at 577.16 eV and 586.76 eV corresponded
to Cr2O3 [25], and the peaks at 577.37 eV and 587.46 eV were assigned to Cr(OH)3 [41],
indicating that Cr(VI) sequestration by S-nZVI was primarily a process of chemisorption,
with reduction of Cr(VI) to Cr(III). Additionally, the oxygen peaks with binding energies
of 529.72 eV and 531.11eV were assigned to O2− and OH− (Figure 4d), suggesting the
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presence of iron oxide and hydroxyl species of Fe before use, respectively. After the reaction,
the content of O2− decreased from 31.98% to 15.65% while the content of OH− increased
from 68.02% to 84.35% (Table S1), indicating the formation of hydroxides on the surface
of S-nZVI. These results imply that both Cr(OH)3 and Cr(III)/Fe(III) (oxy)hydroxide were
on the surface of S-nZVI after Cr(VI) sequestration. In addition, the atomic fraction of C-C
component at a binding energy of 284.8 increased remarkably from 41.83 to 68.19 after the
reaction (Figure S10), which may indicate an adventitious organic carbon contamination on
S-nZVI surface.
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Figure 4. XPS spectra of (a) Fe 2p, (b) S 2p, (c) Cr 2p, (d) O 1 s of S-nZVI before and after the reaction.

In summary, a probable mechanism of BPA degradation and Cr(VI) removal by S-
nZVI/H2O2 system was schematically elucidated, as shown in Figure 5. Under acidic
conditions, H2O2 was activated by Fe2+, Fe3+ and Fe0 on the S-nZVI surface, producing
·OH for BPA degradation. Interestingly, the co-existence of Cr(VI) negatively slowed the ox-
idation rate of BPA because of the competitive consumption of H2O2 and ·OH. Conversely,
the removal of Cr(VI) was positively promoted in the presence of BPA due to its oxidative
reaction with ·OH, which inhibited the reoxidation of Cr(III) by ·OH. The stepwise removal
of Cr(VI) involved reduction, re-oxidation, adsorption and immobilization. Initially, Cr(VI)
was absorbed on the S-nZVI surface and occupied the reactive sites of S-nZVI, and then
Cr(VI) was directly reduced to Cr(III) on the S-nZVI surface by Fe0, Fe(II) and S2−. The
dissolved Fe(III) on the surface of S-nZVI could be reduced back to Fe(II) by Fe0 and S2−,
giving rise to more ferrous sites for further Cr(VI) reduction. The produced Cr(III) and
Fe(III) were present in the forms of mixed Cr-Fe (oxy) hydroxides, and formed a passivation
layer that impeded further reaction. However, it should be highlighted that not all Cr
species could be captured by S-nZVI within the reaction time, and a considerable fraction of
Cr(VI) was converted directly to Cr(III) through reaction with H2O2 under acidic conditions.



Catalysts 2022, 12, 252 12 of 14

The formed Cr(III) presented as dissolved ions at acidic pH, but might sediment further in
the form of chromium hydroxides.

Catalysts 2022, 12, x FOR PEER REVIEW  12  of  15 
 

 

for  BPA  degradation.  Interestingly,  the  co‐existence  of  Cr(VI)  negatively  slowed  the 

oxidation  rate  of  BPA  because  of  the  competitive  consumption  of  H2O2  and  •OH. 

Conversely, the removal of Cr(VI) was positively promoted in the presence of BPA due to 

its oxidative reaction with •OH, which inhibited the reoxidation of Cr(III) by •OH. The 

stepwise  removal  of  Cr(VI)  involved  reduction,  re‐oxidation,  adsorption  and 

immobilization.  Initially, Cr(VI) was absorbed on  the S‐nZVI surface and occupied  the 

reactive sites of S‐nZVI, and  then Cr(VI) was directly reduced  to Cr(III) on  the S‐nZVI 

surface by Fe0, Fe(II)  and S2−. The dissolved Fe(III) on  the  surface of S‐nZVI  could be 

reduced back to Fe(II) by Fe0 and S2−, giving rise to more ferrous sites for further Cr(VI) 

reduction. The produced Cr(III) and Fe(III) were present in the forms of mixed Cr‐Fe (oxy) 

hydroxides, and formed a passivation layer that impeded further reaction. However, it 

should be highlighted  that not all Cr  species  could be  captured by S‐nZVI within  the 

reaction  time,  and  a  considerable  fraction  of Cr(VI) was  converted  directly  to Cr(III) 

through  reaction with H2O2  under  acidic  conditions. The  formed Cr(III)  presented  as 

dissolved  ions  at  acidic  pH,  but  might  sediment  further  in  the  form  of  chromium 

hydroxides. 

 

Figure 5. Schematic  illustration of  synchronous  removal of BPA and Cr(VI)  in  the S‐nZVI/H2O2 

system. 

4. Conclusions 

The  present  study  used  S‐nZVI  as  a  reductant  and  catalyst  for  heterogeneously 

activated H2O2 for the synchronous removal of BPA and Cr(VI) via processes including 

both degradation and reductive adsorption. The removal efficiency reached up to 98.2% 

for BPA and 96.9% for Cr(VI) within 60 min under optimum conditions, which were pH 

3,  and  concentrations  of  0.05  g/L  of  S‐nZVI,  and  0.2 mmol/L  of  H2O2,  respectively. 

Compared  to  nZVI/H2O2,  the  S‐nZVI/H2O2  Fenton‐like  system  showed  a  very  similar 

efficiency toward BPA degradation, but a faster rate for Cr(VI) removal. HA and H2PO4− 

inhibited,  but NO3−  promoted  the  degradation  of  BPA.  This was  different  from  BPA 

degradation in that the effects of water matrix on Cr(VI) removal were inconspicuous and 

Cr(VI) could be completely converted to Cr(III) after 30 min reaction time. In addition, 

•OH was identified as the principal radical species in the S‐nZVI/H2O2 Fenton‐like system 

for BPA degradation. However, the reaction with Cr(VI) was a complex process, involving 

Figure 5. Schematic illustration of synchronous removal of BPA and Cr(VI) in the S-nZVI/H2O2 system.

4. Conclusions

The present study used S-nZVI as a reductant and catalyst for heterogeneously acti-
vated H2O2 for the synchronous removal of BPA and Cr(VI) via processes including both
degradation and reductive adsorption. The removal efficiency reached up to 98.2% for BPA
and 96.9% for Cr(VI) within 60 min under optimum conditions, which were pH 3, and
concentrations of 0.05 g/L of S-nZVI, and 0.2 mmol/L of H2O2, respectively. Compared to
nZVI/H2O2, the S-nZVI/H2O2 Fenton-like system showed a very similar efficiency toward
BPA degradation, but a faster rate for Cr(VI) removal. HA and H2PO4

− inhibited, but
NO3

− promoted the degradation of BPA. This was different from BPA degradation in that
the effects of water matrix on Cr(VI) removal were inconspicuous and Cr(VI) could be com-
pletely converted to Cr(III) after 30 min reaction time. In addition, ·OH was identified as
the principal radical species in the S-nZVI/H2O2 Fenton-like system for BPA degradation.
However, the reaction with Cr(VI) was a complex process, involving not only reduction by
both S-nZVI and H2O2, but also ·OH-mediated oxidation of Cr(III). Additionally, the re-
moval of Cr(VI) involved adsorption, reduction and immobilization on the S-nZVI surface,
as further evidenced by XPS characterization. This study provides a new feasible solution
for the treatment of complex polluted water bodies containing refractory organic pollutants
and heavy metal pollutants.
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