
����������
�������

Citation: Shim, J.H.; Cheun, S.H.;

Kim, H.S.; Ha, D.-C. Organocatalysis

for the Asymmetric Michael Addition

of Aldehydes and α,β-Unsaturated

Nitroalkenes. Catalysts 2022, 12, 121.

https://doi.org/10.3390/

catal12020121

Academic Editors: Vincenzo Vaiano

and Olga Sacco

Received: 29 December 2021

Accepted: 17 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Article

Organocatalysis for the Asymmetric Michael Addition of
Aldehydes and α,β-Unsaturated Nitroalkenes
Jae Ho Shim 1,* , Seok Hyun Cheun 2, Hyeon Soo Kim 1 and Deok-Chan Ha 2

1 Department of Anatomy, Korea University College of Medicine, 46, Gaeunsa 2-gil, Seongbuk-gu,
Seoul 02842, Korea; anatomykim@korea.ac.kr

2 Department of Chemistry, Korea University, 145 Anam-ro Seongbuk-gu, Seoul 02841, Korea;
eamc2@naver.com (S.H.C.); dechha@korea.ac.kr (D.-C.H.)

* Correspondence: shimjh3000@korea.ac.kr; Tel.: +82-2-2286-1125

Abstract: Michael addition is an important reaction because it can be used to synthesize a wide
range of natural products or complex compounds that exhibit biological activities. In this study,
a mirror image of an aldehyde and α,β-unsaturated nitroalkene were reacted in the presence of
(R,R)-1,2-diphenylethylenediamine (DPEN). Herein, thiourea was introduced as an organic catalyst,
and a selective Michael addition reaction was carried out. The primary amine moiety of DPEN reacts
with aldehydes to form enamines, which is activated by the hydrogen bond formation between the
nitro groups of α,β-unsaturated nitroalkenes and thiourea. Our aim was to obtain an asymmetric
Michael product by adding 1,4-enamine to an alkene to form a new carbon–carbon bond. As a result,
the primary amine of the chiral diamine was converted to an enamine. The reaction proceeded with a
relatively high degree of enantioselectivity, which was achieved using double activation via hydrogen
bonding of the nitro group and thiourea. Michael products with a high degree of enantioselectivity
(97–99% synee) and diastereoselectivity (syn/anti = 9/1) were obtained in yields ranging from 94–99%
depending on the aldehydes.

Keywords: organocatalyst; enantioselectivity; aldehydes; thiourea catalyst; asymmetric synthesis;
Michael addition; diastereoselectivity

1. Introduction

In understanding the basic properties of a molecule, the spatial arrangement of atoms
in a molecule has a significant meaning. Therefore, over the past few decades, organic
chemists have put a lot of effort into developing stereoselective organic reactions. Organic
reactions capable of efficiently controlling the stereochemistry of the products are not only
desirable in academics but also in industries. Until recently, asymmetric synthesis involved
a significant amount of metal-bonded catalysts. However, in the field of organocatalysis,
many studies have focused on catalysts that do not contain metals [1–12]. Metals are often
expensive, and metal ions contain air and moisture. Moreover, they are often unstable in
the reaction environment. Furthermore, when a metal catalyst is used in a reaction, a small
amount of it may remain in the product. To overcome these shortcomings, research on
stereoselective synthesis using organic catalysts has attracted increasing attention [13–22].

In 2004, Barbas et al. reported a pyrrolidine-catalyzed Michael addition reaction in-
volving an aldehyde, α,β-unsaturated nitroalkene, and trifluoroacetic acid [23]. In 2006,
Tang et al. conducted the asymmetric Michael addition of isobutyraldehyde, pyrrolidine,
and α,β-unsaturated nitroalkene using a bifunctional thiourea derivative as a catalyst [24].
In 2007, Connon et al. performed this reaction without using a solvent and obtained high
yield and enantioselectivity by using a cinchona alkaloid derivative as a catalyst [25]. In
addition, the case of Yan et al. was observed that the reaction proceeded only when a
primary amine was present in the catalyst and that the reaction did not proceed in the
absence of the primary amine [26]. In 2010, Chen et al. conducted this reaction only with a
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catalyst without additives and obtained high enantioselectivity; here, a pyrolidine deriva-
tive made from camphor was used as a catalyst. Consequently, a high diastereoselectivity
was achieved [27].

As mentioned above, various reactions have been used to study organic catalysts [28–30].
However, to design an eco-friendly organocatalyzed reaction, many studies have focused
on organic catalyst reactions that do not use solvents or use water. Therefore, we researched
eco-friendly conditions for organic catalysts and applied thiourea catalysts derived from
(R,R)-1,2-diphenylethylene diamine (DPEN) to various reactions.

In this study, thiourea was introduced using (R,R)-1,2-diphenylethylenediamine,
which was used as the basic skeleton of a chiral catalyst in previous studies [31–34]. Herein,
a stereoselective Michael addition reaction was carried out using nitrostyrene, in which the
nitro group acts as a strong electron-withdrawing electrophile, and the aldehyde acts as a
nucleophile [6,30,35,36]. In addition, the reaction was carried out using water as a solvent
for studying the eco-friendly organic catalysts (Figure 1).
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In addition, the interfacial reaction mechanism of the DPEN-based catalyst and the
factors that increase the catalytic reactivity were confirmed through quantum calculations
under the reaction conditions without the acid additive used in the previous study. The
study on the reaction mechanism according to the type of configurational diastereomers [37]
and the reactivity of each solvent was verified through quantum calculation. In addition,
the effect of the fluorine substituent on the organic catalyst 1b confirmed in the previous
study was confirmed in more depth [33,34].

2. Results and Discussion
2.1. Asymmetric Michael Reaction of Various Aldehydes and α,β-Unsaturated Nitroalkenes Using
a Thiourea Catalyst
2.1.1. Effect of the DPEN Catalyst, Temperature, and Equiv.

To investigate the effect of the catalyst on the enantioselective Michael addition of
aldehydes and nitroalkynes, the reaction was performed using isobutyraldehyde and trans-
beta-nitrostyrene. The basic skeleton of (R,R)-1,2-diphenylethylenediamine (DPEN) was
used as the catalyst, and Michael addition was first performed using a catalyst in which
one amine was substituted with 3-pentyl group and the other amine was substituted with
thiourea. Subsequently, the reaction was performed using a thiourea catalyst that was not
substituted with an amine (Figure 2).
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To investigate the effect of the catalyst, first, a thiourea catalyst in which only one amine
group was substituted with an alkyl group was used; toluene was used as the solvent, and
the reaction was performed at ambient temperature (Table 1). The product of the addition
reaction was not obtained, and it was observed that the catalyst (1h), in which the amine was
substituted with an alkyl group, was not effective. When the reaction was performed using
a thiourea catalyst without an alkyl group in the amine, it was confirmed that the reaction
proceeded. Among all the catalysts, the thiourea catalyst substituted with the electron-
donating para-methoxy group (1e) and that substituted with the electron-withdrawing para-
fluorine (1f) group were evaluated. Subsequently, the yields and stereoselectivities of the
two catalysts were compared, and the catalyst substituted with the electron-withdrawing
para-fluorine (1f) group achieved higher yield and stereoselectivity. When the catalyst
was substituted with an electron-withdrawing group, the hydrogen of thiourea involved
in hydrogen bonding was more likely to participate in hydrogen bonding than that of
the catalyst substituted with an electron-releasing group; thus, the stereoselectivity of
the former was higher. The highest yield and stereoselectivity were achieved using the
3,5-bis(trifluoromethy- l)-substituted catalyst (1b). After confirming that this catalyst (1b)
yielded the highest stereoselectivity, the reaction was performed at a lower temperature
to further enhance the effect of the catalyst. It was confirmed that the reaction at low
temperature exhibited a similar stereoselectivity to that of the reaction at room temperature;
however, the yield was lower. Thus, it was confirmed that the 1b catalyst afforded the
highest reactivity and stereoselectivity at ambient temperature (Table 1).

Table 1. Catalyst optimization.
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It was confirmed that the stereoselectivity did not depend on the equivalent weight
of the aldehyde and the amount of the catalyst. However, these parameters affected the
yield of the reaction. As the amount of aldehyde was decreased from 10 equivalents to
7 equivalents and 5 equivalents, there was no change in the stereoselectivity; however, the
yield decreased. Subsequently, after fixing the aldehyde at 10 equivalents, when 5 mol% of
the catalyst was added, both the yield and stereoselectivity were lower than when 10 mol%
of the catalyst was used. The best results were obtained when 10 equivalents of aldehyde
and 10 mol% of the catalyst were used. However, to reduce the amount of the aldehyde
and catalyst, the solvent effect was confirmed by fixing the aldehyde to 5 equivalents and
the amount of catalyst to 10 mol%.

2.1.2. Solvent Effect on the Reaction

From the previous experiment, it was observed that the highest enantioselectivity was
achieved when the 3,5-bis(trifluoromethyl)-substituted catalyst (Figure 2, 1b) was used.
Using this catalyst, it was confirmed that the reactivity and enantioselectivity depended on
the solvent (Table 2). The reaction proceeded in all the solvents, and desirable yields were
obtained with all the solvents except with hexane and tetrahydrofuran. In all the solvents,
more than 96% stereoselectivity was obtained. In particular, when water was used as the
solvent, the reaction proceeded for 4 h. Thus, water, which produced the highest yield and
stereoselectivity and required the highest reaction time, was selected as the solvent.

Table 2. Solvent optimization.
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1 n-hexane 52 97
2 CHCl3 80 97
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4 benzene 87 97
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7 c water 99 99
8 CH2Cl2 85 97

a Isolated yield. b The ee values were determined by HPLC using the OD-H column. c The reactions were run with
catalyst of 5 mol%, 12 h.

2.1.3. Effects of the Types of α,β-Unsaturated Nitroalkenes on the Reaction

The reaction of isobutyraldehyde and various other α,β-unsaturated nitroalkenes was
performed under the optimal conditions determined in the previous experiment. Here,
a slightly lower yield than that achieved using unsubstituted nitrostyrene was obtained.
Moreover, the reactions of the electron-withdrawing as well as the electron-donating
groups exhibited desirable stereoselectivity and yield. Thus, it was confirmed that among
the aromatic substituents, both the electron-withdrawing and electron-donating groups
afforded desirable yields and stereoselectivity (Table 3).
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Table 3. Asymmetric Michael additions of aldehyde to nitro-olefins.
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2.1.4. Reaction Effect Depending on the Type of Aldehyde

In the previous experiment, the optimal conditions for the enantioselective Michael
addition of isobutyraldehyde and nitroalkene were investigated. The reactions of various
aldehydes and nitrostyrenes were conducted under the optimized conditions. In the
case of propionaldehyde, the enantioselectivity was high; however, the diastereomeric
selectivity was low. In subsequent experiments, entries 2 and 3 of Table 4 exhibited
higher diastereoselectivity than that of propionaldehyde. Entry 4 exhibited desirable
diastereomeric selectivity and mirror image selectivity. It was confirmed that the larger
the alkyl group of the aldehyde, the higher the diastereomeric selectivity due to steric
hindrance (Table 4).

Table 4. Asymmetric Michael reaction of various aldehyde and unsaturated nitroalkenes.
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1 Me H 95 67:33 99
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3 n-Pr H 94 83:17 98
4 i-Pr H 93 93:07 99
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2.1.5. Reaction Mechanism Inferred through Expected Transition States

As shown in Figure 3, the expected energy of transition state 1 (TS1 syn major) was
confirmed through DFT (Density Functional Theory) calculations. The calculated results
show that, compared to TS2 (anti major), TS3 (anti minor), and TS4 (syn minor), the syn
structure of TS 1 is the most stable based on its respective Gibbs free energy. In addition,
minor TS 4 showed the highest Gibbs free energy than other TS structures. Moreover,
as shown in Figure 4, the aldehyde reacts with the primary amine of the catalyst to pass
through the imine form [38] to finally form the enamine [31]. TS 1 and TS 3 exhibit less steric
hindrance because the double bond and thiourea are located on the same side. Furthermore,
the hydrogen bonding between the nitro group of the nitroalkene and the thiourea of the
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catalyst causes the aromatic substituents on the alkene to be positioned like those in TS1
and TS2 with relatively lower steric hindrance. Thus, the nucleophilic enamine accesses
the electrophile from the bottom, and the syn(2R, 3S) form is predicted to be predominantly
produced. The above reaction focuses on the hydrogen bond between thiourea and water.
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The relative free and thermal energies of the solvent effect for the Michael reaction
steps are shown in Figure 5 through DFT calculations. We observed that the Michael
addition reaction can be accelerated due to the hydrophobicity of thiourea-DPEN-based
fluorine-substituted organic catalysts used in a previous study [32,33].
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culations were performed using water, toluene, and solvent + H2O conditions. The relative free
energy diagram of the (R,R)-1,2-diphenylethylen-ediamine(DPEN)-thiourea catalyzed enantioselec-
tive Michael reaction.

This reaction produces relatively high enantioselective and diastereoselective results.
In addition, when the aromatic substituted nitroalkene is positioned in the thiourea direc-
tion, relatively little steric hindrance is observed. When water, a polar protic solvent, was
used as the solvent, it was confirmed through an experiment that the reactivity was higher
than that of the reactions using other solvents. In addition, it was confirmed through a
quantum calculation that when water was used as a solvent, the reactivity was improved
by stabilizing the transition state of the catalyst. Depending on the stabilized transition
state, the aldehyde reacts with the amino group of the catalyst to form an enamine, and
the thiourea moiety on the other side hydrogen bonds to the two oxygen atoms of the
nitro group. The enamine nucleophile formed by the catalyst attacks the electrophile from
below (Figure 5).

In order to predict the solvent effect of the catalyst, the relative free energy of the
TS during the interfacial reaction between the hydrophobic substituent (CF3) and H2O
of catalyst 1b were compared in an aqueous binary mixture (H2O + solvent), as shown
in Figure 5. Consequently, it was confirmed that the relative free energy of the TS was
the lowest when water was used as the solvent. When water is used as the solvent in a
Michael addition reaction, the reactivity increases as the polarity of the catalyst increases.
Therefore, it can be assumed that the reactivity increases owing to the stabilization of the
relative energy and the hydrophobic effect of the hydration reaction. In addition, when
the contact between the catalyst and water increased due to the hydrogen bonding, the
degree of stabilization changed depending on the number of hydrogen bonds of the water
molecules (Figure 5).

According to previous studies, hydrophobic, non-polar solvents such as n-hexane
and toluene are known to favor the synthesis of Michael adducts [39]. However, as the
solvent effect on the Michael reaction was confirmed in Table 2, a thermodynamic analysis
was performed to determine the factors in which water influences the Michael addition
reaction. To this end, quantum calculations were performed to predict the thermophysical
data for the interfacial reaction system in the transition state of the catalyst. On comparing
the actual reaction (Table 2) with the quantum calculation results, it was confirmed that
the non-polar solvents, such as n-hexane and benzene exhibited the lowest reactivity. In
addition, CHCl3, tetrahydrofuran, CH2Cl2, and EtOH showed similar reactivities in the
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calculated results. Among these solvents, it was confirmed that water exhibited the best
reaction activity and stability (Figure 6).
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Based on the mirror image selectivity obtained through the Michael reaction using
isobutyraldehyde and α,β-unsaturated nitroalkenes, it was deduced that the catalytic
reaction proceeded via the mechanism displayed in Figure 7.
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ter solvent + H2O conditions. The thermal energy diagram of the (R,R)-1,2-diphenylethylene
diamine(DPEN)-thiourea-catalyzed enantioselective Michael reaction.
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In the reaction, the hydrogen of the thiourea moiety formed a hydrogen bond with
the oxygen in the nitroalkene. In addition, we predicted that the amine of the catalyst
reacts with the aldehyde to produce the enamine, and the nucleophile approaches the
rear side of the α,β-unsaturated nitroalkene to produce a compound with predominant
stereoselectivity for the (R)-product. The optimization structures for DFT calculations
mentioned in this article can be found on Supplementary Material pages 52–170.

3. Materials and Methods
3.1. Instruments and Reagents

IR spectrum was recorded using NICOLET 380 FT-IR spectrophotometer of Thermo
electron corporation, and optical rotation was measured using an auto digital polarimeter.
1H-NMR and 13C-NMR spectrum were obtained using Varian Gemini 300 (300, 75 MHz),
Varian Mercury 400 (400, 100 MHz) and Bruker Avance 500 (500, 125 MHz) using TMS
as internal standards. HRMS spectra were obtained using a JEOL JMS-AX505WA mass
spectrometer. Chiral HPLC analysis was performed using a Jasco LC-1500 Series HPLC
system. All reactions were carried out under an argon environment in well-dried flasks in
an oven. Toluene (CaH2), THF (Na, benzophenone), and CH2Cl2 (CaH2) reaction solvents
were purified before use. The reagents used in this study were products such as Aldrich,
Acros, Alfa, Sigma, Merck, Fluka, TCI, and Lancaster, and if necessary, purified or dried by
a known method. Merck’s silica gel 60 (230–400 mech) was used as a stationary phase for
column chromatography.

3.2. Experimental Method
3.2.1. Synthesis of N-mono-thiourea Catalyst

(R,R)-1.2-diphenylethylenediamine (200 mg, 0.942 mmol) was dissolved in toluene
(1.00 mL), followed by the addition of isothiocyanate (0.140 mL, 0.942 mmol) at 0 ◦C for
1 h Stir. After completing the reaction with distilled water, extraction with dichloromethane
(20 mL × 3 times), dehydration with MgSO4, filtration, concentration under reduced pressure,
and column chromatography (SiO2, EtOAc:CH2Cl2 = 1:6) to isolate the product (Scheme 1).
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3.2.2. Asymmetric Michael Reaction of Chitons and α,β-Unsaturated Nitroalkenes Using a
Chiral Thiourea Catalyst

At room temperature, a thiourea catalyst (5 mol%), α,β-unsaturated nitroalkene (0.3
mmol) were put into a reaction vessel and then dissolved with water (1.0 mL) in air condi-
tion, followed by aldehyde (5 equiv.) was added and stirred for 4~12 h. After terminating
the reaction with distilled water, extraction with dichloromethane (20 mL × 3 times), de-
hydration with MgSO4, filtration, concentration under reduced pressure, and column
chromatography (SiO2, EtOAc: hexanes = 5:1) to isolate the product.

3.2.3. General Procedure of the Racemic Michael Addition

To α,β-unsaturated nitroalkene (0.3 mmol), aldehyde (10 equiv.), and 20 mol% of
DL-Proline were added to toluene (0.1 M) and the reaction mixture was stirred at ambient
temperature. The reaction conversion was checked by thin layer chromatography. After
completion about 12 h, ethyl acetate (0.2 mL) was added to the reaction product. This
solution was washed twice with water (2 × 1.0 mL), dried over magnesium sulfate (an-
hydrous), and concentrated to yield the desired product. The product was purified by
chromatography on a silica gel column eluted with mixed solvent (hexanes/EA, 5/1).
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3.3. Results of DFT Calculations and Discussion

Density functional theory (DFT) calculations were performed using Gaussian 16
and Gauss-View 6.0 programs. DFT calculations were performed to show the mech-
anisms of substrates and catalysts. The optimized geometry was described using the
B3LYP/6-31G(d,p) level. After the shapes of reactants, intermediates (IM), transition states
(TS), and products are fully optimized, zero-point energy (ZPE) is obtained through vibra-
tional frequency calculation in the same level of theory, and the minimum or transition
state of the potential energy surface (PES) is obtained. Enthalpy correction and entropy
with temperature are calculated at 298 K and 1 atm pressure.

4. Conclusions

The Michael addition reaction of isobutyraldehyde and unsaturated nitroalkene was
carried out using the N-monothiourea catalyst of (R,R)-1,2-diphenylethylene-diamine
(DPEN). An enantiomeric excess of 97–99% ee was obtained. The catalyst substituted with
the 3,5-bis-(trifluoromethyl) group (Figure 1, 1b) exhibited a simpler synthesis than the
other organic catalysts. Michael 1,4-addition reaction using the 1b catalyst yielded relatively
high enantioselectivity and diastereoselectivity. In addition, using water as a solvent is eco-
friendly, does not use additives, and exhibits increased reactivity through hydration. The
H2O molecule stabilizes the transition state of the catalyst through hydrogen bonding with
fluorine of the catalyst and accelerates the reactivity through the hydrolysis of the enamine
form of the product. However, this reaction requires a large amount of catalyst. Therefore,
future research that focuses on optimizing these reaction conditions is essential. In addition,
drug development of chiral compounds using this synthetic approaches is ongoing.
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