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Abstract: Design and fabrication of efficient and stable photocatalysts are critically required for
practical applications of solar water splitting. Herein, a series of WSe2/TiO2 nanocomposites were
constructed through a facile mechanical grinding method, and all of the nanocomposites exhibited
boosted photocatalytic hydrogen evolution. It was discovered that the enhanced photocatalytic
performance was attributed to the efficient electron transfer from TiO2 to WSe2 and the abundant
active sites provided by WSe2 nanosheets. Moreover, the intimate heterojunction between WSe2

nanosheets and TiO2 favors the interfacial charge separation. As a result, a highest hydrogen evolution
rate of 2.28 mmol/g·h, 114 times higher than pristine TiO2, was obtained when the weight ratio
of WSe2/(WSe2 + TiO2) was adjusted to be 20%. The designed WSe2/TiO2 heterojunctions can be
regarded as a promising photocatalysts for high-throughput hydrogen production.

Keywords: photocatalysts; WSe2 nanosheets; TiO2; nanocomposites; hydrogen

1. Introduction

Green and sustainable energy is urgently required for the rapid development of
human beings. Hydrogen, as a type of green and renewable energy carrier, is considered
to be an ideal substitute for fossil fuels in the future [1–3]. Solar energy conversion to
hydrogen via photocatalysts holds great promise for hydrogen generation owing to the
advantages of being environmentally friendly and high product purity [4–6]. Numerous
semiconductors, including metal oxides, sulfides, phosphides, and polymers, are applied
to photocatalytic hydrogen generation, and impressive achievements have been made in
the past decades [7–10]. TiO2, as a prototype photocatalyst, has been widely studied for
solar water splitting owing to its chemical stability, nontoxicity, and low cost [11–15]. For
example, (001)-facet-exposed ultrathin anatase TiO2 nanosheets was designed for hydrogen
generation [16]. However, single TiO2 exhibits poor photocatalytic efficiency owing to its
inability to absorb visible light, fast charge carrier recombination, and a slow interfacial
hydrogen-production reaction [17–19]. Many approaches, such as doping, sensitizing, and
surface hydrogeneration, are devoted to improving the photocatalytic performance and
loading cocatalysts has been demonstrated as an effective way to boost the photocatalytic
activity of TiO2 [20–22].

Noble metals such as Pt, Au, Pd, etc. are widely applied as cocatalysts to improve
the photocatalytic efficiency of TiO2 owing to their low overpotentials and superior con-
ductivity [23–25]. For example, Pt decorated anatase-TiO2/H-rutile TiO2 heterophase
homojunctions displayed excellent photocatalytic performance with an apparent quantum
yield of 45.6% at 365 nm [15]. However, given that the scalable application of photocatalytic
water splitting, low-cost and earth-abundant cocatalysts are critically welcomed [26–28].
Two-dimensional layer transition metal dichalcogenides–known as MX2 where M and X
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are transition metal and chalcogen, respectively–have attracted increasing attention in the
field of photocatalytic water splitting due to their fascinating intrinsic features [29–32].
For example, MoS2-tipped CdS nanorods were prepared for hydrogen generation by Du
and co-workers [33]. Interestingly, our previous work suggested that WSe2 nanosheets
were an efficient cocatalyst for photocatalytic hydrogen generation and accelerated charge
separation are expected in WSe2-semiconductor photosystems [34,35]. Reddy et al. loaded
layer-dependent WSe2 nanosheets on CdS nanorods and the designed CdS/WSe2 het-
erojunction displayed enhanced photocatalytic hydrogen generation [36]. In addition,
WSe2-PANI nanohybrids were achieved via a sonication-assisted solution method, and
they showed stable and photosensitive hydrogen evolution [37]. Compared with other
transition metal dichalcogenides, WSe2 nanosheets owned superior electrical conductivity
and abundant active sites [38,39]. In addition, WSe2 semiconductors displayed excel-
lent photostability as well [40]. All these made it a promising cocatalysts for hydrogen
evolution. However, WSe2 decorated TiO2 photocatalysts have been rarely reported for
water splitting so far and they might exhibit exciting photocatalytic performance if they
were coupled together. In addition, many approaches have been applied to construct
cocatalysts–semiconductor photosystems and the mechanical grinding method is regarded
as the simplest and scalable way to achieve efficient and stable heterojunctions, which is
favorable for practical application of photocatalytic water splitting [41–44].

Inspired by these findings, in this work, we applied a facile mechanical grinding
method to decorate TiO2 nanoparticles with WSe2 nanosheets. Transmission electron micro-
scope, X-ray diffraction, X-ray photoelectron spectrometer, UV-Vis, Photoluminescence, and
time-resolved Photoluminescence were applied to study the morphology, crystal structure,
composition, and optical properties of the prepared nanocomposites. It was discovered
that as-prepared WSe2/TiO2 heterojunctions displayed boosted photocatalytic activity and
a highest hydrogen generation rate of 2.28 mmol/g·h, which was 114 times higher than
pristine TiO2 and was achieved with an apparent quantum yield of 43.8% at 365 nm. The
improved photocatalytic performance was attributed to the efficient charge separation and
abundant active sites. This work paves the way for exploitation of TiO2-based catalysts for
photocatalytic water splitting.

2. Results and Discussions

The synthesize procedure was schematically illustrated in Figure S1. WSe2 nanosheets
were prepared via a hot injection method and then they was mixed with TiO2 nanoparticles.
The powders were mechanically ground for 30 min and the micro-structures of as-prepared
products were studied using TEM and HR-TEM. The obtained TiO2 catalysts displayed
heterogeneous nanoparticles as Figure 1a shows. The lattice spacing of 0.35 nm, which
was attributed to the (101) plane of TiO2, was recorded in HR-TEM images. The prepared
WSe2 displayed nanosheet morphology (about ~20 nm) with only a few layers, and a lattice
spacing of 0.24 nm was characterized. After mechanical grinding, WSe2 nanosheets could
be characterized on the surface of TiO2 nanoparticles. In addition, the corresponding lattice
spacing of 0.35 nm (TiO2) and 0.65 nm (WSe2) could be clearly observed as Figure 1f shows.
Furthermore, STEM and EDX elemental mappings were carried out to obtain the spatial
distribution of WSe2 and TiO2 in the prepared nanocomposites. It was discovered that
WSe2 nanosheets were homogeneously distributed over the area of TiO2 nanoparticles
with some aggregations. Thus, we can conclude that WSe2/TiO2 heterostructures with an
intimate contact were successfully obtained by the facile mechanical grinding method.
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Figure 1. (a–f) TEM and HR-TEM images of TiO2 nanoparticles (a,b), WSe2 nanosheets (c,d), and TW-
2 catalysts (e,f). (g) STEM and (h) corresponding EDX elemental mapping images of TW-2 catalyst. 

The crystal structure and components of prepared samples were investigated by X-
ray diffraction patterns. As Figure 2 shows, the typical diffraction peaks observed at 
25.31°, 37.95°, 48.08°, 53.86°, 55.02°, 62.74°, 68.79°, 70.34°, and 74.93° were corresponding 
to the (101), (004), (200), (105), (211), (204), (116), (220), and (215) planes of anatase TiO2 
(JCPDS No.: 01-071-1166). The prepared WSe2 nanosheets displayed broad and low dif-
fraction peaks centered at about 13.6°, 32.1°, 37.8°, 47.20°, and 56.60°, which were at-
tributed to the (002), (101), (103), (105), and (008) planes of hexagonal WSe2 (JCPDS No.: 
00-038-1388). In the case of the designed TW-x heterojunctions, both the diffraction peaks 
of TiO2 and WSe2 could be characterized with no clear shift, indicating that the mechanical 
grinding method did not alter the crystal structure of TiO2 and WSe2. Therefore, it can be 
concluded that the prepared samples were composed of TiO2 and Wse2 semiconductors. 

 
Figure 2. XRD patterns of pure TiO2, WSe2, and TW-x samples. 

In order to investigate the surface chemical composition and valence states of pre-
pared catalysts, XPS studies were conducted, and the spectra are shown in Figure 3. Dou-
blet peaks centered at 458.33 eV (Ti 2p3/2) and 464.03 eV (Ti 2p1/2) were observed, suggest-
ing a predominant chemical state of Ti4+ in TiO2 [12,45,46]. The O 1s spectrum contained 
two peaks centered at 529.56 eV and 531.41 eV. The former one was attributed to the lattice 
oxygen in TiO2, while the latter was assigned to surface hydroxyl (O–H) groups [47–49]. 
Furthermore, the W 4f spectrum could be deconvoluted into four peaks appearing at 31.52 
eV, 33.62 eV, 35.32 eV, and 37.50 eV. The former doublet peaks were ascribed to the +4 
chemical state of the W element, which was in accordance with previous reports [50,51]. 

Figure 1. (a–f) TEM and HR-TEM images of TiO2 nanoparticles (a,b), WSe2 nanosheets (c,d), and TW-2
catalysts (e,f). (g) STEM and (h) corresponding EDX elemental mapping images of TW-2 catalyst.

The crystal structure and components of prepared samples were investigated by X-ray
diffraction patterns. As Figure 2 shows, the typical diffraction peaks observed at 25.31◦,
37.95◦, 48.08◦, 53.86◦, 55.02◦, 62.74◦, 68.79◦, 70.34◦, and 74.93◦ were corresponding to the
(101), (004), (200), (105), (211), (204), (116), (220), and (215) planes of anatase TiO2 (JCPDS
No.: 01-071-1166). The prepared WSe2 nanosheets displayed broad and low diffraction
peaks centered at about 13.6◦, 32.1◦, 37.8◦, 47.20◦, and 56.60◦, which were attributed to the
(002), (101), (103), (105), and (008) planes of hexagonal WSe2 (JCPDS No.: 00-038-1388). In
the case of the designed TW-x heterojunctions, both the diffraction peaks of TiO2 and WSe2
could be characterized with no clear shift, indicating that the mechanical grinding method
did not alter the crystal structure of TiO2 and WSe2. Therefore, it can be concluded that the
prepared samples were composed of TiO2 and Wse2 semiconductors.
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In order to investigate the surface chemical composition and valence states of prepared
catalysts, XPS studies were conducted, and the spectra are shown in Figure 3. Doublet
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peaks centered at 458.33 eV (Ti 2p3/2) and 464.03 eV (Ti 2p1/2) were observed, suggesting a
predominant chemical state of Ti4+ in TiO2 [12,45,46]. The O 1s spectrum contained two
peaks centered at 529.56 eV and 531.41 eV. The former one was attributed to the lattice
oxygen in TiO2, while the latter was assigned to surface hydroxyl (O–H) groups [47–49].
Furthermore, the W 4f spectrum could be deconvoluted into four peaks appearing at
31.52 eV, 33.62 eV, 35.32 eV, and 37.50 eV. The former doublet peaks were ascribed to the
+4 chemical state of the W element, which was in accordance with previous reports [50,51].
The latter two small peaks were attributed to the +6 chemical state of the W element,
suggesting an oxidation of WSe2 during the synthesis procedure [34,52]. The appearance
of peak at 54.10 eV in Se 3d spectrum suggested the Se2− in WSe2 nanosheet [53,54].
Comparatively, the binding energy of Ti and O elements was slightly higher than pristine
TiO2, while the binding energy of W and Se was lower than single WSe2 when they were
coupled together. The shifted binding energies reveal the change of electron density around
the atoms, and the results suggested TiO2 was an electron donor and that WSe2 was an
electron acceptor in the prepared TW-x samples [6,55]. Moreover, it can be seen that the
W6+ was apparently increased, indicating a strong interaction of the W–O bond in prepared
TW-2 heterojunctions, which would be favorable to the interfacial charge transfer from
TiO2 to WSe2.
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The light absorption properties of TiO2, WSe2 nanosheets, and TW-x samples were
recorded by UV-Vis absorption spectra. It was discovered that the absorption edge of
TiO2 was centered at about 390 nm with weak absorption in the visible light region as
Figure 4 shows. The bandgap of TiO2 was determined to be 3.21 eV using the Kubelka–
Munk method (Figure S4), which is similar to previous reports [15,24]. A strong light
absorption spectrum in the entire visible region with two broad bands at about ~528 nm
and ~730 nm was recorded for the prepared WSe2 nanosheets (Figure S3), indicating the
2H phase of WSe2 [39,40]. The absorption edge of the prepared TW-x catalysts exhib-
ited a slightly red shift and gradually enhanced light absorbance in the visible region,
which was ascribed to the light absorption of WSe2 cocatalysts in TW-x. As expected, the
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enhanced light absorption properties would benefit the photocatalytic performance of
WSe2/TiO2 heterojunctions.
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To unveil the photo-induced charge carriers transfer and recombination, photolu-
minescence spectra were analyzed. Commonly, the intensity of PL emission represents
the utilization of photo-induced electron holes, and a strong emission band means severe
charge carrier recombination [56,57]. As Figure 5a shows, steady-state PL emission of TiO2
nanoparticles exhibited a broad and strong band centered at about ~450 nm under the
excitation of 375 nm, which was associated with electron–hole recombination near the
band-edges of TiO2 [15,58]. The PL emission was obviously quenched while WSe2/TiO2
heterostructures were constructed via the mechanical grinding method, indicating that the
recombination of photo-induced charges was largely inhibited [58–60]. In order to reveal
the charge separation in depth, time-resolved PL spectra was carried out and a biexpo-
nential function fitting was applied to analyze the decay kinetics. The average lifetime of
TiO2 was calculated to be 1.48 ns according to the following Equation (1). Comparatively,
the average lifetime was shorter for TW-2 (1.27 ns) than that of TiO2 alone. The fast decay
indicated that photo-induced electrons could quickly transfer from TiO2 to WSe2 for water
reduction according to the above analysis.

tA =
A1τ2

1 + A2τ2
2

A1τ1 + A2τ2
(1)

Mott–Schottky analysis was applied to determine the flat band potentials of TiO2
and WSe2 nanosheets. It was known that the flat band potential was approximated to
the conduction band position for n type semiconductors while the flat band potential was
approximated to valence band position for p type semiconductors [9,36]. As Figure 6 shows,
the Mott–Schottky curves of TiO2 and WSe2 exhibited positive slopes, which suggested
an n-type semiconductor for the obtained TiO2 and WSe2. The conduction band positions
were determined to be −0.131 and −0.016 V vs. NHE for TiO2 and WSe2 according to the
flat band potentials based on Mott–Schottky curves. The higher conduction band position
of TiO2 than WSe2 indicated that photo-induced electrons could transfer from TiO2 to WSe2
nanosheets for water reduction during the photocatalytic reaction.
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The photocatalytic performance of the as-obtained samples was assessed by adding
10 mg of catalysts into 30 mL of an aqueous solution containing 6 mL of methanol as the
hole scavenger. As Figure 7 shown, the pristine TiO2 displayed a low hydrogen evolution
activity with a rate of 0.02 mmol/g·h. No hydrogen evolution could be detected for WSe2
nanosheets because of the strong binding energies of photo-induced excitons [61]. Notably,
TW-x nanocomposites, with a coupled WSe2 nanosheet with TiO2 nanoparticle, all exhib-
ited the evidently boosted photocatalytic hydrogen generation activity. The remarkable
promotion effect of TW-x for photocatalytic performance should benefit from the efficient
charge transfer from TiO2 to WSe2 and the abundant active site provide by WSe2. However,
the excessive amount of WSe2 nanosheets led to a decreased hydrogen evolution rate. On
one hand, the photoactive sites of TiO2 might be blocked by the agglomerated WSe2. On
the other hand, the excessive amount of WSe2 would encroach on the light absorption of
TiO2 nanoparticles and reduce the photoexcitation of TiO2 because the bare WSe2 shows
no hydrogen evolution activity [35]. Consequently, the optimized TW-2 catalysts showed
the highest hydrogen evolution rate of 2.28 mmol/g·h, 114 times higher than that of TiO2
alone. The corresponding apparent quantum yield was estimated to be 43.8% at 365 nm,
which was substantially greater than that of most reported cocatalysts-TiO2 photocatalysts.
Furthermore, the photocatalytic stability was also investigated, and no significant decrease
was observed during the four cycles tests. The superior photocatalytic performance and ex-
cellent stability made WSe2/TiO2 nanocomposites a promising material for photocatalytic
water splitting.
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Figure 7. (a) Time-dependent H2 evolution amount, (b) average H2 evolution rates of TiO2 and
TW-x samples, and (c) cyclic hydrogen evolution activity of TW-2. A total of 10 mg of prepared
photocatalysts was added into 30 mL of water containing 6 mL of methanol as sacrificial agent.

Based on the above results, the photocatalytic mechanism of the prepared TW-x het-
erostructures was proposed and schematically elucidated in Figure 8 and Equations (2)–(6).
Under simulated solar light irradiation, both the TiO2 and WSe2 were excited. WSe2 nanosheets
served as electron acceptors to extract photo-induced electrons from TiO2 and then reduced wa-
ter to hydrogen. The holes on TiO2 would be consumed by the added methanol. Moreover, the
strong interaction and intimate contact between TiO2 and WSe2 was favorable for accelerating
the interfacial charge transfer and separation [49,62]. As a result, the photocatalytic efficiency
was greatly enhanced compared with TiO2 alone. It is well known that the morphology of
TiO2, phase of WSe2 nanosheets, and contact manners between TiO2 and WSe2 would have an
important effect on the photocatalytic efficiency of WSe2/TiO2 heterojunctions. This will be
investigated in the future.

TiO2 + hν→ TiO2(e) + TiO2(h) (2)

WSe2 + hν→WSe2(e) + WSe2(h) (3)

TiO2(e) + TiO2(h) + WSe2 → TiO2 + TiO2(h) + WSe2(e) (4)

2H+ + WSe2(e)→WSe2 + H2 (5)

TiO2(h) + WSe2(h) + CH3OH→ TiO2 + WSe2 + CO2 + H2O (6)
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3. Materials and Methods
3.1. Chemicals

All chemicals were used as received without further purification. W(CO)6, Ph2Se2
(diphenyl diselenide), and TOPO (trioctylphosphine oxide) were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Hexane, methanol, and ethanol were purchased from
Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). TiO2 was purchased from
Nanjing XFNANO Materials Tech Co. LTD. The water used in the synthesis and reaction
was deionized with a resistivity of 18.2 MΩ·cm.

3.2. Sample Preparation

WSe2 semiconductors. WSe2 semiconductors were synthesized via a hot-injection
method according to our previous reports with slight modifications [34]. Specifically,
48 mmol of TOPO and 0.5 mmol of W(CO)6 were added into a 100 mL three-neck flask.
The flask was degassed at 120 ◦C for 1 h. Then, it was heated to 330 ◦C under N2 flow to
dissolve the chemicals. At this point, 2 mmol of TOPO and 1 mmol of Ph2Se2 were added
into a vial and heated to dissolve the chemicals completely by using a dryer. The Se-TOPO
solution was rapidly injected into the reaction solution, and the flask was kept at 330 ◦C for
1 h. After cooling to room temperature, the precipitates were centrifuged with hexane and
ethanol 5 times, and WSe2 nanosheets were obtained by drying in vacuum at 60 ◦C for 8 h.

WSe2/TiO2 catalysts. The WSe2/TiO2 catalysts were prepared via a facial mechanical
grinding method. Namely, a certain amount of the prepared WSe2 and obtained TiO2
was mixed and ground gently for 30 min at room temperature, and then the powder was
collected. The weight ratio of WSe2 and (WSe2 + TiO2) was adjusted to be 1:10, 2:10, 3:10,
and 4:10, and the samples were labeled TW-1, TW-2, TW-3, and TW-4, respectively.

3.3. Sample Characterization

The morphology of the prepared samples was characterized on a field-emission trans-
mission electron microscope (FE-TEM, JEOL JEM 2100 microscope, 300 kV) equipped with
energy dispersing X-ray spectroscopy (EDX). The acceleration voltage was 300 kV. The
crystal structure of the studied samples was characterized using a Rigaku Smartlab-9 kW
X-ray diffractometer with Cu Kα radiation working at 40 kV/40 mA. X-ray photoelec-
tron spectroscopy spectra (XPS) were collected using Escalab Xi+ X-ray photoelectron
spectroscopy (Thermo Fisher Scientific, Waltham, MA, USA), and the binding energies
were calibrated using adventitious carbon (C 1s peak, 284.8 eV) as a reference. The light
absorption features of the materials were recorded on a Perkin-Elmer Lambda 950 spec-
trophotometer with BaSO4 as reference. Steady state and time-resolved photoluminescence
spectra at room temperature were recorded on a PicoQuant FT-300 and FT-100 fluorescence
spectrophotometer under 375 nm irradiation. Mott–Schottky analysis was carried out on a
CHI 760E electrochemical workstation using a standard three-electrode cell. The reference
electrode and the counter electrode were Ag/AgCl (saturated KCl solution) and Pt plate. A
total of 1 mg of the samples was dispersed in a mixed solution containing 250 µL of water,
250 µL of ethanol, and 10 µL of Nafion solution. It was ultrasonicated for 30 min, and
3.5 µL of the suspension was coated on the glassy carbon rotating disk electrode. After
being dried at room temperature for 12 h, the prepared electrode was used as working
electrode. N2-saturated Na2SO4 solution (0.5 M, pH = 6.8) was used as the electrolyte.

3.4. Photocatalytic Hydrogen Generation

The photocatalytic hydrogen evolution reaction was conducted using a homemade
side-irradiation Pyrex glass reactor. The temperature for the photocatalytic reaction was
maintained at 35 ◦C by thermostatic circulating water. The side irradiation area was about
7.06 cm2. A PLS-SXE 300+/UV Xe lamp (Perfect Light) was employed as light source
(the spectrum was shown in Figure S5) and it worked at 12 mA. A total of 10 mg of the
as-prepared photocatalysts was added into 30 mL of deionized water containing 6 mL of
methanol as the sacrificial reagent. The solution was constantly stirred and sonicated for
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15 min and then bubbled with N2 to eliminate the air completely before light irradiation.
The amount of hydrogen evolution was measured by a gas chromatograph (Bruker GC-450,
Nax Zeolite column, TCD detector, and N2 carrier). Apparent quantum yield (AQY) was
defined by the following equation using a 365 nm band-pass filter, in which NH was the
number of evolved H2 molecules and NP was the number of incident photons [8,42].

AQY(%) =
2NH
NP
× 100% (7)

4. Conclusions

To summarize, we demonstrated that mechanical grinding is a facile way to construct
WSe2/TiO2 nanocomposites and that loading of WSe2 can not only inhibit electron–hole
recombination of TiO2 but also provide active sites for water reduction. With the optimiza-
tion of the weight ratio of WSe2/(WSe2 + TiO2), the prepared photocatalysts displayed the
highest hydrogen evolution rate of 2.28 mmol/g·h, which corresponds to an apparent quan-
tum yield of 43.8% at 420 nm. These findings shed light on rational design and construction
of noble-metal-free cocatalysts decorated TiO2 semiconductors for water splitting.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12121668/s1, Figure S1: Scheme illustration of synthesis
procedure of TW-x catalysts; Figure S2: TEM image of WSe2 nanosheets with low magnification;
Figure S3: UV-Vis absorption spectra of WSe2 nanosheets from 300 nm to 1000 nm; Figure S4: Band-
gap evaluation of TiO2 from Tauc plot; Figure S5: The spectrum of Xe lamp used for light irradiation;
Table S1: Fitting data for photoluminescence emission decay curves using a biexponential function;
Table S2: Binding energies of studied samples; Table S3: Comparison of hydrogen evolution for
cocatalysts-TiO2 photocatalysts. References: [63–68].
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