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Abstract: V K-edge XANES (XANES = X-ray Absorption Near Edge Structure) spectra of the reaction
solution of V(NAr)Cl2(OAr) (1, Ar = 2,6-Me2C6H3) with halogenated Al alkyls (Me2AlCl, Et2AlCl,
EtAlCl2, 50 equiv) in toluene showed low energy shifts (2.6–3.6 eV on the basis of inflection point in
the photon energy) in the edge absorption accompanying slight shift to low photon energy in the
pre-edge peak (λmax values); a similar spectrum was observed when the reaction of 1 with Me2AlCl
was conducted in n-hexane. These results strongly suggest a formation of similar vanadium(III)
species irrespective of kind of Al alkyls and solvent (toluene or n-hexane). Significant low-energy
shifts in the edge absorption accompanied with diminishing the strong pre-edge absorption were
also observed when VOCl3 or VO(OiPr)3 was treated with Me2AlCl (10 equiv) in toluene, clearly
indicating a formation of low oxidation state vanadium species accompanied with certain structural
changes (from tetrahedral to octahedral) in solution.

Keywords: vanadium catalyst; XANES; ethylene polymerization; Al alkyls; polymerization mecha-
nism; active species; homogeneous catalysis

1. Introduction

Transition metal catalyzed olefin polymerization plays a key role in commercial
production of polyolefin [1–11]. The classical Ziegler-type vanadium catalyst systems
(consisting of VOCl3 and halogenated Al alkyls, etc.) displays notable reactivity toward
olefins [12–18], and the catalyst system has been used for commercial production of syn-
thetic (ethylene propylene diene monomer, EPDM) rubber [5,11,19–21]. In this catalyst
system, large excess of Cl3CCO2Et (ETA, called re-oxidant) was required to improve a
severe concern of the rapid catalyst decomposition, assumed as due to conversion to the
inactive species by reduction; ethylene polymerizations by most of the catalyst systems
were thus performed with addition of large excess of ETA [5,11,18–21]. Presence of the
active vanadium(III) species have been postulated based on the titration analysis as well
as the ESR (electron spin resonance) spectra [22–28]. The approach by ESR spectroscopy
(generally employed for analysis of paramagnetic compounds) [24–32] however faces diffi-
culties such as observation of so called “ESR silent” species [V(III) with a 3d2 configuration
through an interaction of the two unpaired electrons (spin–spin coupling), or an antiferro-
magnetically coupled V(IV) dimer (spin–orbit coupling), poor structural information in
addition to difficulty of the quantitative analysis.

We reported that the phenoxide-modified vanadium(V) dichloride complexes con-
taining arylimido ligand, in particular V(NAr)Cl2(OAr) (1, Ar = 2,6-Me2C6H3) [33–35],
exhibited high activities for ethylene polymerization and the copolymerization with nor-
bornene (NBE) in the presence of Al cocatalysts (MAO or Me2AlCl, Et2AlCl) (Scheme 1). As
summarized in Table 1, the activities, the Mn values in the resultant (co)polymers, and the
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NBE contents in the copolymers were affected by the Al cocatalyst (and solvent) [34,35]; the
activity was decreased by adding ETA [35]. The complex with anionic NHC ligand contain-
ing borate moiety (WCA-NHC, 2) showed the high activities for ethylene polymerization
upon the addition of AliBu3 [36,37]; the activity by complex 2–AliBu3 showed higher (TOF
653 s−1, 66,000 kg-PE/mol-V·h) than those reported previously [37]. Moreover, the related
(adamantylimido)vanadium(V) complex containing 2-(2′-benzimidazolyl)pyridine ligand
(3) exhibited significant activities for ethylene polymerization in the presence of Me2AlCl,
and the activity further increased with addition of ETA [38].

Scheme 1. Selected (imido)vanadium(V) dichloride complex catalysts for ethylene polymerization,
ethylene/norbornene copolymerzation [33–38].

Table 1. Effect of Al cocatalyst, solvent and ETA (Cl3CCO2Et) in ethylene polymerization by
V(NAr)Cl2(OAr) (1, Ar = 2,6-Me2C6H3)—Al cocatalyst systems [35] a.

Run Cat.1/µmol Al
Cocat. Solvent Activity b

×10−3
Mn

c

×10−5
Mw/Mn

c
NBE d

/mol%

2 1.0 MAO toluene 880 3.02 1.79 23.9
3 0.05 Me2AlCl n-hexane 2400 - - -
4 0.05 EtAlCl2 n-hexane 47,300 3.56 3.85 -
5 0.05 Me2AlCl toluene 27,500 89.8 e - -
6 0.05 Me2AlCl toluene 23,400 9.56 1.83 15.2
7 0.05 Et2AlCl toluene 11,700 25.7 1.42 -
9 0.05 EtAlCl2 toluene 37,400 1.98 3.04 -

a Conditions: catalyst 0.05 µmol, solvent + cocatalyst solution = total 30 mL, ethylene 8 atm, NBE 0 (runs 1,3–5,7–8)
or 15 mmol (runs 2 and 7), 10 min, Al cocatalyst 250 µmol. b Activity in kg-polymer/mol-V·h. c GPC data in
o-dichlorobenzene vs. polystyrene standards. d NBE content (mol %) estimated by 13C-NMR. e Molecular weight
by viscosity. f Polymerization in the co-presence of CCl3CO2Et (ETA 10.0 equiv to V).

As shown in Figure 1, formations of certain vanadium(III) species (observed as low
energy edge shift) by reduction with halogenated Al alkyls (1,3) or AliBu3 (2) accompanying
their structural changes (observed as changes in their pre-edge intensities) were suggested
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by the V K-edge XANES (X-ray Absorption Near Edge Structure) analyses in toluene (on
the basis of reference samples including metal oxides), whereas the oxidation state and the
basic coordination geometry were preserved when 1–3 were treated with MAO [37]. The
observed facts (structural changes in the XANES spectra) were also supported (assigned
each absorptions) by TD-DFT calculation [39,40]. The EXAFS (Extended X-ray Absorption
Fine Structure) analysis revealed that the formed species contain the arylimido ligand
in all cases. The results also revealed that the species contain one neutral V–Cl bond
(2.34 ± 0.04 Å) when 2 was treated with AliBu3, and that two neutral V–Cl bonds were
present when the phenoxide analogue (1) was treated with Me2AlCl (Table 2). Moreover,
the formed species contain three neutral V–Cl bonds when 3 was treated with Me2AlCl and
the edge intensity increased upon addition of ETA accompanied with decreasing the pre-
edge intensity (suggesting the structural change) [37]. The results thus suggest formations
of three different V(III) species which possess a different number of coordinating neutral
donor (Cl) ligands for the stabilization.

Figure 1. V K-edge XANES spectra (in toluene at 25 ◦C) for (left) V(NAr)Cl2(OAr) (1, Ar = 2,6-
Me2C6H3) [37], V(NAr)Cl2(WCA-NHC) (2) [37], and (right) V(NAd)Cl2(L) [3, Ad = 1-adamantyl,
L = 2-(2′-benzimidazolyl)-6-methylpyridine] [38] in the presence of methylaluminoxane (MAO),
Me2AlCl or AliBu3.

Table 2. Summary of data for V(NAr)Cl2(OAr) (1, Ar = 2,6-Me2C6H3) [37], V(NAr)Cl2(WCA-NHC)
(2) [37], and V(N-1-adamantyl)Cl2[2-(2′-benzimidazolyl)-6-methylpyridine]) (3) [38] in the presence
of Me2AlCl or AliBu3 (V K-edge EXAFS oscillations and FT-EXAFS spectra in toluene at 25 ◦C).a.

Complex 1 1 + Me2AlCl
(50 Equiv) Complex 2 2 + AliBu3

(100 Equiv)
Complex 3 3 + Me2AlCl

(10 Equiv)

Atom C.N. r (Å) C.N. r (Å) C.N. r (Å) C.N. r (Å) C.N. r (Å) C.N. r (Å)

N(O) 2.4 (3) 1.80 (5) 1.3 (2) 1.64 (4) 2.1 (2) 1.62 (3) 0.8 (3) 1.66
(17) 1.7 (2) 1.683

(5) 0.9 (3) 1.64 (2)

N 1.2 (8) 2.290
(42)

Cl 1.9 (2) 2.18 (3) 2.0 (2) 2.45 (3) 1.0 (2)
1.0 (2)

2.16 (4)
2.34 (5) 1.0 (2) 2.34 (4) 1.6 (2) 2.293

(3) 2.6 (1) 2.455
(7)

a Atom: neighbor atom, C.N.: coordination number, r: bond length.

As demonstrated in Figure 1, synchrotron X-ray absorption spectroscopy (XAS)
provides important information of the oxidation state and the basic geometry (through
XANES analysis) and the atoms coordinated to the metal center (through FT-EXAFS analy-
sis) [41–50]. The method has been popular in the study of heterogeneous catalysis [41–46].
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We recently demonstrated that the method is also useful for analysis of homogeneous catal-
ysis, especially vanadium and titanium catalysts [40,46,47]. In this paper, we conducted
XANES spectral studies for reactions of phenoxide-modified (arylimido)vanadium(V)
dichloride (1) with different halogenated alkyls (effects of Al cocatalyst, solvent). As,
as described above, (oxo)vanadium(V) trichloride, VOCl3, has been used as the catalyst
component in the classical Ziegler-type olefin polymerization catalyst, we also studied the
solution XANES analysis of VOCl3 and VO(OiPr)3 treated with Me2AlCl [51]. We thus
herein demonstrate a formation of vanadium(III) species by treating the (oxo)vanadium
complexes with Me2AlCl through the XANES spectra. It was revealed that their photon
energies at the edge absorptions were relatively close to those observed in the solutions
of complex 1 and 3 treated with Me2AlCl, but their pre-edge intensities were apparently
different. The fact strongly suggests a formation of different vanadium(III) species with
different coordination geometry.

2. Results and Discussion
2.1. Solution V K-Edge XANES Spectra of (Oxo)vanadium(V) and
(Arylimido)vanadium(V) Complexes

Figure 2 shows V K-edge XANES spectra for VOCl3, VO(OiPr)3 (in toluene at 25 ◦C;
5.46 keV, 50 µmol-V/mL; measured in the SPring-8 facility of the Japan Synchrotron Radi-
ation Research Institute (JASRI), the BL01B1 beam line); the spectra for V(NAr)Cl2(OAr) (1,
Ar = 2,6-Me2C6H3), V(NAr)(OAr)3, reported previously [37], are also placed for comparison.

Figure 2. V K-edge XANES spectra for VOCl3, VO(OiPr)3, V(NAr)Cl2(OAr) (1, Ar = 2,6-Me2C6H3),
and V(NAr)(OAr)3 (in toluene at 25 ◦C; 5.46 keV, 50 µmol-V/mL).

The XANES spectra of 1 and V(NAr)(OAr)3 show sharp pre-edge absorption, generally
observed in the four coordinates vanadium(V) complexes with tetrahedral geometry, at
5467.6 eV and 5468.1 eV, respectively. The pre-edge absorption is known to be due to a
transition from 1s to 3d + 4p [39,40,46–50]. An absorption band (called a shoulder-edge
absorption), which corresponds to an absorption of the V–Cl bond in 1 [39,40,46,47,50], was
also observed at 5478.5 eV. Similarly, VOCl3 shows the strong pre-edge peak(s) at 5468.1 eV
(and 5466.2 eV) and the similar absorption ascribed to the V–Cl bond at 5478.5 eV, whereas
VO(OiPr)3 shows only the pre-edge absorption at 5468.4 eV. A weak absorption was also
observed in VO(OiPr)3 at 5473.3 eV, but the reason is not currently clear.
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2.2. Solution V K-Edge XANES Analysis for Reactions of V(NAr)Cl2(OAr) (1, Ar =
2,6-Me2C6H3) and (Oxo)vanadium(V) Complexes with Al Alkyls: Effect of Al Cocatalyst in
Ethylene (Co)polymerization

As described in the introduction (Table 1), the complex 1 showed high catalytic
activities for ethylene polymerization and the copolymerization with NBE [33–35] in the
presence of Al cocatalyst. It was revealed that the activities and the Mn values in the
resultant (co)polymers (and the NBE contents in the copolymers) were affected by the
Al cocatalyst and solvent [34,35]; 1–AlMe3 catalyst system polymerized NBE with ring-
opening metathesis mechanism (rather low activity) [33].

Figure 3 shows V K-edge XANES spectra (in toluene at 25 ◦C) for reactions of
1 with Et2AlCl, Me2AlCl, EtAlCl2, and with AlMe3 (50 equiv), and the spectrum for
the reaction with Me2AlCl in n-hexane was also placed for comparison. The spec-
trum for V(NAd)Cl2(HNMe2)2 [52] was also placed for comparison as a reference of
(imido)vanadium(IV) dichloride complex; the spectra of vanadium oxides were also
used for comparison [40,46,47]. The pre-edge absorption of 1 (5467.6 eV) in toluene
shifted slightly to a low energy region when 1 was treated with halogenated Al alkyls
(5465.9 eV (Et2AlCl), 5465.7 eV (Me2AlCl), 5466.1 eV (EtAlCl2)); no significant solvent
effect was seen when the reaction was conducted in n-hexane (5465.9 eV). These re-
sults clearly indicate a formation of vanadium(III) species irrespective of the kind of
halogenated Al alkyls.

Figure 3. The V K-edge XANES spectra for V(NAr)Cl2(OAr) (1, Ar = 2,6-Me2C6H3) in the presence
of Et2AlCl, Me2AlCl, EtAlCl2, and AlMe3 (in toluene or n-hexane at 25 ◦C).

The similar low-energy shift in the pre-edge absorption was observed with increase in
the intensity when 1 was treated with 50 equiv of AlMe3 (5466.2 eV). The clear low-energy
shift in the edge absorption suggests that 1 was reduced by AlMe3 but the shift was not so
significant compared to those in the reactions with halogenated Al alkyls (may suggest a
formation of vanadium(IV) species); the details are, however, not clear at this moment.

Figure 4 shows V K-edge XANES spectra (in toluene at 25 ◦C, 50 µmol-V/mL) for
reactions of VOCl3 and VO(OiPr)3 with 10 equiv of Me2AlCl, and the spectrum of the
reaction mixture of V(NAd)Cl3 and Me2AlCl, reported previously [53], was also placed for
comparison. The XANES spectrum of V(NAd)Cl3 treated with Me2AlCl appeared similar
to those for 1 treated with halogenated Al alkyls (Me2AlCl, Et2AlCl, and EtAlCl2, Figure 3),
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suggesting a formation of the vanadium(III) species possessing similar oxidations states
and the basic structures.

Figure 4. The V K-edge XANES spectra for VOCl3, VO(OiPr)3 in the presence of Me2AlCl (in toluene
at 25 ◦C).

Note that significant low-energy shifts in the edge absorptions along with disappear-
ance of the pre-edge absorptions were observed when VOCl3 or VO(OiPr)3 was reacted
with Me2AlCl (10 equiv). The pre-edge intensity is known to be influenced by the basic
structure (coordination geometry). For instance, the pre-edge intensity in a compound in Td
(tetrahedral) symmetry exhibits much higher than that in the Oh (octahedral) symmetry due
to a difference in the degree of a p–d orbital hybridization [39,40,48]. Therefore, the results
clearly indicate that both VOCl3 and VO(OiPr)3 were reduced by Me2AlCl accompanies
with structural changes (probably compounds with Oh geometry). The significant shifts
in the edge absorptions may suggest a possibility of formation of vanadium(II) species
partially, although we do not have the clear evidence at this moment. The formed species
in the reaction of VO(OiPr)3 with Me2AlCl seemed to be unstable (due to observed green
slurry after the measurement), a clear spectrum as in the reaction of VOCl3 could not be
obtained. The observed difference between VOCl3 and VO(OiPr)3 may be speculated as
due to a difference of number of neutral Cl donor ligands (observed the presence through
the EXAFS analysis of 1 and 3 in the presence of Me2AlCl, Table 2) [37,38].

The XANES spectra for toluene solutions of VOCl3, V(NAd)Cl3, the phenoxide com-
plex 1 [37], and V(NAd)Cl2[2-(2′-benzimidazolyl)-6-methylpyridine] (3) [38] after treatment
with Me2AlCl are summarized in Figure 5. The spectra (edge peak positions and the λmax
values) were similar when these (imido)vanadium(V) complexes (1, 3, and V(NAd)Cl3)
were treated with Me2AlCl, suggesting a formation of the vanadium(III) species. It was
revealed that the addition of Cl3CCO2Et (ETA, 50 equiv) into a toluene solution containing
1, Me2AlCl, and NBE (50 equiv) led to a decrease in the intensity of the absorption maxima
(λmax, at 5475.7 eV), whereas, as reported previously [37], no significant differences in both
the peak position and the intensity were observed when 1 was further added NBE (into
a toluene solution containing 1, 50 equiv of Me2AlCl). No significant spectral changes
were seen (in the complex and the solution with the addition of Me2AlCl) when the di-
isopropylphenyl analogue, V(NAr’)Cl2(OAr’) (Ar’ = 2,6-iPr2C6H3), was used instead of
the dimethylphenyl analogue (1) [37]. In contrast, as reported previously, an intensity of
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the edge absorption increased with decreasing the pre-edge intensity when 3 was treated
with Me2AlCl and ETA [38]. The fact may explain the fact concerning effect of ETA in the
ethylene polymerization; the activity by 3 increased upon the addition of ETA [38] whereas
a decrease in activity was seen in 1 with the addition [35]. Different catalytically active
vanadium(III) species (with different number of neutral Cl ligands) would thus play roles,
as also suggested by the EXAFS analysis (Table 2).

Figure 5. The V K-edge XANES spectra (in toluene at 25 ◦C) for VOCl3, V(NAd)Cl3 [53],
V(NAr)Cl2(OAr) (1) [37], and V(NAd)Cl2(L) [3, L = 2-(2′-benzimidazolyl)-6-methylpyridine] [38] in
the presence of Me2AlCl (and addition of Cl3CCO2Et, ETA).

As described above (Figure 4), a significant shift in the edge absorptions with disap-
pearance in the pre-edge absorption was observed when VOCl3 was treated with Me2AlCl.
The fact clearly suggests that VOCl3 was reduced, accompanied with certain structural
change (probably from tetrahedral to octahedral). The observed fact is apparently dif-
ferent from those observed in the (imido)vanadium species, in which a V-N bond was
preserved even after treatment with Me2AlCl (Table 2, V-N bond distances: 1.64 Å). The
fact also suggests that a different catalytically active (vanadium(III)) species play a role in
this catalysis.

3. Materials and Methods

All experiments were performed under a nitrogen atmosphere in a Vacuum Atmo-
spheres drybox. Anhydrous grade toluene and n-hexane (Kanto Kagaku Co., Ltd., Tokyo,
Japan) were transferred into a bottle containing molecular sieves (a mixture of 3A 1/16,
4A 1/8, and 13X 1/16) in the drybox, and Al reagents (Me2AlCl, Et2AlCl, EtAlCl2, and
AlMe3 (Kanto Kagaku Co., Ltd.)) were used as received. VOCl3, VO(OiPr)3 (Sigma-Aldrich,
St. Louis, MO, USA), and Cl3CCO2Et (Tokyo Chemical Industry, Co., Ltd., Tokyo, Japan)
were used as received. V(NAd)Cl3 (Ad = 1-adamantyl) [54], V(N-2,6-Me2C6H3)Cl2(O-2,6-
Me2C6H3) (1) [33] were prepared according to a published method.

V K-Edge X-ray absorption near edge structure (XANES) was carried out at the BL01B1
beam line at the SPring-8 facility of the Japan Synchrotron Radiation Research Institute
(JASRI, proposal nos. 2016B1509, 2017A1512, 2018A1245, 2018B1335, 2019A1233, and
2020A1473). V K-Edge XAFS spectra of V complex samples (toluene solution, 50 µmol/mL,
at 25 ◦C, a Si (111) two-crystal monochromator was used for the incident beam) were
recorded in the fluorescence mode using an ionization chamber as the I0 detector and 19
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solid state detectors as the I detector. The X-ray energy was calibrated using V2O5, and the
data analysis was performed with the REX2000 Ver. 2.5.9 software package (Rigaku Co.,
Tokyo, Japan). The XANES data was analyzed using a cubic spline from the χ spectra with
removal of the atomic absorption background and normalization of them to the edge height.

4. Conclusions

We herein present that the solution V K-edge XANES studies in reactions of
(oxo)vanadium(V) and (imido)vanadium(V) complexes with various halogenated Al
alkyls (Me2AlCl, Et2AlCl, and EtAlCl2), which exhibit remarkable catalytic activ-
ities for ethylene polymerization. The formation of certain vanadium(III) species
has been demonstrated through the spectral changes by treatment of these vana-
dium(V) complexes with Al alkyls, whereas, as reported previously [37], no significant
changes in either the oxidation state or the basic geometry were observed when these
(imido)vanadium(V) complexes were treated with methylaluminoxane (MAO). No sig-
nificant differences in the spectra were observed in the reaction of V(NAr)Cl2(OAr) (1,
Ar = 2,6-Me2C6H3) with halogenated Al alkyls, except AlMe3, suggesting a formation
of similar catalytically active vanadium(III) species: no significant differences in the
spectra were observed when 1 was treated with Me2AlCl in n-hexane.

In contrast, significant low-energy shift with the disappearance of the pre-edge ab-
sorption was observed when VOCl3 was treated with Me2AlCl. The fact clearly suggests a
formation of different vanadium(III) species (and may form the species with lower oxida-
tion state partially) in situ. As far as we know, this is the first clear observation of formation
of low oxidation state vanadium species in the reaction of VOCl3 with Me2AlCl in solution
through XANES analysis. In addition to the EXAFS analysis, reported previously for 1 and
the others [37,38], the information here should be helpful to better understand the catalysis
mechanism for olefin polymerization using homogeneous vanadium catalysts. We believe
that the solution XAS analysis should be a powerful tool for the study of the catalytically
active species, which are very difficult to monitor by NMR and ESR spectra.
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